1
|
Mora-Castaño G, Rodríguez-Pombo L, Carou-Senra P, Januskaite P, Rial C, Bendicho-Lavilla C, Couce ML, Millán-Jiménez M, Caraballo I, Basit AW, Alvarez-Lorenzo C, Goyanes A. Optimising 3D printed medications for rare diseases: In-line mass uniformity testing in direct powder extrusion 3D printing. Int J Pharm 2025; 668:124964. [PMID: 39557179 DOI: 10.1016/j.ijpharm.2024.124964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Biotinidase deficiency is a rare inherited disorder characterized by biotin metabolism issues, leading to neurological and cutaneous symptoms that can be alleviated through biotin administration. Three-dimensional (3D) printing (3DP) offers potential for personalized medicine production for rare diseases, due to its flexibility in designing dosage forms and controlling release profiles. For such point-of-care applications, rigorous quality control (QC) measures are essential to ensure precise dosing, optimal performance, and product safety, especially for low personalized doses in preclinical and clinical studies. In this work, we addressed QC challenges by integrating a precision balance into a direct powder extrusion pharmaceutical 3D printer (M3DIMAKER™) for real-time, in-line mass uniformity testing, a critical quality control step. Small and large capsule-shaped biotin printlets (3D printed tablets) for immediate- and extended-release were printed. The integrated balance monitored and registered each printlet's weight, identifying any deviations from acceptable limits. While all large printlet batches met mass uniformity criteria, some small printlet batches exhibited weight deviations. In vitro release studies showed large immediate-release printlets releasing 82% of biotin within 45 min, compared to 100% for small immediate-release printlets. For extended-release formulations, 35% of the drug was released from small printlets, whereas 24% was released from large printlets at the same time point. The integration of process analytical technology tools in 3DP shows promise in enhancing QC and scalability of personalized dosing at the point-of-care, demonstrating successful integration of a balance into a direct powder extrusion 3D printer for in-line mass uniformity testing across different sizes of capsule-shaped printlets.
Collapse
Affiliation(s)
- Gloria Mora-Castaño
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville 41012, Spain
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Carlos Rial
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, United Kingdom; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos, O Saviñao CP 27543, Spain
| | - Carlos Bendicho-Lavilla
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, United Kingdom; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos, O Saviñao CP 27543, Spain
| | - Maria L Couce
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain
| | - Mónica Millán-Jiménez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville 41012, Spain
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville 41012, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos, O Saviñao CP 27543, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, United Kingdom; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos, O Saviñao CP 27543, Spain.
| |
Collapse
|
2
|
Ayyoubi S, Ruijgrok L, van der Kuy H, Ten Ham R, Thielen F. What Does Pharmaceutical 3D Printing Cost? A Framework and Case Study with Hydrocortisone for Adrenal Insufficiency. PHARMACOECONOMICS - OPEN 2024:10.1007/s41669-024-00551-1. [PMID: 39739242 DOI: 10.1007/s41669-024-00551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Pharmaceutical three-dimensional printing (3DP) technology offers an automated platform that can be utilized to manufacture personalized medicine, improving pharmacotherapy. Although 3D-printed products have entered clinical trials, no costing studies have been performed yet. Cost insights can aid researchers and industry in making informed decisions about the feasibility and scalability of 3DP. OBJECTIVE The aim of this research was therefore to develop a framework that can be utilized to estimate the manufacturing cost of one 3D tablet in a hospital pharmacy setting. METHODS To develop the costing framework, general manufacturing phases were identified, consisting of (i) pre-printing, (ii) printing, and (iii) post-printing. For each phase, cost categories were defined, including personnel, materials, equipment, facility, and quality assurance. The three phases combined with the categories formed the base of the costing framework. An earlier developed 3D-printed hydrocortisone formulation (M3DICORT) was used as a case study. Costs were expressed in 2022 euros (€). The framework was applied to M3DICORT in four scenarios: a base case scenario, worst-case scenario, best-case scenario, and a scaling scenario. In the scaling scenario, we assumed that 3D inks were mass produced. RESULTS Costs of manufacturing a single M3DICORT tablet were €1.97-3.11 (best-case-worst-case) and €1.58-2.26 for the scaling scenario. CONCLUSION Manufacturing costs of 3D-printed pharmaceuticals were thus far unknown. The framework is translated into an open-access costing tool to facilitate adoption by other parties, and is also applicable for other pharmaceutical 3DP techniques.
