1
|
Qiu Y, Wang H, Pan H, Ding X, Guan J, Zhuang Q, Wu K, Lei Z, Cai H, Dong Y, Zhou H, Lin A, Wang Q, Yan Q. NADH improves AIF dimerization and inhibits apoptosis in iPSCs-derived neurons from patients with auditory neuropathy spectrum disorder. Hear Res 2024; 441:108919. [PMID: 38043402 DOI: 10.1016/j.heares.2023.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Auditory neuropathy spectrum disorder (ANSD) is a hearing impairment involving disruptions to inner hair cells (IHCs), ribbon synapses, spiral ganglion neurons (SGNs), and/or the auditory nerve itself. The outcomes of cochlear implants (CI) for ANSD are variable and dependent on the location of lesion sites. Discovering a potential therapeutic agent for ANSD remains an urgent requirement. Here, 293T stable transfection cell lines and patient induced pluripotent stem cells (iPSCs)-derived auditory neurons carrying the apoptosis inducing factor (AIF) p.R422Q variant were used to pursue a therapeutic regent for ANSD. Nicotinamide adenine dinucleotide (NADH) is a main electron donor in the electron transport chain (ETC). In 293T stable transfection cells with the p.R422Q variant, NADH treatment improved AIF dimerization, rescued mitochondrial dysfunctions, and decreased cell apoptosis. The effects of NADH were further confirmed in patient iPSCs-derived neurons. The relative level of AIF dimers was increased to 150.7 % (P = 0.026) from 59.2 % in patient-neurons upon NADH treatment. Such increased AIF dimerization promoted the mitochondrial import of coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4), which further restored mitochondrial functions. Similarly, the content of mitochondrial calcium (mCa2+) was downregulated from 136.7 % to 102.3 % (P = 0.0024) in patient-neurons upon NADH treatment. Such decreased mCa2+ levels inhibited calpain activity, ultimately reducing the percentage of apoptotic cells from 30.5 % to 21.1 % (P = 0.021). We also compared the therapeutic effects of gene correction and NADH treatment on hereditary ANSD. NADH treatment had comparable restorative effects on functions of ANSD patient-specific cells to that of gene correction. Our findings offer evidence of the molecular mechanisms of ANSD and introduce NADH as a potential therapeutic agent for ANSD therapy.
Collapse
Affiliation(s)
- Yue Qiu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Brain Science, Wannan Medical College, Wuhu, Anhui 241000, China
| | - Hongyang Wang
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, the Sixth Medicine Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Huaye Pan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xue Ding
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jing Guan
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, the Sixth Medicine Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Qianqian Zhuang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kaiwen Wu
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, the Sixth Medicine Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Zhaoying Lei
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huajian Cai
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yufei Dong
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Zhou
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Aifu Lin
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiuju Wang
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, the Sixth Medicine Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Qingfeng Yan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Xu HH, Zhang Y, He ZH, Di XH, Pan FY, Shi WW. Familial 5.29 Mb deletion in chromosome Xq22.1-q22.3 with a normal phenotype: a rare pedigree and literature review. BMC Med Genomics 2023; 16:111. [PMID: 37217926 DOI: 10.1186/s12920-023-01547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/14/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Xq22.1-q22.3 deletion is a rare chromosome aberration. The purpose of this study was to identify the correlation between the phenotype and genotype of chromosome Xq22.1-q22.3 deletions. METHODS Chromosome aberrations were identified by copy number variation sequencing (CNV-seq) technology and karyotype analysis. Furthermore, we reviewed patients with Xq22.1-q22.3 deletions or a deletion partially overlapping this region to highlight the rare condition and analyse the genotype-phenotype correlations. RESULTS We described a female foetus who is the "proband" of a Chinese pedigree and carries a heterozygous 5.29 Mb deletion (GRCh37: chrX: 100,460,000-105,740,000) in chromosome Xq22.1-q22.3, which may affect 98 genes from DRP2 to NAP1L4P2. This deletion encompasses 7 known morbid genes: TIMM8A, BTK, GLA, HNRNPH2, GPRASP2, PLP1, and SERPINA7. In addition, the parents have a normal phenotype and are of normal intelligence. The paternal genotype is normal. The mother carries the same deletion in the X chromosome. These results indicate that the foetus inherited this CNV from her mother. Moreover, two more healthy female family members were identified to carry the same CNV deletion through pedigree analysis according to the next-generation sequencing (NGS) results. To our knowledge, this family is the first pedigree to have the largest reported deletion of Xq22.1-q22.3 but to have a normal phenotype with normal intelligence. CONCLUSIONS Our findings further improve the understanding of the genotype-phenotype correlations of chromosome Xq22.1-q22.3 deletions.This report may provide novel information for prenatal diagnosis and genetic counselling for patients who carry similar chromosome abnormalities.
Collapse
Affiliation(s)
- Hui-Hui Xu
- Prenatal Diagnosis Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yang Zhang
- Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhe-Hang He
- Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing-Hong Di
- Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei-Yan Pan
- Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei-Wu Shi
- Prenatal Diagnosis Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Evaluation of a Less Invasive Cochlear Implant Surgery in OPA1 Mutations Provoking Deafblindness. Genes (Basel) 2023; 14:genes14030627. [PMID: 36980899 PMCID: PMC10048538 DOI: 10.3390/genes14030627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Cochlear implantation (CI) for deafblindness may have more impact than for non-syndromic hearing loss. Deafblind patients have a double handicap in a society that is more and more empowered by fast communication. CI is a remedy for deafness, but requires revision surgery every 20 to 25 years, and thus placement should be minimally invasive. Furthermore, failed reimplantation surgery will have more impact on a deafblind person. In this context, we assessed the safety of minimally invasive robotically assisted cochlear implant surgery (RACIS) for the first time in a deafblind patient. Standard pure tone audiometry and speech audiometry were performed in a patient with deafblindness as part of this robotic-assisted CI study before and after surgery. This patient, with an optic atrophy 1 (OPA1) (OMIM#165500) mutation consented to RACIS for the second (contralateral) CI. The applicability and safety of RACIS were evaluated as well as her subjective opinion on her disability. RACIS was uneventful with successful surgical and auditory outcomes in this case of deafblindness due to the OPA1 mutation. RACIS appears to be a safe and beneficial intervention to increase communication skills in the cases of deafblindness due to an OPA1 mutation. The use of RACIS use should be widespread in deafblindness as it minimizes surgical trauma and possible failures.
Collapse
|
4
|
Auditory neuropathy: from etiology to management. Curr Opin Otolaryngol Head Neck Surg 2022; 30:332-338. [PMID: 35939320 DOI: 10.1097/moo.0000000000000829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Auditory neuropathy is a disorder of auditory dysfunction characterized by the normal function of the outer hair cells and malfunction of the inner hair cells, synapses, postsynapses and/or auditory afferent nervous system. This review summarizes the process of discovery and naming of auditory neuropathy and describes the acquired, associated genetic disorders and management available. RECENT FINDINGS In the last 40 years, auditory neuropathy has undergone a process of discovery, naming and progressive elucidation of its complex pathological mechanisms. Recent studies have revealed numerous acquired and inherited causative factors associated with auditory neuropathy. Studies have analyzed the pathogenic mechanisms of various genes and the outcomes of cochlear implantation. New therapeutic approaches, such as stem cell therapy and gene therapy are the future trends in the treatment of auditory neuropathy. SUMMARY A comprehensive understanding of the pathogenic mechanisms is crucial in illustrating auditory neuropathy and assist in developing future management strategies.
Collapse
|
5
|
Zhan KY, Adunka OF, Eshraghi A, Riggs WJ, Prentiss SM, Yan D, Telischi FF, Liu X, He S. Electrophysiology and genetic testing in the precision medicine of congenital deafness: A review. J Otol 2021; 16:40-46. [PMID: 33505449 PMCID: PMC7814082 DOI: 10.1016/j.joto.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Congenital hearing loss is remarkably heterogeneous, with over 130 deafness genes and thousands of variants, making for innumerable genotype/phenotype combinations. Understanding both the pathophysiology of hearing loss and molecular site of lesion along the auditory pathway permits for significantly individualized counseling. Electrophysiologic techniques such as electrocochleography (ECochG) and electrically-evoked compound action potentials (eCAP) are being studied to localize pathology and estimate residual cochlear vs. neural health. This review describes the expanding roles of genetic and electrophysiologic evaluation in the precision medicine of congenital hearing loss.The basics of genetic mutations in hearing loss and electrophysiologic testing (ECochG and eCAP) are reviewed, and how they complement each other in the diagnostics and prognostication of hearing outcomes. Used together, these measures improve the understanding of insults to the auditory system, allowing for individualized counseling for CI candidacy/outcomes or other habilitation strategies. CONCLUSION Despite tremendous discovery in deafness genes, the effects of individual genes on neural function remain poorly understood. Bridging the understanding between molecular genotype and neural and functional phenotype is paramount to interpreting genetic results in clinical practice. The future hearing healthcare provider must consolidate an ever-increasing amount of genetic and phenotypic information in the precision medicine of hearing loss.
Collapse
Affiliation(s)
- Kevin Y. Zhan
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Oliver F. Adunka
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Adrien Eshraghi
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William J. Riggs
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Sandra M. Prentiss
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fred F. Telischi
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xuezhong Liu
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. MacDonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shuman He
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
6
|
Nisenbaum E, Prentiss S, Yan D, Nourbakhsh A, Smeal M, Holcomb M, Cejas I, Telischi F, Liu XZ. Screening Strategies for Deafness Genes and Functional Outcomes in Cochlear Implant Patients. Otol Neurotol 2021; 42:180-187. [PMID: 33885265 PMCID: PMC9237809 DOI: 10.1097/mao.0000000000002969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To review the current state of knowledge about the influence of specific genetic mutations that cause sensorineural hearing loss (SNHL) on cochlear implant (CI) functional outcomes, and how this knowledge may be integrated into clinical practice. A multistep and sequential population-based genetic algorithm suitable for the identification of congenital SNHL mutations before CI placement is also examined. DATA SOURCES, STUDY SELECTION A review was performed of the English literature from 2000 to 2019 using PubMed regarding the influence of specific mutations on CI outcomes and the use of next-generation sequencing for genetic screening of CI patients. CONCLUSION CI is an effective habilitation option for patients with severe-profound congenital SNHL. However, it is well known that CI outcomes show substantial inter-patient variation. Recent advances in genetic studies have improved our understanding of genotype-phenotype relationships for many of the mutations underlying congenital SNHL, and have explored how these relationships may account for some of the variance seen in CI performance outcomes. A sequential genetic screening strategy utilizing next-generation sequencing-based population-specific gene panels may allow for more efficient mutation identification before CI placement. Understanding the relationships between specific mutations and CI outcomes along with integrating routine comprehensive genetic testing into pre-CI evaluations will allow for more effective patient counseling and open the door for the development of mutation-specific treatment strategies.
Collapse
Affiliation(s)
- Eric Nisenbaum
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Sandra Prentiss
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Molly Smeal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Meredith Holcomb
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Ivette Cejas
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Fred Telischi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
- Dr. John T. Macdonald Foundation Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
7
|
Chaudhry D, Chaudhry A, Muzaffar J, Monksfield P, Bance M. Cochlear Implantation Outcomes in Post Synaptic Auditory Neuropathies: A Systematic Review and Narrative Synthesis. J Int Adv Otol 2020; 16:411-431. [PMID: 33136025 DOI: 10.5152/iao.2020.9035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To establish outcomes following cochlear implantation (CI) in patients with postsynaptic auditory neuropathy (AN). Systematic review and narrative synthesis. Databases searched: MEDLINE, PubMed, EMBASE, Web of Science, Cochrane Collection and ClinicalTrials.gov. No limits placed on language or year of publication. Review conducted in accordance with the PRISMA statement. Searches identified 98 studies in total, of which 14 met the inclusion criteria reporting outcomes in 25 patients with at least 28 CIs. Of these, 4 studies focused on Charcot-Marie-Tooth disease (CMT), 3 on Brown-Vialetto-Van-Laere syndrome (BVVL), 2 on Friedreich Ataxia (FRDA), 2 on Syndromic dominant optic atrophy (DOA+), 2 on Cerebellar ataxia - areflexia - pes cavus - optic atrophy - sensorineural hearing loss (CAPOS) syndrome, and 1 on Deafness-dystonia-optic neuronopathy (DDON) syndrome. All studies were Oxford Centre for Evidence Based Medicine (OCEBM) grade IV. Overall trend was towards good post-CI outcomes with 22 of the total 25 patients displaying modest to significant benefit. Hearing outcomes following CI in postsynaptic ANs are variable but generally good with patients showing improvements in hearing thresholds and speech perception. In the future, development of a clearer stratification system into pre, post, and central AN would have clinical and academic benefits. Further research is required to understand AN pathophysiology and develop better diagnostic tools for more accurate identification of lesion sites. Multicenter longitudinal studies with standardized comprehensive outcome measures including health-related quality of life data will be key in establishing a better understanding of short and long-term post-CI outcomes.
Collapse
Affiliation(s)
- Daoud Chaudhry
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Abdullah Chaudhry
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Jameel Muzaffar
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Peter Monksfield
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Manohar Bance
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Yeh YH, Hsieh MY, Lee WI, Huang JL, Chen LC, Yeh KW, Ou LS, Yao TC, Wu CY, Lin SJ. Distinct Clinical Features and Novel Mutations in Taiwanese Patients With X-Linked Agammaglobulinemia. Front Immunol 2020; 11:2001. [PMID: 33013854 PMCID: PMC7498534 DOI: 10.3389/fimmu.2020.02001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Background: X-linked agammaglobulinemia (XLA) is caused by a mutation of the Bruton's tyrosine kinase (BTK) gene and is the most common genetic mutation in patients with congenital agammaglobulinemia. The aim of this study was to analyze the clinical features, genetic defects, and/or BTK expression in patients suspected of having XLA who were referred from the Taiwan Foundation of Rare Disorders (TFRD). Methods: Patients with recurrent bacterial infections in the first 2 years of life, serum IgG/A/M below 2 standard deviations of the normal range, and ≦2% CD19+B cells were enrolled during the period of 2004-2019. The frequency of infections, pathogens, B-lymphocyte subsets, and family pedigree were recorded. Peripheral blood samples were sent to our institute for BTK expression and genetic analysis. Results: Nineteen (from 16 families) out of 29 patients had BTK mutations, including 7 missense mutations, 7 splicing mutations, 1 nonsense mutation, 2 huge deletions, and 2 nucleotide deletions. Six novel mutations were detected: c.504G>T [p.K168N], c.895-2A>G [p.Del K290 fs 23*], c.910T>G [p.F304V], c.1132T>C [p.T334H], c.1562A>T [p.D521V], and c.1957delG [Del p.D653 fs plus 45 a.a.]. All patients with BTK mutations had obviously decreased BTK expressions. Pseudomonas sepsis developed in 14 patients and led to both Shanghai fever and recurrent hemophagocytic lymphohistiocytosis (HLH). Recurrent sinopulmonary infections and bronchiectasis occurred in 11 patients. One patient died of pseudomonas sepsis and another died of hepatocellular carcinoma before receiving optimal treatment. Two patients with contiguous gene deletion syndrome (CGS) encompassing the TIMM8A/DDP1 gene presented with early-onset progressive post-lingual sensorineural Deafness, gradual Dystonia, and Optic Neuronopathy syndrome (DDON) or Mohr-Tranebjaerg syndrome (MTS). Conclusion: Pseudomonas sepsis was more common (74%) than recurrent sinopulmonary infections in Taiwanese XLA patients, and related to Shanghai fever and recurrent HLH, both of which were prevented by regular immunoglobulin infusions. Approximately 10% of patients belonged to CGS involving the TIMM8A/DDP1 gene and presented with the DDON/MTS phenotype in need of aggressive psychomotor therapy.
Collapse
Affiliation(s)
- Yu-Hsin Yeh
- Division of Allergy, Asthma, and Rheumatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Meng-Ying Hsieh
- Division of Pediatric Neurology, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-I Lee
- Division of Allergy, Asthma, and Rheumatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Primary Immunodeficiency Care and Research (PICAR) Institute and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jing-Long Huang
- Primary Immunodeficiency Care and Research (PICAR) Institute and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, New Taipei Municipal TuChen Hospital, New Taipei City, Taiwan
| | - Li-Chen Chen
- Department of Pediatrics, New Taipei Municipal TuChen Hospital, New Taipei City, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Liang-Shiou Ou
- Division of Allergy, Asthma, and Rheumatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Syh-Jae Lin
- Division of Allergy, Asthma, and Rheumatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
9
|
Auditory Neuropathy Spectrum Disorders: From Diagnosis to Treatment: Literature Review and Case Reports. J Clin Med 2020; 9:jcm9041074. [PMID: 32290039 PMCID: PMC7230308 DOI: 10.3390/jcm9041074] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Auditory neuropathy spectrum disorder (ANSD) refers to a range of hearing impairments characterized by deteriorated speech perception, despite relatively preserved pure-tone detection thresholds. Affected individuals usually present with abnormal auditory brainstem responses (ABRs), but normal otoacoustic emissions (OAEs). These electrophysiological characteristics have led to the hypothesis that ANSD may be caused by various dysfunctions at the cochlear inner hair cell (IHC) and spiral ganglion neuron (SGN) levels, while the activity of outer hair cells (OHCs) is preserved, resulting in discrepancies between pure-tone and speech comprehension thresholds. The exact prevalence of ANSD remains unknown; clinical findings show a large variability among subjects with hearing impairment ranging from mild to profound hearing loss. A wide range of prenatal and postnatal etiologies have been proposed. The study of genetics and of the implicated sites of lesion correlated with clinical findings have also led to a better understanding of the molecular mechanisms underlying the various forms of ANSD, and may guide clinicians in better screening, assessment and treatment of ANSD patients. Besides OAEs and ABRs, audiological assessment includes stapedial reflex measurements, supraliminal psychoacoustic tests, electrocochleography (ECochG), auditory steady-state responses (ASSRs) and cortical auditory evoked potentials (CAEPs). Hearing aids are indicated in the treatment of ANSD with mild to moderate hearing loss, whereas cochlear implantation is the first choice of treatment in case of profound hearing loss, especially in case of IHC presynaptic disorders, or in case of poor auditory outcomes with conventional hearing aids.
Collapse
|
10
|
Shearer AE, Hansen MR. Auditory synaptopathy, auditory neuropathy, and cochlear implantation. Laryngoscope Investig Otolaryngol 2019; 4:429-440. [PMID: 31453354 PMCID: PMC6703118 DOI: 10.1002/lio2.288] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/17/2019] [Accepted: 06/13/2019] [Indexed: 02/03/2023] Open
Abstract
Cochlear implantation has become the standard-of-care for adults and children with severe to profound hearing loss. There is growing evidence that qualitative as well as quantitative deficits in the auditory nerve may affect cochlear implant (CI) outcomes. Auditory neuropathy spectrum disorder (ANSD) is characterized by dysfunctional transmission of sound from the cochlea to the brain due to defective synaptic function or neural conduction. In this review, we examine the precise mechanisms of genetic lesions causing ANSD and the effect of these lesions on CI outcomes. Reviewed data show that individuals with lesions that primarily affect the cochlear sensory system and the synapse, which are bypassed by the CI, have optimal CI outcomes. Individuals with lesions that affect the auditory nerve show poor performance with CIs, likely because neural transmission of the electrical signal from the CI is affected. We put forth a nuanced molecular classification of ANSD that has implications for preoperative counseling for patients with this disorder prior to cochlear implantation. We propose that description of ANSD patients should be based on the molecular site of lesion typically derived from genetic evaluation (synaptopathy vs. neuropathy) as this has implications for expected CI outcomes. Improvements in our understanding of genetic site of lesions and their effects on CI function should lead to better CI outcomes, not just for individuals with auditory neuropathy, but all individuals with hearing loss.
Collapse
Affiliation(s)
- Aiden Eliot Shearer
- Department of Otolaryngology-Head and Neck Surgery University of Iowa Carver College of Medicine Iowa City Iowa U.S.A
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery University of Iowa Carver College of Medicine Iowa City Iowa U.S.A.,Department of Neurosurgery University of Iowa Carver College of Medicine Iowa City Iowa U.S.A
| |
Collapse
|
11
|
Wang H, Wang L, Yang J, Yin L, Lan L, Li J, Zhang Q, Wang D, Guan J, Wang Q. Phenotype prediction of Mohr-Tranebjaerg syndrome (MTS) by genetic analysis and initial auditory neuropathy. BMC MEDICAL GENETICS 2019; 20:11. [PMID: 30634948 PMCID: PMC6330410 DOI: 10.1186/s12881-018-0741-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/21/2018] [Indexed: 12/02/2022]
Abstract
Background Mohr-Tranebjaerg syndrome (MTS) is a rare X-linked recessive neurodegenerative disorder resulting in early-onset hearing impairment, gradual dystonia and optic atrophy. MTS is caused by variations in the nuclear TIMM8A gene, which is involved in mitochondrial transport of metabolites. This study aimed to identify the pathogenic gene variations in three Chinese families associated with predicted MTS with or without X-linked agammaglobulinaemia. Methods Otologic examinations, vestibular, neurological, optical and other clinical evaluations were conducted on the family members. Targeted genes capture combining next generation sequencing (NGS) was performed, and then Sanger sequencing was used to confirm the causative variation. Results A novel variation, c.232_233insCAAT, in TIMM8A was identified as the pathogenic variation in one Chinese family. This variation co-segregated with the most frequent phenotypic deafness and was absent in the 1000 Genomes Project, ExAC and 1751 ethnicity-matched controls. Clinically, otological examinations illustrated the typical postsynaptic auditory neuropathy for the proband without the symptoms of dystonia or optic atrophy. MRI demonstrated abnormal small cochlear symmetric nerves, while the vestibular function appeared to be less influenced. Furthermore, we found another two TIMM8A variations, the deletion c.133_135delGAG and a copy number variation (CNV) including the TIMM8A gene, in two independent case, when we performed NGS on an auditory neuropathy population. Conclusion We identified two novel variations in the TIMM8A gene (c.232_233insCAAT and c.133_135delGAG) and a CNV including the TIMM8A gene in three independent Chinese families with predicted MTS. To our knowledge, this is the first report of TIMM8A variations being identified in a Chinese population. Our results enrich the variation spectrum of TIMM8A and clinical heterogeneity of MTS. Genetic detection and diagnosis is a powerful tool for better understanding and managing syndromic hearing impairments, such as MTS, before they become full-blown. Electronic supplementary material The online version of this article (10.1186/s12881-018-0741-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongyang Wang
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Li Wang
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Ju Yang
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | | | - Lan Lan
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Jin Li
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Qiujing Zhang
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Dayong Wang
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Jing Guan
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China.
| | - Qiuju Wang
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
12
|
Corvino V, Apisa P, Malesci R, Laria C, Auletta G, Franzé A. X-Linked Sensorineural Hearing Loss: A Literature Review. Curr Genomics 2018; 19:327-338. [PMID: 30065609 PMCID: PMC6030855 DOI: 10.2174/1389202919666171218163046] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/10/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023] Open
Abstract
Sensorineural hearing loss is a very diffuse pathology (about 1/1000 born) with several types of transmission. X-linked hearing loss accounts for approximately 1% - 2% of cases of non-syndromic forms, as well as for many syndromic forms. To date, six loci (DFNX1-6) and five genes (PRPS1 for DFNX1, POU3F4 for DFNX2, SMPX for DFNX4, AIFM1 for DFNX5 and COL4A6 for DFNX6) have been identified for X-linked non-syndromic hearing loss. For the syndromic forms, at least 15 genes have been identified, some of which are also implicated in non-syndromic forms. Moreover, some syndromic forms, presenting large chromosomal deletions, are associated with mental retardation too. This review presents an overview of the currently known genes related to X-linked hearing loss with the support of the most recent literature. It summarizes the genetics and clinical features of X-linked hearing loss to give information useful to realize a clear genetic counseling and an early diagnosis. It is important to get an early diagnosis of these diseases to decide the investigations to predict the evolution of the disease and the onset of any other future symptoms. This information will be clearly useful for choosing the best therapeutic strategy. In particular, regarding audiological aspects, this review highlights risks and benefits currently known in some cases for specific therapeutic intervention.
