1
|
Yoshimura H, Okubo T, Shinagawa J, Nishio SY, Takumi Y, Usami SI. Epidemiology, aetiology and diagnosis of congenital hearing loss via hearing screening of 153 913 newborns. