1
|
Hameed H, Sarwar HS, Younas K, Zaman M, Jamshaid M, Irfan A, Khalid M, Sohail MF. Exploring the potential of nanomedicine for gene therapy across the physicochemical and cellular barriers. Funct Integr Genomics 2024; 24:177. [PMID: 39340586 DOI: 10.1007/s10142-024-01459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
After COVID-19, a turning point in the way of pharmaceutical technology is gene therapy with beneficial potential to start a new medical era. However, commercialization of such pharmaceuticals would never be possible without the help of nanotechnology. Nanomedicine can fulfill the growing needs linked to safety, efficiency, and site-specific targeted delivery of Gene therapy-based pharmaceuticals. This review's goal is to investigate how nanomedicine may be used to transfer nucleic acids by getting beyond cellular and physicochemical barriers. Firstly, we provide a full description of types of gene therapy, their mechanism, translation, transcription, expression, type, and details of diseases with possible mechanisms that can only be treated with genes-based pharmaceuticals. Additionally, we also reviewed different types of physicochemical barriers, physiological and cellular barriers in nucleic acids (DNA/RNA) based drug delivery. Finally, we highlight the need and importance of cationic lipid-based nanomedicine/nanocarriers in gene-linked drug delivery and how nanotechnology can help to overcome the above-discussed barrier in gene therapy and their biomedical applications.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Komel Younas
- Faculty of Pharmacy, University Paris Saclay, 17 Avenue des sciences, 91190, Orsay, France
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Maha Khalid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Farhan Sohail
- Department of Chemistry, SBASSE, Lahore University of Management Sciences (LUMS), Lahore, 54000, Pakistan
- Alliant College of Pharmacy and Allied Health Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Hu M, Deng F, Song X, Zhao H, Yan F. The crosstalk between immune cells and tumor pyroptosis: advancing cancer immunotherapy strategies. J Exp Clin Cancer Res 2024; 43:190. [PMID: 38987821 PMCID: PMC11234789 DOI: 10.1186/s13046-024-03115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Pyroptosis is a cell death process characterized by cell swelling until membrane rupture and release of intracellular contents. As an effective tumor treatment strategy, inducing tumor cell pyroptosis has received widespread attention. In this process, the immune components within the tumor microenvironment play a key regulatory role. By regulating and altering the functions of immune cells such as cytotoxic T lymphocytes, natural killer cells, tumor-associated macrophages, and neutrophils, tumor cell pyroptosis can be induced. This article provides a comprehensive review of the molecular mechanisms of cell pyroptosis, the impact of the tumor immune microenvironment on tumor cell pyroptosis, and its mechanisms. It aims to gain an in-depth understanding of the communication between the tumor immune microenvironment and tumor cells, and to provide theoretical support for the development of new tumor immunotherapies.
Collapse
Affiliation(s)
- Mengyuan Hu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China
| | - Fengying Deng
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China
| | - Xinlei Song
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China
| | - Hongkun Zhao
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian Road, Wuhua District, Kunming, 650031, Yunnan, China.
| | - Fei Yan
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China.
| |
Collapse
|
3
|
Liu D, Hou T, Geng C, Song L, Hou X, Chen Y, Wang F, Wang W, Han B, Gao L. Liposomes Enhance the Immunological Activity of Polygonatum Cyrtonema Hua Polysaccharides. J Pharm Sci 2024; 113:1572-1579. [PMID: 38237668 DOI: 10.1016/j.xphs.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Poor stability and difficult uptake of natural polysaccharides have been the main problems in their application. The purpose of this study was to optimize the preparation conditions of Polygonatum cyrtonema Hua polysaccharides liposomes (PCPL) and to investigate the immune enhancement activity of PCPL in vitro and in vivo, with a view to discovering new ways of natural polysaccharide application. The optimal preparation conditions of PCPL were as follows: the adding amount of Tween 80 of 0.5 %, the ultrasound time of 2 min and the ultrasound times of once. Under these conditions, the entrapment efficiency, drug loading rate and particle size of PCPL were 38.033 %±0.050, 2.172 %±0.003 and 146 nm, which indicated that PCPL with small particle size could be prepared by the reverse-phase evaporation method. Furthermore, PCPL promoted proliferation, phagocytosis, and secretion of nitric oxide and related cytokines in RAW264.7 cells. Moreover, PCPL improved spleen and thymus indices, increased the number or proportion of red blood cells, platelets, and lymphocytes in the blood, and ameliorated spleen and thymus atrophy in immunosuppressed mice. This study provides a new idea for applying Polygonatum cyrtonema Hua polysaccharides (PCP) and references for studying other polysaccharides.
