1
|
Tait A, Proctor T, Hamilton NJI, Birchall MA, Lowdell MW. GMP compliant isolation of mucosal epithelial cells and fibroblasts from biopsy samples for clinical tissue engineering. Sci Rep 2021; 11:12392. [PMID: 34117337 PMCID: PMC8196163 DOI: 10.1038/s41598-021-91939-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
Engineered epithelial cell sheets for clinical replacement of non-functional upper aerodigestive tract mucosa are regulated as medicinal products and should be manufactured to the standards of good manufacturing practice (GMP). The current gold standard for growth of epithelial cells for research utilises growth arrested murine 3T3 J2 feeder layers, which are not available for use as a GMP compliant raw material. Using porcine mucosal tissue, we demonstrate a new method for obtaining and growing non-keratinised squamous epithelial cells and fibroblast cells from a single biopsy, replacing the 3T3 J2 with a growth arrested primary fibroblast feeder layer and using pooled Human Platelet lysate (HPL) as the media serum supplement to replace foetal bovine serum (FBS). The initial isolation of the cells was semi-automated using an Octodissociator and the resultant cell suspension cryopreservation for future use. When compared to the gold standard of 3T3 J2 and FBS containing medium there was no reduction in growth, viability, stem cell population or ability to differentiate to mature epithelial cells. Furthermore, this method was replicated with Human buccal tissue, providing cells of sufficient quality and number to create a tissue engineered sheet.
Collapse
Affiliation(s)
- Angela Tait
- Cancer Institute, Department of Haematology, University College London, London, UK.
| | - Toby Proctor
- Department of Biochemical Engineering, University College London, London, UK
| | | | | | - Mark W Lowdell
- Cancer Institute, Department of Haematology, University College London, London, UK
| |
Collapse
|
2
|
Yılmaz T. Endoscopic Z-plasty for Treatment of Supraglottic Stenosis: Experience on Nine Patients. Laryngoscope 2020; 131:E534-E539. [PMID: 32533778 DOI: 10.1002/lary.28787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Supraglottic stenosis is a rare type of laryngeal stenosis that is caused by congenital laryngotracheal anomalies, iatrogenic instrumentation injuries, autoimmune disorders, infection, irradiation, chemical or thermal burns, and external blunt or penetrating trauma. The author presents his experience on nine patients using this new endoscopic surgical technique for treatment of supraglottic stenosis. STUDY DESIGN Individual retrospective cohort study, tertiary referral center, university hospital. METHODS All cases of supraglottic laryngeal stenosis treated during a 10-year period at a tertiary academic medical center were reviewed. Nine patients with supraglottic stenosis treated with endoscopic uni- or bilateral z-plasty technique were determined and presented. The etiology of stenosis was iatrogenic surgical trauma in seven patients, laryngeal fracture in one patient, and systemic lupus erythematosus in the other patient. Main outcome measures were respiratory function test results, absence of dyspnea on exertion, and decannulation if tracheotomy was present preoperatively. RESULTS Seven patients with tracheotomy were decannulated 1 month after surgery. All nine patients had adequate airway and were dyspnea-free. Their preop respiratory function test results improved significantly postoperatively (P < .05). CONCLUSION For supraglottic stenosis endoscopic surgery using mucosal flaps in the form of z-plasty should be considered within the available surgical techniques. Although this type of surgery is highly successful, it is technically difficult to apply. LEVEL OF EVIDENCE 4 Laryngoscope, 131:E534-E539, 2021.