Collapse
Affiliation(s)
- Virginia Corvino
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Pasqualina Apisa
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rita Malesci
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Carla Laria
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Gennaro Auletta
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Annamaria Franzé
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
13
|
Neurodegenerative changes detected by neuroimaging in a patient with contiguous X-chromosome deletion syndrome encompassing BTK and TIMM8A genes. Cent Eur J Immunol 2018; 43:139-147. [PMID: 30135625 PMCID: PMC6102625 DOI: 10.5114/ceji.2018.77383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/18/2018] [Indexed: 11/18/2022] Open
Abstract
Introduction In this study we describe a patient with gross deletion containing the BTK and TIMM8A genes. Mutations in these genes are responsible for X-linked agammaglobulinemia and Mohr-Tranebjaerg syndrome, respectively. X linked agammaglobulinemia is a rare primary immunodeficiency characterized by low levels of B lymphocytes and recurrent microbial infections, whereas, Mohr-Tranebjaerg syndrome is a progressive neurodegenerative disorder with early onset of sensorineural deafness. Material and methods For neuroimaging, the magnetic resonance imaging and magnetic resonance spectroscopy of the brain were performed. Microarray analysis was performed to establish the extent of deletion. Results The first clinical symptoms observed in our patient at the age of 6 months were connected with primary humoral immunodeficiency, whereas clinical signs of MTS emerged in the third year of live. Interestingly, the loss of speech ability was not accompanied by hearing failure. Neuroimaging of the brain suggested leukodystrophy. Molecular tests revealed contiguous X-chromosome deletion syndrome encompassing BTK (from exons 6 through 19) and TIMM8A genes. The loss of the patient’s DNA fragment was accurately localized from 100 601 727 to 100 617 576 bp on chromosome’s loci Xq22.1. Conclusions We diagnosed XLA-MTS in the first Polish patient on the basis of particular molecular methods. We detected neurodegenerative changes in MRI and MR spectroscopy in this patient. Our results provide further insight into this rare syndrome.
Collapse
|
14
|
Han KH, Oh DY, Lee S, Lee C, Han JH, Kim MY, Park HR, Park MK, Kim NKD, Lee J, Yi E, Kim JM, Kim JW, Chae JH, Oh SH, Park WY, Choi BY. ATP1A3 mutations can cause progressive auditory neuropathy: a new gene of auditory synaptopathy. Sci Rep 2017; 7:16504. [PMID: 29184165 PMCID: PMC5705773 DOI: 10.1038/s41598-017-16676-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
The etiologies and prevalence of sporadic, postlingual-onset, progressive auditory neuropathy spectrum disorder (ANSD) have rarely been documented. Thus, we aimed to evaluate the prevalence and molecular etiologies of these cases. Three out of 106 sporadic progressive hearing losses turned out to manifest ANSD. Through whole exome sequencing and subsequent bioinformatics analysis, two out of the three were found to share a de novo variant, p.E818K of ATP1A3, which had been reported to cause exclusively CAPOS (cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss) syndrome. However, hearing loss induced by CAPOS has never been characterized to date. Interestingly, the first proband did not manifest any features of CAPOS, except subclinical areflexia; however, the phenotypes of second proband was compatible with that of CAPOS, making this the first reported CAPOS allele in Koreans. This ANSD phenotype was compatible with known expression of ATP1A3 mainly in the synapse between afferent nerve and inner hair cells. Based on this, cochlear implantation (CI) was performed in the first proband, leading to remarkable benefits. Collectively, the de novo ATP1A3 variant can cause postlingual-onset auditory synaptopathy, making this gene a significant contributor to sporadic progressive ANSD and a biomarker ensuring favorable short-term CI outcomes.
Collapse
Affiliation(s)
- Kyu-Hee Han
- Department of Otorhinolaryngology, National Medical Center, Seoul, Korea
| | - Doo-Yi Oh
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seungmin Lee
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Min Young Kim
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye-Rim Park
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul, Korea
| | - Nayoung K D Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Jaekwang Lee
- Division of Functional Food Research, Korea Food Research Institute (KFRI), Seongnam, Korea
| | - Eunyoung Yi
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Korea
| | - Jong-Min Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeong-Whun Kim
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea.,Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Seoul, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
15
|
Fontenot TE, Giardina CK, Teagle HF, Park LR, Adunka OF, Buchman CA, Brown KD, Fitzpatrick DC. Clinical role of electrocochleography in children with auditory neuropathy spectrum disorder. Int J Pediatr Otorhinolaryngol 2017; 99:120-127. [PMID: 28688553 PMCID: PMC5538887 DOI: 10.1016/j.ijporl.2017.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To assess electrocochleography (ECochG) to tones as an instrument to account for CI speech perception outcomes in children with auditory neuropathy spectrum disorder (ANSD). MATERIALS & METHODS Children (<18 years) receiving CIs for ANSD (n = 30) and non-ANSD (n = 74) etiologies of hearing loss were evaluated with ECochG using tone bursts (0.25-4 kHz). The total response (TR) is the sum of spectral peaks of responses across frequencies. The compound action potential (CAP) and the auditory nerve neurophonic (ANN) in ECochG waveforms were used to estimate nerve activity and calculate nerve score. Performance on open-set monosyllabic word tests was the outcome measure. Standard statistical methods were applied. RESULTS On average, TR was larger in ANSD than in non-ANSD subjects. Most ANSD (73.3%) and non-ANSD (87.8%) subjects achieved open-set speech perception; TR accounted for 33% and 20% of variability in the outcomes, respectively. In the ANSD group, the PTA accounted for 69.3% of the variability, but there was no relationship with outcomes in the non-ANSD group. In both populations, nerve score was sensitive in identifying subjects at risk for not acquiring open-set speech perception, while the CAP and the ANN were more specific. CONCLUSION In both subject groups, the TRs correlated with outcomes but these measures were notably larger in the ANSD group. There was also strong correlation between PTA and speech perception outcome in ANSD group. In both subject populations, weaker evidence of neural activity was related to failure to achieve open-set speech perception.