Collapse
Affiliation(s)
- Dong Liu
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Tingting Hou
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Chunye Geng
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Lu Song
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Xuefeng Hou
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Yanjun Chen
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Fang Wang
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Wei Wang
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Bangxing Han
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Leilei Gao
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China.
| |
Collapse
|
4
|
Homma K, Miura Y, Kobayashi M, Chintrakulchai W, Toyoda M, Ogi K, Michinishi J, Ohtake T, Honda Y, Nomoto T, Takemoto H, Nishiyama N. Fine tuning of the net charge alternation of polyzwitterion surfaced lipid nanoparticles to enhance cellular uptake and membrane fusion potential. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2338785. [PMID: 38646148 PMCID: PMC11028023 DOI: 10.1080/14686996.2024.2338785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
Lipid nanoparticles (LNPs) coated with functional and biocompatible polymers have been widely used as carriers to deliver oligonucleotide and messenger RNA therapeutics to treat diseases. Poly(ethylene glycol) (PEG) is a representative material used for the surface coating, but the PEG surface-coated LNPs often have reduced cellular uptake efficiency and pharmacological activity. Here, we demonstrate the effect of pH-responsive ethylenediamine-based polycarboxybetaines with different molecular weights as an alternative structural component to PEG for the coating of LNPs. We found that appropriate tuning of the molecular weight around polycarboxybetaine-modified LNP, which incorporated small interfering RNA, could enhance the cellular uptake and membrane fusion potential in cancerous pH condition, thereby facilitating the gene silencing effect. This study demonstrates the importance of the design and molecular length of polymers on the LNP surface to provide effective drug delivery to cancer cells.
Collapse
Affiliation(s)
- Keitaro Homma
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yutaka Miura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Motoaki Kobayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Wanphiwat Chintrakulchai
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Masahiro Toyoda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Koichi Ogi
- I&S Department, Corporate R&D division, NOF CORPORATION, Kanagawa, Japan
| | - Junya Michinishi
- I&S Department, Corporate R&D division, NOF CORPORATION, Kanagawa, Japan
| | - Tomoyuki Ohtake
- I&S Department, Corporate R&D division, NOF CORPORATION, Kanagawa, Japan
| | - Yuto Honda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kanagawa, Japan
| | - Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Takemoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kanagawa, Japan
| |
Collapse
|
5
|
Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Recent Advances in Reprogramming Strategy of Tumor Microenvironment for Rejuvenating Photosensitizers-Mediated Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305708. [PMID: 38018311 DOI: 10.1002/smll.202305708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Indexed: 11/30/2023]
Abstract
Photodynamic therapy (PDT) has recently been considered a potential tumor therapy due to its time-space specificity and non-invasive advantages. PDT can not only directly kill tumor cells by using cytotoxic reactive oxygen species but also induce an anti-tumor immune response by causing immunogenic cell death of tumor cells. Although it exhibits a promising prospect in treating tumors, there are still many problems to be solved in its practical application. Tumor hypoxia and immunosuppressive microenvironment seriously affect the efficacy of PDT. The hypoxic and immunosuppressive microenvironment is mainly due to the abnormal vascular matrix around the tumor, its abnormal metabolism, and the influence of various immunosuppressive-related cells and their expressed molecules. Thus, reprogramming the tumor microenvironment (TME) is of great significance for rejuvenating PDT. This article reviews the latest strategies for rejuvenating PDT, from regulating tumor vascular matrix, interfering with tumor cell metabolism, and reprogramming immunosuppressive related cells and factors to reverse tumor hypoxia and immunosuppressive microenvironment. These strategies provide valuable information for a better understanding of the significance of TME in PDT and also guide the development of the next-generation multifunctional nanoplatforms for PDT.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
6
|
