1
|
Salsabila S, Khairinisa MA, Wathoni N, Sufiawati I, Mohd Fuad WE, Khairul Ikram NK, Muchtaridi M. In vivo toxicity of chitosan-based nanoparticles: a systematic review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2025; 53:1-15. [PMID: 39924869 DOI: 10.1080/21691401.2025.2462328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Chitosan nanoparticles have been extensively utilised as polymeric drug carriers in nanoparticles formulations due to their potential to enhance drug delivery, efficacy, and safety. Numerous toxicity studies have been previously conducted to assess the safety profile of chitosan-based nanoparticles. These toxicity studies employed various methodologies, including test animals, interventions, and different routes of administration. This review aims to summarise research on the safety profile of chitosan-based nanoparticles in drug delivery, with a focus on general toxicity tests to determine LD50 and NOAEL values. It can serve as a repository and reference for chitosan-based nanoparticles, facilitating future research and further development of drugs delivery system using chitosan nanoparticles. Publications from 2014 to 2024 were obtained from PubMed, Scopus, Google Scholar, and ScienceDirect, in accordance with the inclusion and exclusion criteria.The ARRIVE 2.0 guidelines were employed to evaluate the quality and risk-of-bias in the in vivo toxicity studies. The results demonstrated favourable toxicity profiles, often exhibiting reduced toxicity compared to free drugs or substances. Acute toxicity studies consistently reported high LD50 values, frequently exceeding 5000 mg/kg body weight, while subacute studies typically revealed no significant adverse effects. Various routes of administration varied, including oral, intravenous, intraperitoneal, inhalation, and topical, each demonstrating promising safety profiles.
Collapse
Affiliation(s)
- Shela Salsabila
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| | - Miski Aghnia Khairinisa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Irna Sufiawati
- Department of Oral Medicine, Faculty of Dentistry, Universitas Padjadjaran, Sumedang, Indonesia
| | - Wan Ezumi Mohd Fuad
- Programme of Biomedicine, School of Health Sciences, USM Health Campus, Kubang Kerian, Kelantan, Malaysia
| | | | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| |
Collapse
|
2
|
Pal S, Das A, Roy S, Chakraborty N, Sarkar T, Sarkar K, Adak MK, Sil SK. Nano selenium modulates ripening of Capsicum fruit under postharvest storage: Cellular redox and related physiological characteristics. Food Chem 2025; 472:142853. [PMID: 39818114 DOI: 10.1016/j.foodchem.2025.142853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/21/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
In the background of antioxidation properties of selenium (Se) in plants, the role of nano‑selenium (Se-NPs) was justified in the modulation of Capsicum fruit ripening. In our study, exogenous application of 8 mg L-1 Se-NPs on fruits through 7 days (D) of postharvest storage regulated decay rate, water loss and fruit coat firmness. Se-NPs recovered fruit coat damages with reduction of ion leakage, lipid oxidation, and accumulation of polyamines. Photochemical quenching and malate metabolism were sensitized by Se-NPs to sustain fruit coat photosynthesis. The reduction of respiratory rate in the storage of fruits also directly correlates reactive oxygen species, cell death, and loss of DNA with Se-NPs application, delaying ripening. On 7-D storage, Se-NPs regulated activities of peroxidase, glutathione reductase, and ascorbate, glutathione content. Conclusively, the application of Se-NPs would be an effective strategy for the preservation of Capsicum fruit and the extension of shelf life under postharvest storage.
Collapse
Affiliation(s)
- Sayan Pal
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Abir Das
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Soumita Roy
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Nilakshi Chakraborty
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Tuhin Sarkar
- Department of Microbiology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Keka Sarkar
- Department of Microbiology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Malay Kumar Adak
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Sudipta Kumar Sil
- Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| |
Collapse
|
3
|
Vahab SA, K I A, M S, Kumar VS. Exploring chitosan nanoparticles for enhanced therapy in neurological disorders: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2151-2167. [PMID: 39377924 DOI: 10.1007/s00210-024-03507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Chitosan nanoparticles have emerged as a promising therapeutic platform for treating neurological disorders due to their biocompatibility, biodegradability, and ease of functionalization. One of the significant challenges in treating neurological conditions is overcoming the blood-brain barrier (BBB), which restricts the effective delivery of therapeutic agents to the brain. Addressing this barrier is crucial for the successful treatment of various neurological diseases, including Alzheimer's disease, Parkinson's disease, epilepsy, migraine, psychotic disorders, and brain tumors. Chitosan nanoparticles offer several advantages: they enhance drug absorption, protect drugs from degradation, and enable targeted delivery. These properties open new possibilities for non-invasive therapies for neurological conditions. Numerous studies have highlighted the neuroprotective potential of chitosan nanoparticles, demonstrating improved outcomes in animal models of neurodegeneration and neuroinflammation. Additionally, surface modifications of these nanoparticles allow for the attachment of specific ligands or molecules, enhancing the precision of drug delivery to neuronal cells. Despite these advancements, several challenges persist in the clinical translation of chitosan nanoparticles. Issues such as large-scale production, regulatory hurdles, and the need for further research into long-term safety must be addressed. This review explores recent advancements in the use of chitosan nanoparticles for managing neurological disorders and outlines potential future directions in this rapidly evolving field of research.
