1
|
Uskoković V, Abuna G, Hampton JR, Geraldeli S. Tunable Release of Calcium from Chitosan-Coated Bioglass. Pharmaceutics 2023; 16:39. [PMID: 38258050 PMCID: PMC10818729 DOI: 10.3390/pharmaceutics16010039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Bioglass presents a standard biomaterial for regeneration of hard tissues in orthopedics and dentistry. The notable osteo-inductive properties of bioglass are largely due to the release of calcium ions from it. However, this release is not easily controllable and can often be excessive, especially during the initial interaction of the biomaterial with the surrounding tissues. Consequently, this excessive release can deplete the calcium content of the bioglass, ultimately reducing its overall bioactivity. In this study, we have tested if applying biopolymer chitosan coatings of different thicknesses would be able to mitigate and regulate the calcium ion release from monodisperse bioglass nanoparticles. Calcium release was assessed for four different chitosan coating thicknesses at different time points over the period of 28 days using a fluorescence quencher. Expectedly, chitosan-coated particles released less calcium as the concentration of chitosan in the coating solution increased, presumably due to the increased thickness of the chitosan coating around the bioglass particles. The mechanism of release remained constant for each coating thickness, corresponding to anomalous, non-Fickian diffusion, but the degree of anomalousness increased with the deposition of chitosan. Zeta potential testing showed an expected increase in the positive double layer charge following the deposition of the chitosan coating due to the surface exposure of the amine groups of chitosan. Less intuitively, the zeta potential became less positive as thickness of the chitosan coating increased, attesting to the lower density of the surface charges within thicker coatings than within the thinner ones. Overall, the findings of this study demonstrate that chitosan coating efficiently prevents the early release of calcium from bioglass. This coating procedure also allows for the tuning of the calcium release kinetics by controlling the chitosan concentration in the parent solution.
Collapse
Affiliation(s)
- Vuk Uskoković
- TardigradeNano LLC, 7 Park Vista, Irvine, CA 92604, USA
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Gabriel Abuna
- School of Dental Medicine, East Carolina University, 1851 MacGregor Downs Rd, Greenville, NC 27834, USA; (G.A.); (J.R.H.)
| | - Joseph Ryan Hampton
- School of Dental Medicine, East Carolina University, 1851 MacGregor Downs Rd, Greenville, NC 27834, USA; (G.A.); (J.R.H.)
| | - Saulo Geraldeli
- School of Dental Medicine, East Carolina University, 1851 MacGregor Downs Rd, Greenville, NC 27834, USA; (G.A.); (J.R.H.)
| |
Collapse
|
2
|
Skwira A, Szewczyk A, Barros J, Laranjeira M, Monteiro FJ, Sądej R, Prokopowicz M. Biocompatible antibiotic-loaded mesoporous silica/bioglass/collagen-based scaffolds as bone drug delivery systems. Int J Pharm 2023; 645:123408. [PMID: 37703959 DOI: 10.1016/j.ijpharm.2023.123408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Local delivery of antibiotics has gained increasing interest in the treatment of osteomyelitis due to its effectiveness and safety. Since the regeneration of bone tissue at the site of infection is as important as bacterial eradication, implantable drug delivery systems should not only release the drugs in a proper manner but also exert the osseointegration capability. Herein, we present an implantable drug delivery system in a scaffold form with a unique set of features for local treatment of osteomyelitis. For the first time, collagen type I, ciprofloxacin-loaded mesoporous silica, and bioglass were combined to obtain scaffolds using the molding method. Drug-loaded mesoporous silica was blended with polydimethylsiloxane to prolong the drug release, whereas bioglass served as a remineralization agent. Collagen-silica scaffolds were evaluated in terms of physicochemical properties, drug release rate, mineralization potential, osteoblast response in vitro, antimicrobial activity, and biological properties using an in vivo preclinical model - chick embryo chorioallantoic membrane (CAM). The desirable multifunctionality of the proposed collagen-silica scaffolds was confirmed. They released the ciprofloxacin for 80 days, prevented biofilm development, and induced hydroxyapatite formation. Moreover, the resulting macroporous structure of the scaffolds promoted osteoblast attachment, infiltration, and proliferation. Collagen-silica scaffolds were also biocompatible and effectively integrated with CAM.
Collapse
Affiliation(s)
- Adrianna Skwira
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Adrian Szewczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| | - Joana Barros
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FEUP-Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Dr. Roberto Frias, s/n 4200-465, Porto, Portugal.
| | - Marta Laranjeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
| | - Fernando Jorge Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; FEUP-Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Dr. Roberto Frias, s/n 4200-465, Porto, Portugal.
| | - Rafał Sądej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Prokopowicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
3
|
Demirel B, Erol Taygun M. Antibacterial Borosilicate Glass and Glass Ceramic Materials Doped with ZnO for Usage in the Pharmaceutical Industry. ACS OMEGA 2023; 8:18735-18742. [PMID: 37273588 PMCID: PMC10233686 DOI: 10.1021/acsomega.3c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
The aim of this study is producing and characterizing borosilicate glass and glass ceramic materials with enhanced antibacterial properties by using the conventional melting method. First of all, borosilicate glass doped with ZnO was obtained and after that the crystallization temperature was detected by using differential thermal analysis for the production of borosilicate glass ceramic doped with ZnO. The antibacterial and leaching tests showed that the glass and glass ceramic doped with 5% ZnO were suitable samples according to test results. Physical, thermal, and mechanical properties of the glass and glass ceramic doped with 5% ZnO were also determined. Overall results indicated that the obtained antibacterial borosilicate glass could be a remarkable product for the pharmaceutical industry, especially for usage in drug packaging.
Collapse
Affiliation(s)
- Barış Demirel
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
- Sisecam
Science Technology and Design Center, Gebze, Kocaeli 41400, Turkey
| | - Melek Erol Taygun
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
| |
Collapse
|