Zhou Z, Wang H, Li J, Jiang X, Li Z, Shen J. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Int J Biol Macromol 2024; 254:127911. [PMID: 37939766 DOI: 10.1016/j.ijbiomac.2023.127911] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Currently, immune checkpoint blockade (ICB) therapies that target the programmed cell death ligand-1 (PD-L1) have been used as revolutionary cancer treatments in the clinic. Apart from restoring the antitumor response of cytotoxic T cells by blocking the interaction between PD-L1 on tumor cells and programmed cell death-1 (PD-1) on T cells, PD-L1 proteins were also newly revealed to possess the capacity to accelerate DNA damage repair (DDR) and enhance tumor growth through multiple mechanisms, leading to the impaired efficacy of tumor therapies. Nevertheless, current free anti-PD-1/PD-L1 therapy still suffered from poor therapeutic outcomes in most solid tumors due to the non-selective tumor accumulation, ineludible severe cytotoxic effects, as well as the common occurrence of immune resistance. Recently, nanoparticles with efficient tumor-targeting capacity, tumor-responsive prosperity, and versatility for combination therapy were identified as new avenues for PD-L1 targeting cancer immunotherapies. In this review, we first summarized the multiple functions of PD-L1 protein in promoting tumor growth, accelerating DDR, as well as depressing immunotherapy efficacy. Following this, the effects and mechanisms of current clinically widespread tumor therapies on tumor PD-L1 expression were discussed. Then, we reviewed the recent advances in nanoparticles for anti-PD-L1 therapy via using PD-L1 antibodies, small interfering RNA (siRNA), microRNA (miRNA), clustered, regularly interspaced, short palindromic repeats (CRISPR), peptide, and small molecular drugs. At last, we discussed the challenges and perspectives to promote the clinical application of nanoparticles-based PD-L1-targeting therapy.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangping Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
7
|
Fadera S, Chukwu C, Stark AH, Yue Y, Xu L, Chien CY, Yuan J, Chen H. Focused Ultrasound-Mediated Delivery of Anti-Programmed Cell Death-Ligand 1 Antibody to the Brain of a Porcine Model. Pharmaceutics 2023; 15:2479. [PMID: 37896238 PMCID: PMC10610297 DOI: 10.3390/pharmaceutics15102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized cancer treatment by leveraging the body's immune system to combat cancer cells. However, its effectiveness in brain cancer is hindered by the blood-brain barrier (BBB), impeding the delivery of ICIs to brain tumor cells. This study aimed to assess the safety and feasibility of using focused ultrasound combined with microbubble-mediated BBB opening (FUS-BBBO) to facilitate trans-BBB delivery of an ICI, anti-programmed cell death-ligand 1 antibody (aPD-L1) to the brain of a large animal model. In a porcine model, FUS sonication of targeted brain regions was performed after intravenous microbubble injection, which was followed by intravenous administration of aPD-L1 labeled with a near-infrared fluorescent dye. The permeability of the BBB was evaluated using contrast-enhanced MRI in vivo, while fluorescence imaging and histological analysis were conducted on ex vivo pig brains. Results showed a significant 4.8-fold increase in MRI contrast-enhancement volume in FUS-targeted regions compared to nontargeted regions. FUS sonication enhanced aPD-L1 delivery by an average of 2.1-fold, according to fluorescence imaging. In vivo MRI and ex vivo staining revealed that the procedure did not cause significant acute tissue damage. These findings demonstrate that FUS-BBBO offers a noninvasive, localized, and safe delivery approach for ICI delivery in a large animal model, showcasing its potential for clinical translation.
Collapse
Affiliation(s)
- Siaka Fadera
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (S.F.); (Y.Y.); (J.Y.)
| | - Chinwendu Chukwu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (S.F.); (Y.Y.); (J.Y.)
| | - Andrew H. Stark
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (S.F.); (Y.Y.); (J.Y.)
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (S.F.); (Y.Y.); (J.Y.)
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (S.F.); (Y.Y.); (J.Y.)
| | - Chih-Yen Chien
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (S.F.); (Y.Y.); (J.Y.)
| | - Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (S.F.); (Y.Y.); (J.Y.)
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (S.F.); (Y.Y.); (J.Y.)
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Wu W, Wang Y, Xie J, Fan S. Empagliflozin: a potential anticancer drug. Discov Oncol 2023; 14:127. [PMID: 37436535 DOI: 10.1007/s12672-023-00719-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is a highly effective and well-tolerated antidiabetic drug. In addition to hypoglycemic effects, empagliflozin has many other effects, such as being hypotensive and cardioprotective. It also has anti-inflammatory and antioxidative stress effects in diabetic nephropathy. Several studies have shown that empagliflozin has anticancer effects. SGLT2 is expressed in a variety of cancer cell lines. The SGLT2 inhibitor empagliflozin has significant inhibitory effects on certain types of tumor cells, such as inhibition of proliferation, migration and induction of apoptosis. In conclusion, empagliflozin has promising applications in cancer therapy as a drug for the treatment of diabetes and heart failure. This article provides a brief review of the anticancer effects of empagliflozin.