Collapse
Affiliation(s)
- Sejad Ayyoubi
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, Room Number: na-219, 3015 GD, Rotterdam, The Netherlands.
| | - Liesbeth Ruijgrok
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, Room Number: na-219, 3015 GD, Rotterdam, The Netherlands
| | - Hugo van der Kuy
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, Room Number: na-219, 3015 GD, Rotterdam, The Netherlands
| | - Renske Ten Ham
- Department of Epidemiology & Health Economics, Julius Center, University Medical Center Utrecht, Universiteitsweg 100, 3584 CX, Utrecht, The Netherlands
| | - Frederick Thielen
- Erasmus School of Health Policy & Management (ESHPM) & Erasmus Centre for Health Economics Rotterdam (EsCHER), Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Chen H, Fang D, Wang X, Gong Y, Ji Y, Pan H. Fabrication of osmotic pump tablets utilizing semisolid extrusion three-dimensional printing technology. Int J Pharm 2024; 665:124668. [PMID: 39245086 DOI: 10.1016/j.ijpharm.2024.124668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/11/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
The utilization of three-dimensional (3D) printing technology is prevalent in the fabrication of oral sustained release preparations; however, there is a lack of research on 3D-printed osmotic pump tablets. A 3D-printed core-shell structure bezafibrate osmotic pump tablet was developed based on the characteristics of rapid absorption and short half-life of bezafibrate, utilizing semisolid extrusion (SSE) 3D printing technology. First, the properties of different shell materials were investigated to define the composition of the shell, and ultimately, the optimal formulation was found to be ethyl cellulose:cellulose acetate:polyethylene glycol = 2:1:2. The formulation of the tablet core was defined based on the printing performance and release behavior. The formulation consisted of bezafibrate, lactis anhydrous, sodium bicarbonate, sodium alginate, polyethylene oxide and sodium dodecyl sulfate at a ratio of 400:400:300:80:50:50. The tablet was capable of achieving zero-order release. The physicochemical properties were also characterized. The pharmacokinetic data analysis indicated that there were no statistically significant differences in the pharmacokinetic parameters between the 3D-printed tablets and the reference listed drugs. There was a strong correlation between the in vitro and in vivo results for the 3D-printed tablets. The results showed that SSE printing is a practical approach for manufacturing osmotic pump tablets.
Collapse
Affiliation(s)
- Hao Chen
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Dongyang Fang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xiangyu Wang
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Ye Gong
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Yang Ji
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China.
| |
Collapse
|
4
|
Rodríguez-Pombo L, Gallego-Fernández C, Jørgensen AK, Parramon-Teixidó CJ, Cañete-Ramirez C, Cabañas-Poy MJ, Basit AW, Alvarez-Lorenzo C, Goyanes A. 3D printed personalized therapies for pediatric patients affected by adrenal insufficiency. Expert Opin Drug Deliv 2024; 21:1665-1681. [PMID: 39268761 DOI: 10.1080/17425247.2024.2399706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Adrenal insufficiency is usually diagnosed in children who will need lifelong hydrocortisone therapy. However, medicines for pediatrics, in terms of dosage and acceptability, are currently unavailable. RESEARCH DESIGN AND METHODS Semi-solid extrusion (SSE) 3D printing (3DP) was utilized for manufacturing of personalized and chewable hydrocortisone formulations (printlets) for an upcoming clinical study in children at Vall d'Hebron University Hospital in Barcelona, Spain. The 3DP process was validated using a specific software for dynamic dose modulation. RESULTS The printlets contained doses ranging from 1 to 6 mg hydrocortisone in three different flavor and color combinations to aid adherence among the pediatric patients. The pharma-ink (mixture of drugs and excipients) was assessed for its rheological behavior to ensure reproducibility of printlets through repeated printing cycles. The printlets showed immediate hydrocortisone release and were stable for 1 month of storage, adequate for prescribing instructions during the clinical trial. CONCLUSIONS The results confirm the suitability and safety of the developed printlets for use in the clinical trial. The required technical information from The Spanish Medicines Agency for this clinical trial application was compiled to serve as guidelines for healthcare professionals seeking to apply for and conduct clinical trials on 3DP oral dosage forms.