Collapse
Affiliation(s)
- Tatyana E Fontenot
- University of North Carolina at Chapel Hill, Department of Otolaryngology, Chapel Hill, NC, United States.
| | - Christopher K Giardina
- University of North Carolina at Chapel Hill, Department of Otolaryngology, Chapel Hill, NC, United States; University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Holly F Teagle
- University of North Carolina at Chapel Hill, Department of Otolaryngology, Chapel Hill, NC, United States
| | - Lisa R Park
- University of North Carolina at Chapel Hill, Department of Otolaryngology, Chapel Hill, NC, United States
| | - Oliver F Adunka
- The Ohio State University, Department of Otolaryngology, Columbus, OH, United States
| | - Craig A Buchman
- Washington University in St. Louis, Department of Otolaryngology, St. Louis, MO, United States
| | - Kevin D Brown
- University of North Carolina at Chapel Hill, Department of Otolaryngology, Chapel Hill, NC, United States
| | - Douglas C Fitzpatrick
- University of North Carolina at Chapel Hill, Department of Otolaryngology, Chapel Hill, NC, United States; University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
16
|
Chang MY, Kim AR, Kim NKD, Lee C, Park WY, Choi BY. Refinement of Molecular Diagnostic Protocol of Auditory Neuropathy Spectrum Disorder: Disclosure of Significant Level of Etiologic Homogeneity in Koreans and Its Clinical Implications. Medicine (Baltimore) 2015; 94:e1996. [PMID: 26632695 PMCID: PMC5058964 DOI: 10.1097/md.0000000000001996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Auditory neuropathy spectrum disorder (ANSD) is a sensorineural hearing disorder caused by dysfunction of auditory neural conduction. ANSD has a heterogeneous etiology, including genetic factors; the response to cochlear implantation significantly varies depending on the etiology. The results of timely cochlear implantation for OTOF-related ANSD (DFNB9) have been reported to be good. Therefore, identifying the causative gene of ANSD, especially OTOF, is an important issue to rehabilitate these patients.Six sporadic ANSD subjects without anatomical abnormality of the cochlear nerve, including the 4 subjects that were previously reported to be without detectable OTOF mutation, were included. We performed targeted resequencing (TRS) of known deafness genes and multiphasic bioinformatics analyses of the data that ensured detection of capture failure and structural variations. Exclusion of SNP was also double checked. The TRS data previously obtained from 2 subjects were reanalyzed. Through this study, we detected 2 mutant alleles of OTOF from 5 (83.3%) of 6 ANSD subjects. All of the 5 subjects carried at least 1 mutant allele carrying p.R1939Q. This variant was categorized as a simple SNP (rs201326023) in the database and it resided in the exon with frequent capture failures, which previously led to exclusion of this variant from eligible candidacy mistakenly. In addition, we detected a structural variation within OTOF from a previously undiagnosed ANSD subject, which was the second structural variation reported in DFNB9 subjects to date.We identify a strong etiologic homogeneity of prelingual ANSD in case of the anatomically normal cochlear nerve in Koreans and now report DFNB9 as the single overwhelming cause. Multiphasic analysis of TRS data ensuring detection of capture failure and structural variations would be expected to reveal DFNB9 from a substantial portion of previously undiagnosed ANSD subjects in Koreans. Based on our results, we propose a novel strategy that incorporates imaging studies, prevalent mutation screening and multiphasic analysis of TRS data in a stepwise manner to correctly detect DFNB9 in Koreans.
Collapse
Affiliation(s)
- Mun Young Chang
- From the Department of Otorhinolaryngology, Seoul National University Hospital, Seoul National University College of Medicine (MYC, ARK); Samsung Genome Institute, Samsung Medical Center, Seoul (NKDK, CL, WYP); Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University (CL); Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon (WYP); and Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (BYC)
| | | | | | | | | | | |
Collapse
|
17
|
Rance G, Starr A. Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy. Brain 2015; 138:3141-58. [PMID: 26463676 DOI: 10.1093/brain/awv270] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/05/2015] [Indexed: 01/19/2023] Open
Abstract
The effects of inner ear abnormality on audibility have been explored since the early 20th century when sound detection measures were first used to define and quantify 'hearing loss'. The development in the 1970s of objective measures of cochlear hair cell function (cochlear microphonics, otoacoustic emissions, summating potentials) and auditory nerve/brainstem activity (auditory brainstem responses) have made it possible to distinguish both synaptic and auditory nerve disorders from sensory receptor loss. This distinction is critically important when considering aetiology and management. In this review we address the clinical and pathophysiological features of auditory neuropathy that distinguish site(s) of dysfunction. We describe the diagnostic criteria for: (i) presynaptic disorders affecting inner hair cells and ribbon synapses; (ii) postsynaptic disorders affecting unmyelinated auditory nerve dendrites; (iii) postsynaptic disorders affecting auditory ganglion cells and their myelinated axons and dendrites; and (iv) central neural pathway disorders affecting the auditory brainstem. We review data and principles to identify treatment options for affected patients and explore their benefits as a function of site of lesion.
Collapse
Affiliation(s)
- Gary Rance
- 1 Department of Audiology and Speech Pathology, The University of Melbourne, 550 Swanston Street, Parkville 3010 Australia
| | - Arnold Starr
- 2 Department of Neurology, The University of California (Irvine), 200 S. Manchester Ave., Suite 206, Orange, CA 92868-4280, USA
| |
Collapse
|
18
|
Ji F, Li J, Hong M, Chen A, Jiao Q, Sun L, Liang S, Yang S. Determination of benefits of cochlear implantation in children with auditory neuropathy. PLoS One 2015; 10:e0127566. [PMID: 26010832 PMCID: PMC4443975 DOI: 10.1371/journal.pone.0127566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 04/16/2015] [Indexed: 11/19/2022] Open
Abstract
Background Auditory neuropathy (AN) is a recently recognized hearing disorder characterized by intact outer hair cell function, disrupted auditory nerve synchronization and poor speech perception and recognition. Cochlear implants (CIs) are currently the most promising intervention for improving hearing and speech in individuals with AN. Although previous studies have shown optimistic results, there was large variability concerning benefits of CIs among individuals with AN. The data indicate that different criteria are needed to evaluate the benefit of CIs in these children compared to those with sensorineural hearing loss. We hypothesized that a hierarchic assessment would be more appropriate to evaluate the benefits of cochlear implantation in AN individuals. Methods Eight prelingual children with AN who received unilateral CIs were included in this study. Hearing sensitivity and speech recognition were evaluated pre- and postoperatively within each subject. The efficacy of cochlear implantation was assessed using a stepwise hierarchic evaluation for achieving: (1) effective audibility, (2) improved speech recognition, (3) effective speech, and (4) effective communication. Results The postoperative hearing and speech performance varied among the subjects. According to the hierarchic assessment, all eight subjects approached the primary level of effective audibility, with an average implanted hearing threshold of 43.8 ± 10.2 dB HL. Five subjects (62.5%) attained the level of improved speech recognition, one (12.5%) reached the level of effective speech, and none of the subjects (0.0%) achieved effective communication. Conclusion CIs benefit prelingual children with AN to varying extents. A hierarchic evaluation provides a more suitable method to determine the benefits that AN individuals will likely receive from cochlear implantation.
Collapse
Affiliation(s)
- Fei Ji
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Jianan Li
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Mengdi Hong
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Aiting Chen
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Qingshan Jiao
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Li Sun
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Sichao Liang
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Shiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
- * E-mail:
| |
Collapse
|
19
|
|
20
|
Nikolopoulos TP. Auditory dyssynchrony or auditory neuropathy: understanding the pathophysiology and exploring methods of treatment. Int J Pediatr Otorhinolaryngol 2014; 78:171-3. [PMID: 24380663 DOI: 10.1016/j.ijporl.2013.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To review the literature on auditory dyssynchrony (AD) or neuropathy which is characterized by absent auditory brainstem responses, normal otoacoustic emissions, and word discrimination disproportional to the pure tone audiogram. RESULTS Several papers attempt to estimate the prevalence of AD that seems to range between 0.23 and 2% in infants "at risk" for hearing impairment and it is considered to be responsible for approximately 8% of newly diagnosed cases of hearing loss in children per year. The prevalence gets even higher, reaching 10% in children with permanent hearing loss. It seems that AD is not a single disease but a spectrum of pathologies that affect the auditory pathway at the level of the inner hair cells, the synapses, or the auditory nerve. Many predisposing or contribution factors have been reported, including prematurity, hyperbilirubinemia, hypoxia, low-birth weight, immunological conditions, infectious diseases, etc. Before proposing any method of management, parents should be informed about the variation among patients and the changes that may appear in some children's audition over time. Sigh language, speech and language therapy, hearing-aids, and cochlear implantation have been used in the treatment of AD. In general, AD is rather refractory to conventional amplification and cochlear implantation has been found an effective method of management in young implanted children with severe/profound deafness and AD. However, the situation is more complicated and challenging in milder hearing losses. CONCLUSION The selected and proposed 30 related articles published in the International Journal of Pediatric Otorhinolaryngology aim to stimulate the related research in order to further explore the etiology, pathophysiology, and management of AD.
Collapse
Affiliation(s)
- Thomas P Nikolopoulos
- Athens University, Department of Otorhinolaryngology, 125 Anakous Street, New Philadelphia, 14342 Athens, Greece.
| |
Collapse
|
21
|
Cochlear Implant as an Intervention in Patients with Auditory Neuropathy. J Otol 2013. [DOI: 10.1016/s1672-2930(13)50016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Eppsteiner RW, Shearer AE, Hildebrand MS, Deluca AP, Ji H, Dunn CC, Black-Ziegelbein EA, Casavant TL, Braun TA, Scheetz TE, Scherer SE, Hansen MR, Gantz BJ, Smith RJH. Prediction of cochlear implant performance by genetic mutation: the spiral ganglion hypothesis. Hear Res 2012; 292:51-8. [PMID: 22975204 DOI: 10.1016/j.heares.2012.08.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Up to 7% of patients with severe-to-profound deafness do not benefit from cochlear implantation. Given the high surgical implantation and clinical management cost of cochlear implantation (>$1 million lifetime cost), prospective identification of the worst performers would reduce unnecessary procedures and healthcare costs. Because cochlear implants bypass the membranous labyrinth but rely on the spiral ganglion for functionality, we hypothesize that cochlear implant (CI) performance is dictated in part by the anatomic location of the cochlear pathology that underlies the hearing loss. As a corollary, we hypothesize that because genetic testing can identify sites of cochlear pathology, it may be useful in predicting CI performance. METHODS 29 adult CI recipients with idiopathic adult-onset severe-to-profound hearing loss were studied. DNA samples were subjected to solution-based sequence capture and massively parallel sequencing using the OtoSCOPE(®) platform. The cohort was divided into three CI performance groups (good, intermediate, poor) and genetic causes of deafness were correlated with audiometric data to determine whether there was a gene-specific impact on CI performance. RESULTS The genetic cause of deafness was determined in 3/29 (10%) individuals. The two poor performers segregated mutations in TMPRSS3, a gene expressed in the spiral ganglion, while the good performer segregated mutations in LOXHD1, a gene expressed in the membranous labyrinth. Comprehensive literature review identified other good performers with mutations in membranous labyrinth-expressed genes; poor performance was associated with spiral ganglion-expressed genes. CONCLUSIONS Our data support the underlying hypothesis that mutations in genes preferentially expressed in the spiral ganglion portend poor CI performance while mutations in genes expressed in the membranous labyrinth portend good CI performance. Although the low mutation rate in known deafness genes in this cohort likely relates to the ascertainment characteristics (postlingual hearing loss in adult CI recipients), these data suggest that genetic testing should be implemented as part of the CI evaluation to test this association prospectively.