Collapse
Affiliation(s)
- Wenwen Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Jun Xie
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Shaohua Fan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
9
|
Jiang M, Chen W, Sun Y, Zeng J, Ma L, Gong J, Guan X, Lu K, Zhang W. Synergistically enhanced cancer immunotherapy by combining protamine-based nanovaccine with PD-L1 gene silence nanoparticle. Int J Biol Macromol 2023; 242:125223. [PMID: 37276908 DOI: 10.1016/j.ijbiomac.2023.125223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Tumor vaccine has brought a new dawn for cancer immunotherapy, but disillusionary therapeutic outcomes have been achieved due to the inefficient in vivo vaccine delivery. Moreover, tumor cells customarily resort to various wily tricks to circumvent the recognition and sweeping of the immune system, the immune escape effect has badly aggravated the difficulty of cancer management. With respect to the foregoing, in this study, a promising combinational strategy which cooperated nanovaccine with immune escape inhibition was developed for synergistically enhancing the oncotherapy efficiency. On the one hand, natural polycationic macromolecule protamine (PRT) was utilized as the carrier to construct an antigen and adjuvant co-packaged nanovaccine for facilitating the ingestion in antigen-presenting cells, amplifying antigen cross-presentation and optimizing in vivo delivery. On the other hand, PD-L1 silence gene was selected and hitchhiked in a pH-responsive nanoparticle developed in our previous study. The therapeutic gene could be successfully delivered into the tumors to down-regulate PD-L1 expression and cripple tumor immune escape. The combination of nanovaccine with PD-L1 gene silence nanoparticle could synchronously stimulate antitumor immune responses and reduce immune escape, synergistically enhance the therapeutic efficiency. This study will furnish the prospective tactics for the research of cancer immunotherapy.
Collapse
Affiliation(s)
- Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wenqiang Chen
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yanju Sun
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jun Zeng
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Lina Ma
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jianping Gong
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Keliang Lu
- School of Anesthesiology, Weifang Medical University, Weifang 261053, China.
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
10
|
Dong Q, Han D, Li B, Yang Y, Ren L, Xiao T, Zhang J, Li Z, Yang H, Liu H. Bionic lipoprotein loaded with chloroquine-mediated blocking immune escape improves antitumor immunotherapy. Int J Biol Macromol 2023; 240:124342. [PMID: 37030459 DOI: 10.1016/j.ijbiomac.2023.124342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
Tumor immunotherapy hold great promise for eradicating tumors. However, immune escape and the immunosuppressive microenvironment of tumor usually limit the efficiency of tumor immunotherapy. Therefore, simultaneously blocking immune escape and improving immunosuppressive microenvironment are the current problems to be solved urgently. Among them, CD47 on cancer cells membrane could bind to signal regulatory protein α (SIRPα) on macrophages membrane and sent out "don't eat me" signal, which was an important pathway of immune escape. The large number of M2-type macrophages in tumor microenvironment was a significant factor contributing to the immunosuppressive microenvironment. Here, we present a drug loading system for enhancing cancer immunotherapy, comprising CD47 antibody (aCD47) and chloroquine (CQ) with Bionic lipoprotein (BLP) carrier (BLP-CQ-aCD47). On the one hand, as drug delivery carrier, BLP could allow CQ to be preferentially taken up by M2-type macrophages, thereby efficiently polarized M2-type tumor-promoting cells into M1-type anti-tumor cells. On the other hand, blocking CD47 from binding to SIRPα could block the "don't eat me" signal, and improve the phagocytosis of macrophages to tumor cells. Taken together, BLP-CQ-aCD47 could block immune escape, improve immunosuppressive microenvironment of tumor, and induce a strong immune response without substantial systemic toxicity. Therefore, it provides a new idea for tumor immunotherapy.
Collapse
Affiliation(s)
- Qing Dong
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Dandan Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Baoku Li
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China.
| | - Yang Yang
- Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Lili Ren
- Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Tingshan Xiao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Zhenhua Li
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangdong 510515, China
| | - Hua Yang
- Affiliated Hospital of Hebei University, Baoding 071000, China.