Collapse
Affiliation(s)
- Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Concepción Gallego-Fernández
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | - Carme Cañete-Ramirez
- Pharmacy Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Josep Cabañas-Poy
- Pharmacy Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, UK
- FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, UK
- FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), Spain
| |
Collapse
|
5
|
Paccione N, Guarnizo-Herrero V, Ramalingam M, Larrarte E, Pedraz JL. Application of 3D printing on the design and development of pharmaceutical oral dosage forms. J Control Release 2024; 373:463-480. [PMID: 39029877 DOI: 10.1016/j.jconrel.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
3D printing technologies confer an unparalleled degree of control over the material distribution on the structures they produce, which has led them to become an extremely attractive research topic in pharmaceutical dosage form development, especially for the design of personalized treatments. With fine tuning in material selection and careful design, these technologies allow to tailor not only the amount of drug administered but the biopharmaceutical behaviour of the dosage forms as well. While fused deposition modelling (FDM) is still the most studied 3D printing technology in this area, others are gaining more relevance, which has led to many new and exciting dosage forms developed during 2022 and 2023. Considering that these technologies, in time, will join the current manufacturing methods and with the ever-increasing knowledge on this topic, our review aims to explore the advantages and limitations of 3D printing technologies employed in the design and development of pharmaceutical oral dosage forms, giving special focus to the most important aspects governing the resulting drug release profiles.
Collapse
Affiliation(s)
- Nicola Paccione
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain
| | - Víctor Guarnizo-Herrero
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33, 600 28805 Madrid, Spain
| | - Murugan Ramalingam
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain.; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Eider Larrarte
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain.
| | - José Luis Pedraz
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain..
| |
Collapse
|
6
|
Peng H, Han B, Tong T, Jin X, Peng Y, Guo M, Li B, Ding J, Kong Q, Wang Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024; 16:10.1088/1758-5090/ad3a14. [PMID: 38569493 PMCID: PMC11164598 DOI: 10.1088/1758-5090/ad3a14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
- These authors contributed equally
| | - Bo Han
- Department of Pharmacy, Daqing Branch, Harbin Medical University, Daqing, People’s Republic of China
- These authors contributed equally
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Xin Jin
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, People’s Republic of China
| | - Meitong Guo
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Bian Li
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Jiaxin Ding
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, People’s Republic of China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
7
|
Al-Rayess H, Lahoti A, Simpson LL, Palzer E, Thornton P, Heksch R, Kamboj M, Stanley T, Regelmann MO, Gupta A, Raman V, Mehta S, Geffner ME, Sarafoglou K. Practice Variation among Pediatric Endocrinologists in the Dosing of Glucocorticoids in Young Children with Congenital Adrenal Hyperplasia. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1871. [PMID: 38136073 PMCID: PMC10742174 DOI: 10.3390/children10121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
A Pediatric Endocrine Society (PES) Drugs and Therapeutics Committee workgroup sought to determine the prescribing practices of pediatric endocrinologists when treating children <10 years of age with congenital adrenal hyperplasia (CAH). Our workgroup administered a 32-question online survey to PES members. There were 187 respondents (88.9% attending physicians), mostly from university-affiliated clinics (~80%). Ninety-eight percent of respondents prescribed the short-acting glucocorticoid hydrocortisone to treat young children, as per the Endocrine Society CAH Guidelines, although respondents also prescribed long-acting glucocorticoids such as prednisolone suspension (12%), prednisone tablets (9%), and prednisone suspension (6%). Ninety-seven percent of respondents indicated that they were likely/very likely to prescribe hydrocortisone in a thrice-daily regimen, as per CAH Guidelines, although 19% were also likely to follow a twice-daily regimen. To achieve smaller doses, using a pill-cutter was the most frequent method recommended by providers to manipulate tablets (87.2%), followed by dissolving tablets in water (25.7%) to create a daily batch (43.7%) and/or dissolving a tablet for each dose (64.6%). Thirty-one percent of providers use pharmacy-compounded hydrocortisone suspension to achieve doses of <2.5 mg. Our survey shows that practices among providers in the dosing of young children with CAH vary greatly and sometimes fall outside of the CAH Guidelines-specifically when attempting to deliver lower, age-appropriate hydrocortisone doses.
