1
|
Gao J, Tan X, Dai H, Wang H, Chen H, Zhang Y. Properties regulation and mechanism on ferritin/chitooligosaccharide dual-compartmental emulsions and its application for co-encapsulation of curcumin and quercetin bioactive compounds. Food Chem 2024; 458:140243. [PMID: 38944931 DOI: 10.1016/j.foodchem.2024.140243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Dual-compartmental emulsions, containing multiple chambers, possess great advantages in co-encapsulation of different cargoes. Herein, we reported a stable dual-compartmental emulsion by regulating the ratio of Marsupenaeus japonicus ferritin (MF) and chitooligosaccharide (COS), enabling efficient co-encapsulation of different compounds. The adsorption behavior of MF/COS complex over droplet interface varied at different ratios, thereby exerting an influence on the emulsion properties. Remarkably, emulsions stabilized by MF/COS complex at a ratio of 2:1 exhibited superior stability, as evidenced by no significant creaming or demulsification during storage or heat treatment. The mechanism is that MF/COS2:1 complex can enhance the formation of thicker interfacial layer and dense continuous phase network structure. Additionally, curcumin and quercetin can be co-encapsulated into the emulsions and their retention rates were significantly improved than those in oils, implying the potential of the resulting dual-compartmental emulsions in co-encapsulation and delivery of bioactive compounds.
Collapse
Affiliation(s)
- Junlu Gao
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Xiaoyi Tan
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China
| | - Hai Chen
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China.
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China.
| |
Collapse
|
2
|
Lokole PB, Byamungu GG, Mutwale PK, Ngombe NK, Mudogo CN, Krause RWM, Nkanga CI. Plant-based nanoparticles targeting malaria management. Front Pharmacol 2024; 15:1440116. [PMID: 39185312 PMCID: PMC11341498 DOI: 10.3389/fphar.2024.1440116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Malaria is one of the most devastating diseases across the globe, particularly in low-income countries in Sub-Saharan Africa. The increasing incidence of malaria morbidity is mainly due to the shortcomings of preventative measures such as the lack of vaccines and inappropriate control over the parasite vector. Additionally, high mortality rates arise from therapeutic failures due to poor patient adherence and drug resistance development. Although the causative pathogen (Plasmodium spp.) is an intracellular parasite, the recommended antimalarial drugs show large volumes of distribution and low-to no-specificity towards the host cell. This leads to severe side effects that hamper patient compliance and promote the emergence of drug-resistant strains. Recent research efforts are promising to enable the discovery of new antimalarial agents; however, the lack of efficient means to achieve targeted delivery remains a concern, given the risk of further resistance development. New strategies based on green nanotechnologies are a promising avenue for malaria management due to their potential to eliminate malaria vectors (Anopheles sp.) and to encapsulate existing and emerging antimalarial agents and deliver them to different target sites. In this review we summarized studies on the use of plant-derived nanoparticles as cost-effective preventative measures against malaria parasites, starting from the vector stage. We also reviewed plant-based nanoengineering strategies to target malaria parasites, and further discussed the site-specific delivery of natural products using ligand-decorated nanoparticles that act through receptors on the host cells or malaria parasites. The exploration of traditionally established plant medicines, surface-engineered nanoparticles and the molecular targets of parasite/host cells may provide valuable insights for future discovery of antimalarial drugs and open new avenues for advancing science toward the goal of malaria eradication.