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
11
|
Zhao F, Zhu J, Yu R, Shao T, Chen S, Zhang G, Shu Q. Cutaneous adverse events in patients treated with PD-1/PD-L1 checkpoint inhibitors and their association with survival: a systematic review and meta-analysis. Sci Rep 2022; 12:20038. [PMID: 36414662 PMCID: PMC9681870 DOI: 10.1038/s41598-022-24286-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Immune-related cutaneous adverse events (irCAEs) in patients treated with programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint inhibitors may be associated with better clinical outcomes. However, the extent to which these results can be extrapolated to all tumour types remains unclear. Herein, we conducted a meta-analysis of patients with cancer receiving anti-PD-1/PD-L1 immunotherapy, to determine the cumulative incidence of irCAEs and their association with survival. We systematically searched six databases (PubMed, Embase, Cochrane, CNKI, CSPD, and CQVIP database) for all cohort studies reporting the relationship between irCAEs and patient survival from the time of database construction to 1 November, 2020. The primary outcomes were objective response rate (ORR), progression-free survival (PFS), and overall survival (OS), with complete remission (CR), partial remission (PR), stable disease (SD), and progressive disease (PD) as secondary outcomes. Patients with irCAEs exhibited higher ORR, and were more likely to report CR and PR and less likely to develop PD than those who did not experience irCAEs. Moreover, the occurrence of irCAEs was significantly associated with both favourable PFS and OS. Therefore, patients with irCAEs have better survival benefit and a significantly lower risk of tumour progression or death. Hence, the occurrence of irCAEs may be a useful marker for predicting the clinical efficacy of anti-PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Fangmin Zhao
- grid.268505.c0000 0000 8744 8924The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang China
| | - Junjing Zhu
- Department of Oncology, Jiaxing TCM Hospital Affiliated to Zhejiang Chinese Medical University (Jiaxing Hospital of Traditional Chinese Medicine), Jiaxing, 314033 Zhejiang China
| | - Rui Yu
- grid.268505.c0000 0000 8744 8924The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang China
| | - Tianyu Shao
- grid.268505.c0000 0000 8744 8924The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang China
| | - Shuyi Chen
- grid.417400.60000 0004 1799 0055Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006 Zhejiang China
| | - Gaochenxi Zhang
- grid.417400.60000 0004 1799 0055Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006 Zhejiang China
| | - Qijin Shu
- grid.417400.60000 0004 1799 0055Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006 Zhejiang China ,grid.268505.c0000 0000 8744 8924Cancer Institute of Integrative Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
12
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Wang S, Zhou Q, Yu S, Zhao S, Shi J, Yuan J. Rod-like hybrid nanomaterial with tumor targeting and pH-responsive for cancer chemo/photothermal synergistic therapy. J Nanobiotechnology 2022; 20:332. [PMID: 35842723 PMCID: PMC9287864 DOI: 10.1186/s12951-022-01527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/18/2022] [Indexed: 11/10/2022] Open
Abstract
The development of chemo/photothermal nanotherapeutic systems with excellent photothermal performance, stable drug loading, tumor targeting and strong membrane penetration still remains a challenge. To address this problem, herein a rod-like nanocomposite system (AuNR@FA-PR/PEG) forming from folic acid (FA) terminated carboxylated cyclodextrin (CD) pseudopolyrotaxane (FA-PR) and polyethylene glycol (PEG) modifying gold nanorods (AuNR) was reported. Cisplatin (CDDP) was loaded in AuNR@FA-PR/PEG via coordination bonds to prepare a rod-like pH-responsive nanosystem (AuNR@FA-PR/PEG/CDDP) with chemotherapy/photothermal therapy. The rod-like morphology of AuNR@FA-PR/PEG was characterized by transmission electron microscope. In vitro drug release experiments showed the pH-responsive of AuNR@FA-PR/PEG/CDDP. In vivo real-time imaging assays proved AuNR@FA-PR/PEG/CDDP could rapidly enrich in the tumor area and stay for a long time because of folate targeting and their rod-like morphology. In vivo photothermal imaging assays showed AuNR@FA-PR/PEG/CDDP excellent photothermal performance, the average temperature of tumor region could reach 63.5 °C after 10 min irradiation. In vitro and in vivo experiments also demonstrated that the combined therapy of chemotherapy and photothermal therapy had an outstandingly synergistic effect and improved the therapeutic efficacy comparing with chemotherapy and photothermal therapy alone. Therefore, the prepared rod-like AuNR@FA-PR/PEG/CDDP will provide a new strategy for the effective treatment of cancer.