Collapse
Affiliation(s)
- Heba Al-Rayess
- Department of Pediatrics, Division of Endocrinology, University of Minnesota Medical School, Minneapolis, MN 55454, USA;
| | - Amit Lahoti
- Department of Pediatrics, Division of Endocrinology, Nationwide Children’s Hospital at The Ohio State University, Columbus, OH 43205, USA; (A.L.); (M.K.)
| | - Leslie Long Simpson
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA; (L.L.S.); (E.P.)
| | - Elise Palzer
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA; (L.L.S.); (E.P.)
| | - Paul Thornton
- Division of Endocrinology and Diabetes, Cook Children’s Medical Center, Fort Worth, TX 76104, USA;
| | - Ryan Heksch
- Center for Diabetes and Endocrinology, Department of Pediatrics, Akron Children’s Hospital, Akron, OH 44308, USA;
| | - Manmohan Kamboj
- Department of Pediatrics, Division of Endocrinology, Nationwide Children’s Hospital at The Ohio State University, Columbus, OH 43205, USA; (A.L.); (M.K.)
| | - Takara Stanley
- Pediatric Endocrine Unit and Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| | - Molly O. Regelmann
- Division of Pediatric Endocrinology and Diabetes, Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10467, USA;
| | - Anshu Gupta
- Division of Pediatric Endocrinology, Children’s Hospital of Richmond, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Vandana Raman
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Utah, Salt Lake City, UT 84112, USA;
| | - Shilpa Mehta
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, New York Medical College, Valhalla, NY 10595, USA
| | - Mitchell E. Geffner
- The Saban Research Institute, Children’s Hospital Los Angeles, The Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA;
| | - Kyriakie Sarafoglou
- Department of Pediatrics, Division of Endocrinology, University of Minnesota Medical School, Minneapolis, MN 55454, USA;
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Kaba K, Purnell B, Liu Y, Royall PG, Alhnan MA. Computer numerical control (CNC) carving as an on-demand point-of-care manufacturing of solid dosage form: A digital alternative method for 3D printing. Int J Pharm 2023; 645:123390. [PMID: 37683980 DOI: 10.1016/j.ijpharm.2023.123390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Computer numerical control (CNC) carving is a widely used method of industrial subtractive manufacturing of wood, plastics, and metal products. However, there have been no previous reports of applying this approach to manufacture medicines. In this work, the novel method of tablet production using CNC carving is introduced for the first time. This report provides a proof-of-concept for applying subtractive manufacturing as an alternative to formative (powder compression) and additive (3D printing) manufacturing for the on-demand production of solid dosage forms. This exemplar manufacturing approach was employed to produce patient-specific hydrocortisone (HC) tablets for the treatment of children with congenital adrenal hyperplasia. A specially made drug-polymer cast based on polyethene glycol (PEG 6,000) and hydroxypropyl cellulose was produced using thermal casting. The cast was used as a workpiece and digitally carved using a small-scale 3-dimensional (3D) CNC carving. To establish the ability of this new approach to provide an accurate dose of HC, four different sizes of CNC carved tablet were manufactured to achieve HC doses of 2.5, 5, 7.5 and 10 mg with a relative standard deviation of the tablet weight in the range of 3.69-4.79%. In addition, batches of 2.5 and 5 mg HC tablets met the British Pharmacopeia standards for weight uniformity. Thermal analysis and X-ray powder diffraction indicated that the model drug was in amorphous form. In addition, HPLC analysis indicated a level of purity of 96.5 ± 1.1% of HC. In addition, the process yielded mechanically strong cylindrical tablets with tensile strength ranging from 0.49 to 1.6 MPa and friability values of <1%, whilst maintaining an aesthetic look. In vitro, HC release from the CNC-carved tablets was slower with larger tablet sizes and higher binder contents. This is the first report on applying CNC carving in the pharmaceutical context of producing solid dosage forms. The work showed the potential of this technology as an alternative method for the on-demand manufacturing of patient-specific dosage forms.
Collapse
Affiliation(s)
- Kazim Kaba
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Bryn Purnell
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Yujing Liu
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Paul G Royall
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Mohamed A Alhnan
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
9
|
Parulski C, Bya LA, Goebel J, Servais AC, Lechanteur A, Evrard B. Development of 3D printed mini-waffle shapes containing hydrocortisone for children's personalized medicine. Int J Pharm 2023:123131. [PMID: 37321464 DOI: 10.1016/j.ijpharm.2023.123131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Hydrocortisone is mainly used in the substitution treatment of adrenal insufficiency which results in a dysregulation of cortisol. Compounding of hydrocortisone capsules remains the only low-dose oral treatment suitable for the pediatric population. However, capsules often show non-compliance in mass and content uniformity. Three-dimensional printing offers the prospect of practising personalized medicine for vulnerable patients like children. The goal of this work is to develop low-dose solid oral forms containing hydrocortisone by hot-melt extrusion coupled with fused deposition modeling for the pediatric population. Formulation, design and processes temperatures were optimized to produce printed forms with the desired characteristics. Red mini-waffle shapes containing drug loads of 2, 5 and 8 mg were successfully printed. This new 3D design allow to release more than 80% of the drug in 45 minutes indicating a conventional release like the one obtained with capsules. Mass and content uniformity, hardness and friability tests complied with European Pharmacopeia specifications, despite the considerable challenge of the small dimensions of the forms. This study demonstrates that FDM can be used to produce innovative pediatric-friendly printed shapes of an advanced pharmaceutical quality to practice personalize medicine.
Collapse
Affiliation(s)
- Chloé Parulski
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium.
| | - Laure-Anne Bya
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Justine Goebel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| |
Collapse
|
10
|
Mau R, Eickner T, Jüttner G, Gao Z, Wei C, Fiedler N, Senz V, Lenarz T, Grabow N, Scheper V, Seitz H. Micro Injection Molding of Drug-Loaded Round Window Niche Implants for an Animal Model Using 3D-Printed Molds. Pharmaceutics 2023; 15:1584. [PMID: 37376033 DOI: 10.3390/pharmaceutics15061584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
A novel approach for the long-term medical treatment of the inner ear is the diffusion of drugs through the round window membrane from a patient-individualized, drug-eluting implant, which is inserted in the middle ear. In this study, drug-loaded (10 wt% Dexamethasone) guinea pig round window niche implants (GP-RNIs, ~1.30 mm × 0.95 mm × 0.60 mm) were manufactured with high precision via micro injection molding (µIM, Tmold = 160 °C, crosslinking time of 120 s). Each implant has a handle (~3.00 mm × 1.00 mm × 0.30 mm) that can be used to hold the implant. A medical-grade silicone elastomer was used as implant material. Molds for µIM were 3D printed from a commercially available resin (TG = 84 °C) via a high-resolution DLP process (xy resolution of 32 µm, z resolution of 10 µm, 3D printing time of about 6 h). Drug release, biocompatibility, and bioefficacy of the GP-RNIs were investigated in vitro. GP-RNIs could be successfully produced. The wear of the molds due to thermal stress was observed. However, the molds are suitable for single use in the µIM process. About 10% of the drug load (8.2 ± 0.6 µg) was released after 6 weeks (medium: isotonic saline). The implants showed high biocompatibility over 28 days (lowest cell viability ~80%). Moreover, we found anti-inflammatory effects over 28 days in a TNF-α-reduction test. These results are promising for the development of long-term drug-releasing implants for human inner ear therapy.
Collapse
Affiliation(s)
- Robert Mau
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany
| | - Thomas Eickner
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Gábor Jüttner
- Kunststoff-Zentrum in Leipzig gGmbH (KUZ), Erich-Zeigner-Allee 44, 04229 Leipzig, Germany
| | - Ziwen Gao
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence "Hearing4all", Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Chunjiang Wei
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence "Hearing4all", Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Nicklas Fiedler
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Volkmar Senz
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Thomas Lenarz
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence "Hearing4all", Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
- Department Life, Light & Matter, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Verena Scheper
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence "Hearing4all", Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Hermann Seitz
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany
- Department Life, Light & Matter, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| |
Collapse
|
11
|
Yang TL, Stogiannari M, Janeczko S, Khoshan M, Lin Y, Isreb A, Habashy R, Giebułtowic J, Peak M, Alhnan MA. Towards Point-of-Care Manufacturing and Analysis of Immediate-Release 3D Printed Hydrocortisone Tablets for The Treatment of Congenital Adrenal Hyperplasia. Int J Pharm 2023:123072. [PMID: 37230368 DOI: 10.1016/j.ijpharm.2023.123072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Hydrocortisone (HC) is the preferred drug in children with congenital adrenal hyperplasia due to its lower potency as well as fewer reports of side effects. Fused deposition modelling (FDM) 3D printing holds the potential to produce low-cost personalised doses for children at the point of care. However, the compatibility of the thermal process to produce immediate-release bespoke tablets for this thermally labile active is yet to be established. This work aims to develop immediate-release HC tablets using FDM 3D printing and assess drug contents as a critical quality attribute (CQA) using a compact, low-cost near-infrared (NIR) spectroscopy as a process analytical technology (PAT). The FDM 3D printing temperature (140 °C) and drug concentration in the filament (10%-15% w/w) were critical parameters to meet the compendial criteria for drug contents and impurities. Using a compact low-cost NIR spectral device over a wavelength of 900-1700 nm, the drug contents of 3D printed tablets were assessed. Partial least squares (PLS) regression was used to develop individual calibration models to detect HC content in 3D printed tablets of lower drug contents, small caplet design, and relatively complex formula. The models demonstrated the ability to predict HC concentrations over a wide concentration range (0-15% w/w), which was confirmed by HPLC as a reference method. Ultimately, the capability of the NIR model had preceding dose verification performance on HC tablets, with linearity (R2 = 0.981) and accuracy (RMSECV = 0.46%). In the future, the integration of 3DP technology with non-destructive PAT techniques will accelerate the adoption of on-demand, individualised dosing in a clinical setting.
Collapse
Affiliation(s)
- Tzuyi L Yang
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, Kings College, London, UK
| | - Melpomeni Stogiannari
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, Kings College, London, UK
| | - Sylwia Janeczko
- Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Marva Khoshan
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, Kings College, London, UK
| | - Yueyuan Lin
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, Kings College, London, UK
| | - Abdullah Isreb
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Joanna Giebułtowic
- Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Matthew Peak
- Paediatric Medicines Research Unit, Alder Hey Children's NHS Foundation Trust, Liverpool, L12 2AP
| | - Mohamed A Alhnan
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, Kings College, London, UK
| |
Collapse
|