1
|
Mardikasari SA, Katona G, Budai-Szűcs M, Kiricsi Á, Rovó L, Csóka I. Mucoadhesive in situ nasal gel of amoxicillin trihydrate for improved local delivery: Ex vivo mucosal permeation and retention studies. Eur J Pharm Sci 2024; 202:106897. [PMID: 39243910 DOI: 10.1016/j.ejps.2024.106897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Orally administered amoxicillin is recommended as the first-line treatment of acute bacterial rhinosinusitis (ABR) and given in a high-dose regimen. However, the risk of various systemic adverse reactions and low oral bioavailability are unbearable, increasing the threat of antibiotic resistance. Therefore, nasal delivery of amoxicillin can be a potential approach for effectively treating ABR locally, as well as overcoming those drawbacks. In a way to guarantee the effectiveness for local therapy in nasal cavity, the permeation and retention properties are of significant importance considerations. Accordingly, the present work aimed to investigate the characteristics with respect to the nasal applicability of the in situ gelling amoxicillin trihydrate (AMT) and further evaluate its permeability and retention properties through human nasal mucosa. The lyophilized formulations were characterized utilizing the Differential Scanning Calorimetry (DSC) and X-ray Powder Diffraction (XRPD), and also evaluated for its polarity, reconstitution time, droplet size distribution, mucoadhesive properties, and ex vivo permeability and retention studies. The results confirmed that the in situ gelling AMT formulations possess adequate mucoadhesive behavior, especially the formulation containing 0.3 % of gellan gum. Substantially, the in situ gelling AMT formulations were able to retain the drug on the surface of nasal mucosa instead of permeating across the membrane; thus, suitable for treating nasal infections locally. Altogether, the in situ gelling systems demonstrates promising abilities as a delivery platform to enhance local application of AMT within the nasal cavity.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary; Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary.
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged H-6725, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged H-6725, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary
| |
Collapse
|
2
|
Li Q, Shi R, Xu H, AboulFotouh K, Sung MMH, Oguin TH, Hayes M, Moon C, Dao HM, Ni H, Sahakijpijarn S, Cano C, Davenport GJ, Williams RO, Le Huray J, Cui Z, Weissman D. Thin-film freeze-drying of an influenza virus hemagglutinin mRNA vaccine in unilamellar lipid nanoparticles with blebs. J Control Release 2024; 375:829-838. [PMID: 39293526 DOI: 10.1016/j.jconrel.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Messenger RNA (mRNA) vaccines have revolutionized the fight against infectious diseases and are poised to transform other therapeutic areas. Lipid nanoparticles (LNP) represent the most successful delivery system for mRNA. While the mRNA-LNP products currently in clinics are stored as frozen suspensions, there is evidence that freeze-drying mRNA-LNP into dry powders can potentially enable their storage and handling at non-freezing temperatures. Previously, we successfully applied thin-film freeze-drying (TFFD) to transform a polyadenylic acid [poly(A)]-LNP formulation from a liquid suspension to dry powders. The poly(A)-LNP were structurally multilamellar spheres without blebs, but the mRNA vaccines in clinics are comprised of mRNA-LNP that are structurally spheres surrounded by a unilamellar lipid bilayer, with some containing blebs, and it was reported that the presence of blebs increases the sensitivity of mRNA-LNP to freeze-drying-induced stress. In the present study, using an influenza A virus hemagglutinin (HA) mRNA in LNP that were structurally similar to that in the COVID-19 mRNA vaccines currently in clinic, we studied the effect of TFFD on the physical properties, internal structure, as well as immunogenicity of the HA mRNA-LNP vaccine. We concluded that TFFD can be utilized to prepare dry powders of the HA mRNA-LNP, but a sufficient amount of excipients were needed to minimize changes in the physical properties, structure, and immunogenicity of the HA mRNA-LNP vaccine.