Collapse
Affiliation(s)
- Shaochen Wang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Qiaoqiao Zhou
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Shuling Yu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, People's Republic of China.
| | - Shuang Zhao
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, People's Republic of China.
| | - Jintao Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
14
|
Sun X, Zhang J, Xiu J, Zhao X, Yang C, Li D, Li K, Hu H, Qiao M, Chen D, Zhao X. A phenolic based tumor-permeated nano-framework for immunogenic cell death induction combined with PD-L1 immune checkpoint blockade. Biomater Sci 2022; 10:3808-3822. [PMID: 35670432 DOI: 10.1039/d2bm00455k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A critical obstacle for programmed death ligand 1 (PD-L1) immune checkpoint blockade immunotherapy is the insufficient T cell infiltration and low immunogenicity of tumor cells. Improving tumor immunogenicity through immunogenic cell death (ICD) can make tumor sensitive to PD-L1 checkpoint blockade immunotherapy. Herein, a phenolic based tumor-permeated nano-framework (EGPt-NF) was fabricated by cross-linking phenylboric acid modified platinum nanoparticles (PBA-Pt, ICD inducer) and epigallocatechin-3-O-gallate (EGCG, PD-L1 inhibitor) via pH-reversible borate ester. In particular, PBA-Pt could not only induce ICD cascade but also relieve tumor hypoxia. Consequently, EGPt-NF could effectively promote dendritic cell maturation and downregulate PD-L1 expression in tumor cells. Furthermore, EGPt-NF could also relieve tumor hypoxia to facilitate cytotoxic T lymphocyte infiltration and IFN-γ secretion. The synergistic effect of EGPt-NF could effectively improve tumor immunogenicity and amplify the therapeutic outcomes of cancer immunotherapy, resulting in a strong antitumor immune response in primary tumor and metastasis inhibition. Our simple approach expands the application of platinum-based drug delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoyan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Jiulong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Jingya Xiu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Xiufeng Zhao
- Department of Oncology, Affiliated Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, 157011, PR China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, Xinling Road, No. 22, Shantou, PR China
| | - Dan Li
- Department of Pharmaceutics, Affiliated Central Hospital of Shenyang Medical College, Nanqi West Road, No. 5, Shenyang, PR China
| | - Kexin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| |
Collapse
|
15
|
Liu R, Huang Y. CDC7 as a novel biomarker and druggable target in cancer. Clin Transl Oncol 2022; 24:1856-1864. [PMID: 35657477 DOI: 10.1007/s12094-022-02853-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
Due to the bottlenecks encountered in traditional treatment for tumor, more effective drug targets need to be developed. Cell division cycle 7 kinase plays an important role in DNA replication, DNA repair and recombination signaling pathways. In this review, we first describe recent studies on the role of CDC7 in DNA replication in normal human tissues, and then we integrate new evidence focusing on the important role of CDC7 in replication stress tolerance of tumor cells and its impact on the prognosis of clinical oncology patients. Finally, we comb through the CDC7 inhibitors identified in recent studies as a reference for further research in clinical practice.
Collapse
Affiliation(s)
- Runze Liu
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
16
|
Revolutionization in Cancer Therapeutics via Targeting Major Immune Checkpoints PD-1, PD-L1 and CTLA-4. Pharmaceuticals (Basel) 2022; 15:ph15030335. [PMID: 35337133 PMCID: PMC8952773 DOI: 10.3390/ph15030335] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
Numerous research reports have witnessed dramatic advancements in cancer therapeutic approaches through immunotherapy. Blocking immunological checkpoint pathways (mechanisms employed by malignant cells to disguise themselves as normal human body components) has emerged as a viable strategy for developing anticancer immunity. Through the development of effective immune checkpoint inhibitors (ICIs) in multiple carcinomas, advances in cancer immunity have expedited a major breakthrough in cancer therapy. Blocking a variety of ICIs, such as PD-1 (programmed cell death-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) has improved the immune system’s efficacy in combating cancer cells. Recent studies also supported the fact that ICIs combined with other potent antitumor candidates, such as angiogenic agents, could be a solid promising chemopreventive therapeutic approach in improving the effectiveness of immune checkpoint inhibitors. Immune checkpoint blockade has aided antiangiogenesis by lowering vascular endothelial growth factor expression and alleviating hypoxia. Our review summarized recent advances and clinical improvements in immune checkpoint blocking tactics, including combinatorial treatment of immunogenic cell death (ICD) inducers with ICIs, which may aid future researchers in creating more effective cancer-fighting strategies.
Collapse
|