Collapse
Affiliation(s)
- Taner Yılmaz
- Department of Otolaryngology-Head & Neck Surgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Hamilton NJI, Lee DDH, Gowers KHC, Butler CR, Maughan EF, Jevans B, Orr JC, McCann CJ, Burns AJ, MacNeil S, Birchall MA, O'Callaghan C, Hynds RE, Janes SM. Bioengineered airway epithelial grafts with mucociliary function based on collagen IV- and laminin-containing extracellular matrix scaffolds. Eur Respir J 2020; 55:1901200. [PMID: 32444408 PMCID: PMC7301290 DOI: 10.1183/13993003.01200-2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
Current methods to replace damaged upper airway epithelium with exogenous cells are limited. Existing strategies use grafts that lack mucociliary function, leading to infection and the retention of secretions and keratin debris. Strategies that regenerate airway epithelium with mucociliary function are clearly desirable and would enable new treatments for complex airway disease.Here, we investigated the influence of the extracellular matrix (ECM) on airway epithelial cell adherence, proliferation and mucociliary function in the context of bioengineered mucosal grafts. In vitro, primary human bronchial epithelial cells (HBECs) adhered most readily to collagen IV. Biological, biomimetic and synthetic scaffolds were compared in terms of their ECM protein content and airway epithelial cell adherence.Collagen IV and laminin were preserved on the surface of decellularised dermis and epithelial cell attachment to decellularised dermis was greater than to the biomimetic or synthetic alternatives tested. Blocking epithelial integrin α2 led to decreased adherence to collagen IV and to decellularised dermis scaffolds. At air-liquid interface (ALI), bronchial epithelial cells cultured on decellularised dermis scaffolds formed a differentiated respiratory epithelium with mucociliary function. Using in vivo chick chorioallantoic membrane (CAM), rabbit airway and immunocompromised mouse models, we showed short-term preservation of the cell layer following transplantation.Our results demonstrate the feasibility of generating HBEC grafts on clinically applicable decellularised dermis scaffolds and identify matrix proteins and integrins important for this process. The long-term survivability of pre-differentiated epithelia and the relative merits of this approach against transplanting basal cells should be assessed further in pre-clinical airway transplantation models.
Collapse
Affiliation(s)
- Nick J I Hamilton
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, UK
- Nick J.I. Hamilton and Sam M. Janes are joint-senior authors
| | - Dani Do Hyang Lee
- Respiratory, Critical Care and Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kate H C Gowers
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Colin R Butler
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Elizabeth F Maughan
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Benjamin Jevans
- Stem Cell and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jessica C Orr
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Conor J McCann
- Stem Cell and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alan J Burns
- Stem Cell and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sheila MacNeil
- Dept of Materials and Science Engineering, The Kroto Research Institute, North Campus, University of Sheffield, Sheffield, UK
| | - Martin A Birchall
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, UK
| | - Christopher O'Callaghan
- Respiratory, Critical Care and Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Robert E Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Nick J.I. Hamilton and Sam M. Janes are joint-senior authors
| |
Collapse
|
4
|
Townsend JM, Hukill ME, Fung KM, Ohst DG, Johnson JK, Weatherly RA, Detamore MS. Biodegradable electrospun patch containing cell adhesion or antimicrobial compounds for trachea repair in vivo. Biomed Mater 2020; 15:025003. [PMID: 31791031 PMCID: PMC7065275 DOI: 10.1088/1748-605x/ab5e1b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Difficulty breathing due to tracheal stenosis (i.e. narrowed airway) diminishes the quality of life and can potentially be life-threatening. Tracheal stenosis can be caused by congenital anomalies, external trauma, infection, intubation-related injury, and tumors. Common treatment methods for tracheal stenosis requiring surgical intervention include end-to-end anastomosis, slide tracheoplasty and/or laryngotracheal reconstruction. Although the current methods have demonstrated promise for treatment of tracheal stenosis, a clear need exists for the development of new biomaterials that can hold the trachea open after the stenosed region has been surgically opened, and that can support healing without the need to harvest autologous tissue from the patient. The current study therefore evaluated the use of electrospun nanofiber scaffolds encapsulating 3D-printed PCL rings to patch induced defects in rabbit tracheas. The nanofibers were a blend of polycaprolactone (PCL) and polylactide-co-caprolactone (PLCL), and encapsulated either the cell adhesion peptide, RGD, or antimicrobial compound, ceragenin-131 (CSA). Blank PCL/PLCL and PCL were employed as control groups. Electrospun patches were evaluated in a rabbit tracheal defect model for 12 weeks, which demonstrated re-epithelialization of the luminal side of the defect. No significant difference in lumen volume was observed for the PCL/PLCL patches compared to the uninjured positive control. Only the RGD group did not lead to a significant decrease in the minimum cross-sectional area compared to the uninjured positive control. CSA reduced bacteria growth in vitro, but did not add clear value in vivo. Adequate tissue in-growth into the patches and minimal tissue overgrowth was observed inside the patch material. Areas of future investigation include tuning the material degradation time to balance cell adhesion and structural integrity.