Collapse
Affiliation(s)
- Robert W Eppsteiner
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ha AD, Parratt KL, Rendtorff ND, Lodahl M, Ng K, Rowe DB, Sue CM, Hayes MW, Tranebjaerg L, Fung VS. The phenotypic spectrum of dystonia in Mohr-Tranebjaerg syndrome. Mov Disord 2012; 27:1034-40. [DOI: 10.1002/mds.25033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/17/2012] [Accepted: 04/08/2012] [Indexed: 11/08/2022] Open
|
24
|
Auditory evoked magnetic fields in patients with absent brainstem responses due to auditory neuropathy with optic atrophy. Clin Neurophysiol 2012; 123:985-92. [PMID: 22119798 DOI: 10.1016/j.clinph.2011.10.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 09/23/2011] [Accepted: 10/23/2011] [Indexed: 11/24/2022]
|
25
|
Minoda R, Takahashi H, Miyamaru S, Masuda M, Miwa T, Sanuki T, Hirai T, Yumoto E. A postmeningitic cochlear implant patient who was postoperatively diagnosed as having X-linked agammaglobulinemia. Auris Nasus Larynx 2012; 39:638-40. [PMID: 22341605 DOI: 10.1016/j.anl.2011.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/17/2011] [Accepted: 01/20/2012] [Indexed: 11/19/2022]
Abstract
X-linked agammaglobulinemia (XLA) is caused by a mutation in the Bruton tyrosine kinase, leading to an arrest in B cell development. Consequently, patients with XLA show significant decreases in gammaglobulin. Here, we describe a child with postmeningitic deafness and XLA who underwent a cochlear implantation. His psychomotor development had been normal and his congenital immunodeficiency was noticed only postoperatively. Immunoglobulin replacement treatment was started, but he still suffered repeated infections. Eventually, his cochlear implant was removed. A preoperative check of immunological status might be advisable in postmeningitic patients undergoing cochlear implantation to reduce the risk of postoperative infectious complications.
Collapse
Affiliation(s)
- Ryosei Minoda
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kumamoto University, 1-1-1 Honjo, Kumamoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cacace AT, Pinheiro JMB. The mitochondrial connection in auditory neuropathy. Audiol Neurootol 2011; 16:398-413. [PMID: 21266802 DOI: 10.1159/000323276] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 11/30/2010] [Indexed: 12/21/2022] Open
Abstract
'Auditory neuropathy' (AN), the term used to codify a primary degeneration of the auditory nerve, can be linked directly or indirectly to mitochondrial dysfunction. These observations are based on the expression of AN in known mitochondrial-based neurological diseases (Friedreich's ataxia, Mohr-Tranebjærg syndrome), in conditions where defects in axonal transport, protein trafficking, and fusion processes perturb and/or disrupt mitochondrial dynamics (Charcot-Marie-Tooth disease, autosomal dominant optic atrophy), in a common neonatal condition known to be toxic to mitochondria (hyperbilirubinemia), and where respiratory chain deficiencies produce reductions in oxidative phosphorylation that adversely affect peripheral auditory mechanisms. This body of evidence is solidified by data derived from temporal bone and genetic studies, biochemical, molecular biologic, behavioral, electroacoustic, and electrophysiological investigations.
Collapse
Affiliation(s)
- Anthony T Cacace
- Department of Communication Sciences and Disorders, Wayne State University, Detroit, Mich 48202, USA. cacacea @ wayne.edu
| | | |
Collapse
|
27
|
Santarelli R. Information from cochlear potentials and genetic mutations helps localize the lesion site in auditory neuropathy. Genome Med 2010; 2:91. [PMID: 21176122 PMCID: PMC3025433 DOI: 10.1186/gm212] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Auditory neuropathy (AN) is a disorder characterized by disruption of auditory nerve activity resulting from lesions involving the auditory nerve (postsynaptic AN), inner hair cells and/or the synapses with auditory nerve terminals (presynaptic AN). Affected subjects show impairment of speech perception beyond that expected for the hearing loss, abnormality of auditory brainstem potentials and preserved outer hair-cell activities. Furthermore, AN can be identified either as an isolated disorder or as an associated disorder with multisystem involvement including peripheral and optic neuropathies (non-isolated AN). Mutations in several nuclear and mitochondrial genes have been identified as underlying these forms of AN. Recently, new genes have been identified as involved in both isolated (DIAPH3, OTOF) and non-isolated AN (OPA1). Moreover, abnormal cochlear potentials have been recorded from patients with specific gene mutations by using acoustic stimuli or electrical stimulation through cochlear implant. In this review, different types of genetically based auditory neuropathies are discussed and the proposed molecular mechanisms underlying AN are reviewed.
Collapse
Affiliation(s)
- Rosamaria Santarelli
- Department of Medical and Surgical Specialities, Service of Audiology and Phoniatrics, University of Padua, Via Giustiniani 2, I-35128 Padua, Italy.
| |
Collapse
|
28
|
Huang T, Santarelli R, Starr A. Mutation of OPA1 gene causes deafness by affecting function of auditory nerve terminals. Brain Res 2009; 1300:97-104. [PMID: 19733158 DOI: 10.1016/j.brainres.2009.08.083] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 08/21/2009] [Accepted: 08/24/2009] [Indexed: 11/28/2022]
Abstract
Autosomal dominant optic atrophy (DOA) is a retinal neuronal degenerative disease characterized by a progressive bilateral visual loss. We report on two affected members of a family with dominantly inherited neuropathy of both optic and auditory nerves expressed by impaired visual acuity, moderate pure tone hearing loss, and marked loss of speech perception. We investigated cochlear abnormalities accompanying the hearing loss and the effects of cochlear implantation. We sequenced OPA1 gene and recorded cochlear receptor and neural potentials before cochlear implantation. Genetic analysis identified R445H mutation in OPA1 gene. Audiological studies showed preserved cochlear receptor outer hair cell activities (otoacoustic emissions) and absent or abnormally delayed auditory brainstem responses (ABRs). Trans-tympanic electrocochleography (ECochG) showed prolonged low amplitude negative potentials without auditory nerve compound action potentials. The latency of onset of the cochlear potentials was within the normal range found for inner hair cell summating receptor potentials. The duration of the negative potential was reduced to normal during rapid stimulation consistent with adaptation of neural sources generating prolonged cochlear potentials. Both subjects had cochlear implants placed with restoration of hearing thresholds, speech perception, and synchronous activity in auditory brainstem pathways. The results suggest that deafness accompanying this OPA1 mutation is due to altered function of terminal unmyelinated portions of auditory nerve. Electrical stimulation of the cochlea activated proximal myelinated portions of auditory nerve to restore hearing.
Collapse
Affiliation(s)
- Taosheng Huang
- Department of Pediatrics, University of California, Irvine, CA, USA
| | | | | |
Collapse
|