Collapse
Affiliation(s)
- Safa A Vahab
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Anjali K I
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sabitha M
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Vrinda S Kumar
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| |
Collapse
|
4
|
Chen C, Yang Z, Ma J, Xie W, Wang Z. Recent research progress on the biological functions, synthesis and applications of selenium nanoparticles. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124448. [PMID: 39778390 DOI: 10.1016/j.jchromb.2024.124448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Selenium is an essential trace element that is involved in a variety of complex biological processes and has a significant positive effect on the prevention and treatment of cardiovascular disease, inflammatory diseases, and cancer. Selenium in the body is mainly provided by daily meals. However, selenium has two sides, beneficial in moderation and harmful in excess. Selenium nanoparticles (SeNPs), which has better biocompatibility, safety and stability compared with other forms of selenium, is a good choice for selenium supplementing. Current researchers are exploring SeNPs in a variety of ways, including but not limited to antioxidant, antimicrobial, antiviral, inhibition of inflammation, anti-tumor, development of bio-diagnostic reagents, and nano-carrier systems. Also, efforts are being made to synthesize stable and efficient SeNPs for various applications. This study briefly describes how SeNPs are synthesized, summarizes in detail the wide range of uses of SeNPs, and provides an outlook on the future development of it. In addition, combined with the research results of our group, this study discusses the application and biological assays of SeNPs in diagnosis, which will provide inspiration and help for researchers to broaden the application of SeNPs.
Collapse
Affiliation(s)
- Chunxia Chen
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Zhan Yang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Jingjing Ma
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Weiqi Xie
- The First Affiliated Hospital of Henan University, Kaifeng 475004, China
| | - Zhizeng Wang
- Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
5
|
Zhou J, Guan M, Ma H, Dong X, Feng J, Zhang T, Wei Y. Gallic acid-selenium nanoparticles with dual anti-inflammatory and antioxidant functions for synergistic treatment of acute kidney injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102775. [PMID: 39111378 DOI: 10.1016/j.nano.2024.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/30/2024]
Abstract
The overexpression of inflammatory factors is closely related to the pathogenesis of acute kidney injury (AKI). Additionally, the overproduction of reactive oxygen species (ROS) further exacerbates the inflammatory response. In light of this, monotherapies focused solely on inflammation have proven to be suboptimal. Therefore, this study successfully developed a nanoparticle (SC@Se/GA) that possesses anti-inflammatory and antioxidant properties. The SC@Se/GA has a smaller size, better stability, and kidney-targeting. In vivo experiments showed that the GPx enzyme activity of SC@Se/GA increases by almost 50 % more than SC@Se alone, indicating its efficient ability to scavenge ROS. In the meantime, SC@Se/GA has a longer renal retention period (>24 h) than free drug GA, which can dramatically lower the levels of inflammatory factors TNF-α and IL-6. In summary, SC@Se/GA, through its synergistic anti-inflammatory and antioxidant effects, markedly alleviates CDDP-induced renal injury and restores renal function, providing a new effective strategy for treating AKI.
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Min Guan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huili Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junfen Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxin Wei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Bayoumi M, Youshia J, Arafa MG, Nasr M, Sammour OA. Nanocarriers for the treatment of glioblastoma multiforme: A succinct review of conventional and repositioned drugs in the last decade. Arch Pharm (Weinheim) 2024; 357:e2400343. [PMID: 39074966 DOI: 10.1002/ardp.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Glioblastoma multiforme is a very combative and threatening type of cancer. The standard course of treatment involves excising the tumor surgically, then administering chemotherapy and radiation therapy. Because of the presence of the blood-brain barrier and the unique characteristics of the tumor microenvironment, chemotherapy is extremely difficult and has a high incidence of relapse. With their capacity to precisely target and transport therapeutic medications to the tumor while overcoming the challenges provided by invasive and infiltrative gliomas, nanocarriers offer a potentially beneficial treatment option for gliomas. Drug repositioning or, in other words, finding novel therapeutic uses for medications that have received approval for previous uses has also recently emerged to provide alternative treatments for many diseases, with glioblastoma being among them. In this article, our goal is to shed light on the pathogenesis of glioma and summarize the proposed treatment approaches in the last decade, highlighting how combining repositioned drugs and nanocarriers technology can reduce drug resistance and improve therapeutic efficacy in primary glioma.