Collapse
Affiliation(s)
- Jakob M. Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Makenna E. Hukill
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | | | | | - Robert A. Weatherly
- Section of Otolaryngology, Department of Surgery, Children’s Mercy Hospital, Kansas City, MO, 64108
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
5
|
Heller M, Bauer H, Schwab R, Blatt S, Peters K, Nezi‐Cahn S, Unger RE, Hasenburg A, Brenner W. The impact of intercellular communication for the generation of complex multicellular prevascularized tissue equivalents. J Biomed Mater Res A 2019; 108:734-748. [DOI: 10.1002/jbm.a.36853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Martin Heller
- Department of Gynecology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Heide‐Katharina Bauer
- Department of Gynecology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Roxana Schwab
- Department of Gynecology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Sebastian Blatt
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- Department of Maxillofacial Surgery University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Katharina Peters
- Department of Gynecology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Sandra Nezi‐Cahn
- Department of Gynecology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Ronald E. Unger
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- Institute for Pathology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Annette Hasenburg
- Department of Gynecology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Walburgis Brenner
- Department of Gynecology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| |
Collapse
|
6
|
Hamilton NJ, Hynds RE, Gowers KH, Tait A, Butler CR, Hopper C, Burns AJ, Birchall MA, Lowdell M, Janes SM. Using a Three-Dimensional Collagen Matrix to Deliver Respiratory Progenitor Cells to Decellularized Trachea In Vivo. Tissue Eng Part C Methods 2019; 25:93-102. [PMID: 30648458 PMCID: PMC6389769 DOI: 10.1089/ten.tec.2018.0241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022] Open
Abstract
IMPACT STATEMENT This article describes a method for engrafting epithelial progenitor cells to a revascularized scaffold in a protective and supportive collagen-rich environment. This method has the potential to overcome two key limitations of existing grafting techniques as epithelial cells are protected from mechanical shear and the relatively hypoxic phase that occurs while grafts revascularize, offering the opportunity to provide epithelial cells to decellularized allografts at the point of implantation. Advances in this area will improve the safety and efficacy of bioengineered organ transplantation.
Collapse
Affiliation(s)
- Nick J.I. Hamilton
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, United Kingdom
| | - Robert E. Hynds
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Kate H.C. Gowers
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Angela Tait
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Colin R. Butler
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Colin Hopper
- Maxillofacial Surgery, Eastman Dental Institute, London, United Kingdom
| | - Alan J. Burns
- Stem Cell and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Institute of Child Health, London, United Kingdom
| | - Martin A. Birchall
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, United Kingdom
| | - Mark Lowdell
- Institute of Immunity and Transplantation, Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital, London, United Kingdom
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
7
|
Townsend JM, Ott LM, Salash JR, Fung KM, Easley JT, Seim HB, Johnson JK, Weatherly RA, Detamore MS. Reinforced Electrospun Polycaprolactone Nanofibers for Tracheal Repair in an In Vivo Ovine Model. Tissue Eng Part A 2018; 24:1301-1308. [PMID: 29580173 PMCID: PMC6150933 DOI: 10.1089/ten.tea.2017.0437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/01/2018] [Indexed: 01/24/2023] Open
Abstract
Tracheal stenosis caused by congenital anomalies, tumors, trauma, or intubation-related damage can cause severe breathing issues, diminishing the quality of life, and potentially becoming fatal. Current treatment methods include laryngotracheal reconstruction or slide tracheoplasty. Laryngotracheal reconstruction utilizes rib cartilage harvested from the patient, requiring a second surgical site. Slide tracheoplasty involves a complex surgical procedure to splay open the trachea and reconnect both segments to widen the lumen. A clear need exists for new and innovative approaches that can be easily adopted by surgeons, and to avoid harvesting autologous tissue from the patient. This study evaluated the use of an electrospun patch, consisting of randomly layered polycaprolactone (PCL) nanofibers enveloping 3D-printed PCL rings, to create a mechanically robust, suturable, air-tight, and bioresorbable graft for the treatment of tracheal defects. The study design incorporated two distinct uses of PCL: electrospun fibers to promote tissue integration, while remaining air-tight when wet, and 3D-printed rings to hold the airway open and provide external support and protection during the healing process. Electrospun, reinforced tracheal patches were evaluated in an ovine model, in which all sheep survived for 10 weeks, although an overgrowth of fibrous tissue surrounding the patch was observed to significantly narrow the airway. Minimal tissue integration of the surrounding tissue and the electrospun fibers suggested the need for further improvement. Potential areas for further improvement include a faster degradation rate, agents to increase cellular adhesion, and/or an antibacterial coating to reduce the initial bacterial load.