Collapse
Affiliation(s)
- Qin Li
- University of Pennsylvania, Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Ruiqi Shi
- University of Pennsylvania, Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Khaled AboulFotouh
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | | | - Thomas H Oguin
- Duke University, Duke Human Vaccine Institute, Durham, NC, USA
| | - Madeline Hayes
- Duke University, Duke Human Vaccine Institute, Durham, NC, USA
| | - Chaeho Moon
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Huy M Dao
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Houping Ni
- University of Pennsylvania, Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
| | | | - Chris Cano
- TFF Pharmaceuticals, Inc., Fort Worth, TX, USA
| | | | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | | | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA.
| | - Drew Weissman
- University of Pennsylvania, Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Xu H, Sahakijpijarn S, Moon C, Emig CJ, Mena M, Henry SJ, Vitug A, Ventura CJ, Kuehl PJ, Revelli D, Owens DE, Christensen DJ, Williams RO, Cui Z. Inhalable dry powders of a monoclonal antibody against SARS-CoV-2 virus made by thin-film freeze-drying. Int J Pharm 2024; 662:124511. [PMID: 39067548 DOI: 10.1016/j.ijpharm.2024.124511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Monoclonal antibodies (mAbs) represent a promising modality for the prevention and treatment of viral infections. For infections that initiate from the respiratory tract, direct administration of specific neutralizing mAbs into lungs has advantages over systemic injection of the same mAbs. Herein, using AUG-3387, a human-derived mAb with high affinity to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its various variants, as a model mAb, we formulated the mAb into dry powders by thin-film freeze-drying, confirmed that the AUG-3387 mAb reconstituted from the dry powders retained their integrity, high affinity to the SARS-CoV-2 spike protein receptor binding domain (RBD), as well as ability to neutralize RBD-expressing pseudoviruses. Finally, we showed that one of the AUG-3387 mAb dry powders had desirable aerosol properties for pulmonary delivery into the lung. We concluded that thin-film freeze-drying represents a viable method to prepare inhalable powders of virus-neutralizing mAbs for pulmonary delivery into the lung.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, United States
| | | | - Chaeho Moon
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, United States
| | - Christopher J Emig
- Augmenta Bioworks, 3475 Edison Way, Suite K, Menlo Park, CA 94025, United States
| | - Marco Mena
- Augmenta Bioworks, 3475 Edison Way, Suite K, Menlo Park, CA 94025, United States
| | - Steven J Henry
- Augmenta Bioworks, 3475 Edison Way, Suite K, Menlo Park, CA 94025, United States
| | - Adela Vitug
- Augmenta Bioworks, 3475 Edison Way, Suite K, Menlo Park, CA 94025, United States
| | | | - Philip J Kuehl
- Lovelace Biomedical, Albuquerque, NM 87108, United States
| | - David Revelli
- Lovelace Biomedical, Albuquerque, NM 87108, United States
| | - Donald E Owens
- TFF Pharmaceuticals, Inc., Austin, TX, 78746, United States
| | | | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, United States.
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, United States.
| |
Collapse
|
4
|
Bai D, Kim H, Wang P. Development of semisynthetic saponin immunostimulants. Med Chem Res 2024; 33:1292-1306. [PMID: 39132259 PMCID: PMC11315725 DOI: 10.1007/s00044-024-03227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/20/2024] [Indexed: 08/13/2024]
Abstract
Many natural saponins demonstrate immunostimulatory adjuvant activities, but they also have some inherent drawbacks that limit their clinical use. To overcome these limitations, extensive structure-activity-relationship (SAR) studies have been conducted. The SAR studies of QS-21 and related saponins reveal that their respective fatty side chains are crucial for potentiating a strong cellular immune response. Replacing the hydrolytically unstable ester side chain in the C28 oligosaccharide domain with an amide side chain in the same domain or in the C3 branched trisaccharide domain is a viable approach for generating robust semisynthetic saponin immunostimulants. Given the striking resemblance of natural momordica saponins (MS) I and II to the deacylated Quillaja Saponaria (QS) saponins (e.g., QS-17, QS-18, and QS-21), incorporating an amide side chain into the more sustainable MS, instead of deacylated QS saponins, led to the discovery of MS-derived semisynthetic immunostimulatory adjuvants VSA-1 and VSA-2. This review focuses on the authors' previous work on SAR studies of QS and MS saponins.