Collapse
Affiliation(s)
- Pathy B. Lokole
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Galilée G. Byamungu
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
- Department of Chemistry, Faculty of Sciences and Technology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Paulin K. Mutwale
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Nadège K. Ngombe
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Celestin N. Mudogo
- Unit of Molecular Biology, Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Rui W. M. Krause
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Christian I. Nkanga
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
3
|
Paul B, Han Q, Xie L, Rashwan AK, Yahia ZO, Liu Q, Liu S, Xu Y, Chen W. Development and evaluation of guar gum-coated nano-nutriosomes for cyanidin-3-O-glucoside encapsulation. Int J Biol Macromol 2024; 271:132537. [PMID: 38821806 DOI: 10.1016/j.ijbiomac.2024.132537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Cyanidin-3-O-glucoside (C3G) is a type of water-soluble flavonoid compound that is abundantly found in fruits and vegetables. C3G possesses numerous biological activities, however, it is prone to breakdown under environmental conditions. To overcome these issues, we developed nano-nutriosome (NS) carriers created by vortex-mixing and probe-sonication techniques for C3G encapsulation in which the phospholipid and Nutriose® FB06 were chosen as carrier material, and guar gum (GG) as a coating material to formulate a unilamellar and multicompartment structure. This study aimed to develop and evaluate C3G-loaded nano-nutriosomes coated by GG (GG-C3G-NS) for improving physicochemical stability, antioxidant activity, cellular uptake, and controlled release properties. The C3G-NS and GG-C3G-NS are nanosized (143.47 to 154.13 nm), with high encapsulation efficiency (>93.31 %). The NS carriers successfully encapsulated C3G which was confirmed by transmission electron microscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy. C3G showed more stability in storage, thermal, pH, ionic, and oxidative conditions. Furthermore, the NS exhibited a better-controlled release of C3G in different food stimulant conditions and in vitro release study. Additionally, NS systems enhanced cellular uptake and showed no cytotoxicity. Overall, GG-NS could be a promising nanocarrier for improving the stability, controlled release, and antioxidant activity of bioactive compounds.
Collapse
Affiliation(s)
- Bolai Paul
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qiang Han
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lianghua Xie
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zineb Ould Yahia
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingying Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Lithanatudom P, Chawansuntati K, Saenjum C, Chaowasku T, Rattanathammethee K, Wungsintaweekul B, Osathanunkul M, Wipasa J. In-vitro antimalarial activity of methanolic leaf- and stem-derived extracts from four Annonaceae plants. BMC Res Notes 2023; 16:381. [PMID: 38135870 PMCID: PMC10740295 DOI: 10.1186/s13104-023-06664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE Plants in the Annonaceae family are known for having abundant biologically active secondary metabolites. They have been used in alternative drugs for various diseases in several countries, for instance, the bark of Cananga odorata (Lam.) Hook and Thomson is used for Ophthalmic inflammation and wound healing in Malaysia. Extracts from the leaves and stems of four Annonaceae plants, namely Uvaria longipes (Craib) L.L.Zhou, Y.C.F.Su & R.M.K.Saunders, Dasymaschalon sp., Artabotrys burmanicus A.DC, and Marsypopetalum modestum (Pierre) B.Xue & R.M.K.Saunders were investigated for growth inhibitory activity against blood-stage Plasmodium falciparum growth in vitro and for non-specific cytotoxicity against normal peripheral blood mononuclear cells (PBMCs). Antimalarial activity was assessed by invasion inhibition assay and the percentage of infected red blood cells on blood smears were determined. Cytotoxicity was tested by culturing PBMCs with the extracts, and viabilities were determined by Annexin V/propidium iodide staining. RESULTS A. burmanicus stem extract and M. modestum leaf extract were capable of inhibiting growth of P. falciparum when used at 200 µg/mL compared to chloroquine. The extracts at effective concentrations, did not affect the viability of PBMCs. These results support further need for characterization of active compounds from specific Annonaceae plants in order to exploit their components for potential malaria treatment.
Collapse
Affiliation(s)
- Pathrapol Lithanatudom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Chalermpong Saenjum
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tanawat Chaowasku
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | | | - Maslin Osathanunkul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraprapa Wipasa
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
5
|
Fulgheri F, Manca ML, Fernàndez-Busquets X, Manconi M. Analysis of complementarities between nanomedicine and phytodrugs for the treatment of malarial infection. Nanomedicine (Lond) 2023; 18:1681-1696. [PMID: 37955573 DOI: 10.2217/nnm-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
The use of nanocarriers in medicine, so-called nanomedicine, is one of the most innovative strategies for targeting drugs at the action site and increasing their activity index and effectiveness. Phytomedicine is the oldest traditional method used to treat human diseases and solve health problems. The recent literature on the treatment of malaria infections using nanodelivery systems and phytodrugs or supplements has been analyzed. For the first time, in the present review, a careful look at the considerable potential of nanomedicine in promoting phytotherapeutic efficacy was done, and its key role in addressing a translation through a significant reduction of the current burden of malaria in many parts of the world has been underlined.
Collapse
Affiliation(s)
- Federica Fulgheri
- Department of Life & Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, 09042 CA, Italy
| | - Maria Letizia Manca
- Department of Life & Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, 09042 CA, Italy
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 1 49-153, 08036 Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Maria Manconi
- Department of Life & Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, 09042 CA, Italy
| |
Collapse
|