Collapse
Affiliation(s)
- Mahitab Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
- Nanotechnology Research Center, The British University in Egypt, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Gawel AM, Betkowska A, Gajda E, Godlewska M, Gawel D. Current Non-Metal Nanoparticle-Based Therapeutic Approaches for Glioblastoma Treatment. Biomedicines 2024; 12:1822. [PMID: 39200286 PMCID: PMC11351974 DOI: 10.3390/biomedicines12081822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The increase in the variety of nano-based tools offers new possibilities to approach the therapy of poorly treatable tumors, which includes glioblastoma multiforme (GBM; a primary brain tumor). The available nanocomplexes exhibit great potential as vehicles for the targeted delivery of anti-GBM compounds, including chemotherapeutics, nucleic acids, and inhibitors. The main advantages of nanoparticles (NPs) include improved drug stability, increased penetration of the blood-brain barrier, and better precision of tumor targeting. Importantly, alongside their drug-delivery ability, NPs may also present theranostic properties, including applications for targeted imaging or photothermal therapy of malignant brain cells. The available NPs can be classified into two categories according to their core, which can be metal or non-metal based. Among non-metal NPs, the most studied in regard to GBM treatment are exosomes, liposomes, cubosomes, polymeric NPs, micelles, dendrimers, nanogels, carbon nanotubes, and silica- and selenium-based NPs. They are characterized by satisfactory stability and biocompatibility, limited toxicity, and high accumulation in the targeted tumor tissue. Moreover, they can be easily functionalized for the improved delivery of their cargo to GBM cells. Therefore, the non-metal NPs discussed here, offer a promising approach to improving the treatment outcomes of aggressive GBM tumors.
Collapse
Affiliation(s)
- Agata M. Gawel
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Anna Betkowska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Ewa Gajda
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Marlena Godlewska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Damian Gawel
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| |
Collapse
|
8
|
Davidson E, Pereira J, Leon S, Navarro E, Kavalappara SR, Murphy Z, Anagnostopoulos V, Bag S, Santra S. Chitosan coated selenium: A versatile nano-delivery system for molecular cargoes. Int J Biol Macromol 2024; 267:131176. [PMID: 38599433 DOI: 10.1016/j.ijbiomac.2024.131176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
The use of nanoscale delivery platforms holds tremendous potential to overcome the current limitations associated with the conventional delivery of genetic materials and hydrophobic compounds. Therefore, there is an imperative need to develop a suitable alternative nano-enabled delivery platform to overcome these limitations. This work reports the first one-step hydrothermal synthesis of chitosan functionalized selenium nanoparticles (Selenium-chitosan, SeNP) that are capable of serving as a versatile nanodelivery platform for different types of active ingredients. The chitosan functionalization modified the surface charge to allow the loading of active ingredients and improve biocompatibility. The effective loading of the SeNP was demonstrated using genetic material, a hydrophobic small molecule, and an antibiotic. Furthermore, the loading of active ingredients showed no detrimental effect on the specific properties (fluorescence and bactericidal) of the studied active ingredients. In vitro antimicrobial inhibitory studies exhibited good compatibility between the SeNP delivery platform and Penicillin G (Pen), resulting in a reduction of the minimum inhibitory concentration (MIC) from 32 to 16 ppm. Confocal microscopy images showed the uptake of the SeNP by a macrophage cell line (J774A.1), demonstrating trackability and intracellular delivery of an active ingredient. In summary, the present work demonstrates the potential of SeNP as a suitable delivery platform for biomedical and agricultural applications.
Collapse
Affiliation(s)
- Edwin Davidson
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA.; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - Jorge Pereira
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA.; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - Sebastian Leon
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - Ernesto Navarro
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.; Department of Physiology, Neuroscience and Behavioral Sciences, School of Medicine, St. George's University, St. George, Grenada
| | | | - Zachary Murphy
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA
| | | | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Swadeshmukul Santra
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA.; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.; Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA..
| |
Collapse
|