Collapse
Affiliation(s)
- Di Bai
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Hyunjung Kim
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| |
Collapse
|
5
|
Liang P, Zhang J, Hou J, Feng R, Yin J. Pharmacokinetics study of ginsenoside Rg1 liposome by pulmonary administration. Heliyon 2024; 10:e29906. [PMID: 38720740 PMCID: PMC11076820 DOI: 10.1016/j.heliyon.2024.e29906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Ginsenoside Rg1 (Rg1), a monomer saponin component, is one of the components with the highest content in total saponins of Panaxnotoginseng. It had various pharmacological effects. The bioavailability of oral tablets is only 1-20 %, and it is eliminated quickly in the blood. The development of new dosage forms and new routes of administration of ginsenoside Rg1 with sustained release and high bioavailability has become a significant problem to be solved. The Rg1 liposomes study used a thin film dispersion ultrasound method for its preparation. This study focused the pharmacokinetic parameters of ginsenoside Rg1 liposomes in rats through the lung perfusion method. Ginsenoside Rg1 liposomes were round and uniform in shape, the particle size was 2-3 μm, and the encapsulation efficiency of ginsenoside Rg1 liposome was 51.2 %. Results showed that, after pulmonary administration of ginsenoside Rg1, the time of ginsenoside Rg1 detected by Rg1 liposomes was longer than that of Rg1 solution, the relative bioavailability of ginsenoside Rg1 liposome lung administration AUC liposome/AUC solution = 122.67 %. These results provided the scientific theoretical and experimental basis for further development of new dosage forms and new routes of administration of ginsenoside Rg1.
Collapse
Affiliation(s)
- Ping Liang
- Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
| | - Jie Zhang
- Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
| | - Juan Hou
- Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
| | - Rui Feng
- Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
- Tianjin University, Nankai District, 300072, Tianjin, China
| | - Jintuo Yin
- Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
| |
Collapse
|
6
|
Mardikasari SA, Katona G, Sipos B, Csóka I. Essential considerations towards development of effective nasal antibiotic formulation: features, strategies, and future directions. Expert Opin Drug Deliv 2024; 21:611-625. [PMID: 38588551 DOI: 10.1080/17425247.2024.2341184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Intranasal antibiotic products are gaining popularity as a promising method of administering antibiotics, which provide numerous benefits, e.g. enhancing drug bioavailability, reducing adverse effects, and potentially minimizing resistance threats. However, some issues related to the antibiotic substances and nasal route challenges must be addressed to prepare effective formulations. AREAS COVERED This review focuses on the valuable points of nasal delivery as an alternative route for administering antibiotics, coupled with the challenges in the nasal cavity that might affect the formulations. Moreover, this review also highlights the application of nasal delivery to introduce antibiotics for local therapy, brain targeting, and systemic effects that have been conducted. In addition, this viewpoint provides strategies to maintain antibiotic stability and several crucial aspects to be considered for enabling effective nasal formulation. EXPERT OPINION In-depth knowledge and understanding regarding various key considerations with respect to the antibiotic substances and nasal route delivery requirement in preparing effective nasal antibiotic formulation would greatly improve the development of nasally administered antibiotic products, enabling better therapeutic outcomes of antibiotic treatment and establishing appropriate use of antibiotics, which in turn might reduce the chance of antibiotic resistance and enhance patient comfort.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Chen J, Finlay WH, Vehring R, Martin AR. Characterizing regional drug delivery within the nasal airways. Expert Opin Drug Deliv 2024; 21:537-551. [PMID: 38568159 DOI: 10.1080/17425247.2024.2336494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/26/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The nose has been receiving increased attention as a route for drug delivery. As the site of deposition constitutes the first point of contact of the body with the drug, characterization of the regional deposition of intranasally delivered droplets or particles is paramount to formulation and device design of new products. AREAS COVERED This review article summarizes the recent literature on intranasal regional drug deposition evaluated in vivo, in vitro and in silico, with the aim of correlating parameters measured in vitro with formulation and device performance. We also highlight the relevance of regional deposition to two emerging applications: nose-to-brain drug delivery and intranasal vaccines. EXPERT OPINION As in vivo studies of deposition can be costly and time-consuming, researchers have often turned to predictive in vitro and in silico models. Variability in deposition is high due in part to individual differences in nasal geometry, and a complete predictive model of deposition based on spray characteristics remains elusive. Carefully selected or idealized geometries capturing population average deposition can be useful surrogates to in vivo measurements. Continued development of in vitro and in silico models may pave the way for development of less variable and more effective intranasal drug products.
Collapse
Affiliation(s)
- John Chen
- Access to Advanced Health Institute, Seattle, WA, USA
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Reinhard Vehring
- Access to Advanced Health Institute, Seattle, WA, USA
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Yu YS, Xu H, AboulFotouh K, Williams G, Suman J, Sahakijpijarn S, Cano C, Warnken ZN, Wu KCW, Williams RO, Cui Z. Intranasal delivery of thin-film freeze-dried monoclonal antibodies using a powder nasal spray system. Int J Pharm 2024; 653:123892. [PMID: 38350499 DOI: 10.1016/j.ijpharm.2024.123892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Monoclonal antibodies (mAbs) administered intranasally as dry powders can be potentially applied for the treatment or pre-exposure prevention of viral infections in the upper respiratory tract. However, a method to transform the mAbs from liquid to dry powders suitable for intranasal administration and a device that can spray the dry powders to the desired region of the nasal cavity are needed to fully realize the potentials of the mAbs. Herein, we report that thin-film freeze-dried mAb powders can be sprayed into the posterior nasal cavity using Aptar Pharma's Unidose (UDS) Powder Nasal Spray System. AUG-3387, a human-derived mAb that neutralizes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was used in the present study. First, we prepared thin-film freeze-dried AUG-3387 powders (i.e., TFF AUG-3387 powders) from liquid formulations containing different levels of mAbs. The TFF AUG-3387 powder with the highest solid content (i.e., TFF AUG-3387C) was then chosen for further characterization, including the evaluation of the plume geometry, spray pattern, and particle size distribution after the powder was sprayed using the UDS Powder Nasal Spray. Finally, the deposition patterns of the TFF AUG-3387C powder sprayed using the UDS Powder delivery system were studied using 3D-printed nasal replica casts based on the CT scans of an adult and a child. It is concluded that it is feasible to intranasally deliver mAbs as dry powders by transforming the mAbs into dry powders using thin-film freeze-drying and then spraying the powder using a powder nasal spray system.
Collapse
Affiliation(s)
- Yu-Sheng Yu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States; National Taiwan University, Department of Chemical Engineering, Taipei, Taiwan
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Khaled AboulFotouh
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | | | | | | | - Chris Cano
- TFF Pharmaceuticals, Inc., Fort Worth, TX, United States
| | | | - Kevin C-W Wu
- National Taiwan University, Department of Chemical Engineering, Taipei, Taiwan; National Health Research Institute, Institute of Biomedical Engineering and Nanomedicine, Miaoli, Taiwan
| | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
9
|
AboulFotouh K, Southard B, Dao HM, Xu H, Moon C, Williams Iii RO, Cui Z. Effect of lipid composition on RNA-Lipid nanoparticle properties and their sensitivity to thin-film freezing and drying. Int J Pharm 2024; 650:123688. [PMID: 38070660 DOI: 10.1016/j.ijpharm.2023.123688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
A library of 16 lipid nanoparticle (LNP) formulations with orthogonally varying lipid molar ratios was designed and synthesized, using polyadenylic acid [poly(A)] as a model for mRNA, to explore the effect of lipid composition in LNPs on (i) the initial size of the resultant LNPs and encapsulation efficiency of RNA and (ii) the sensitivity of the LNPs to various conditions including cold storage, freezing (slow vs. rapid) and thawing, and drying. Least Absolute Shrinkage and Selection Operator (LASSO) regression was employed to identify the optimal lipid molar ratios and interactions that favorably affect the physical properties of the LNPs and enhance their stability in various stress conditions. LNPs exhibited distinct responses under each stress condition, highlighting the effect of lipid molar ratios and lipid interactions on the LNP physical properties and stability. It was then demonstrated that it is feasible to use thin-film freeze-drying to convert poly(A)-LNPs from liquid dispersions to dry powders while maintaining the integrity of the LNPs. Importantly, the residual moisture content in LNP dry powders significantly affected the LNP integrity.Residual moisture content of ≤ 0.5% or > 3-3.5% w/w negatively affected the LNP size and/or RNA encapsulation efficiency, depending on the LNP composition. Finally, it was shown that the thin-film freeze-dried LNP powders have desirable aerosol properties for potential pulmonary delivery. It was concluded that Design of Experiments can be applied to identify mRNA-LNP formulations with the desired physical properties and stability profiles. Additionally, optimizing the residual moisture content in mRNA-LNP dry powders during (thin-film) freeze-drying is crucial to maintain the physical properties of the LNPs.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Benjamin Southard
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Huy M Dao
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Haiyue Xu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O Williams Iii
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|