Collapse
Affiliation(s)
- Jakob M. Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| | | | | | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jeremiah T. Easley
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado
| | - Howard B. Seim
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado
| | | | - Robert A. Weatherly
- Section of Otolaryngology, Department of Surgery, Children's Mercy Hospital, Kansas City, Missouri
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
8
|
Chen W, Gao P, Cui P, Ruan Y, Liu Z, Sun Y, Bian K. Management of Severe and Complex Hypopharyngeal and/or Laryngotracheal Stenoses by Various Open Surgical Procedures: A Retrospective Study of Seventeen Patients. ORL J Otorhinolaryngol Relat Spec 2016; 78:111-8. [DOI: 10.1159/000430820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 04/16/2015] [Indexed: 11/19/2022]
|
9
|
Kane-Smyth J, Barnett TP, Mark O'Leary J, Dixon PM. Surgical Treatment of Iatrogenic Ventral Glottic Stenosis Using a Mucosal Flap Technique. Vet Surg 2016; 45:436-42. [PMID: 27013024 PMCID: PMC5071673 DOI: 10.1111/vsu.12465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 06/22/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To describe a novel surgical technique for correcting postoperative ventral glottic stenosis (cicatrix or web formation) and the outcome in 2 Thoroughbred racehorses. STUDY DESIGN Retrospective case report. ANIMALS Thoroughbreds diagnosed with ventral glottic stenosis (n=2). METHODS Horses presenting with iatrogenic ventral glottic stenosis and resultant exercise intolerance and abnormal exercise-related noise were anesthetized and a midline sagittal skin incision was made over the ventral larynx and between the sternohyoideus muscles overlying the cricothyroid notch. The cricothyroid ligament, attached laryngeal cicatrix, and overlying mucosa were sagittally sectioned at the dorsal aspect of the cicatrix on the left side. The laryngeal mucosa, cicatrix, and underlying cricothyroid ligament immediately rostral and caudal to the cicatrix were sectioned in a medial (axial) direction as far as the right side of the cricothyroid notch. After resection of the majority of the attached cicatrix tissue, the residual mucosal flap (attached to the right side of the larynx) was reflected ventrally and sutured to the attachment of the cricothyroid ligament on the right side of the cricothyroid notch, creating an intact mucosal layer on the right side of the ventral larynx. RESULTS Both horses had good intralaryngeal wound healing with minimal redevelopment of ventral glottic stenosis at 5 and 9 months postoperatively and were successfully returned to racing with complete absence of abnormal respiratory noise. CONCLUSION The unique laryngeal anatomy of horses, with a cartilage-free ventral laryngeal area (cricothyroid notch), allowed the use of this novel surgical technique to successfully treat ventral glottic stenosis.
Collapse
Affiliation(s)
- Justine Kane-Smyth
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Timothy P Barnett
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - John Mark O'Leary
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Padraic M Dixon
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|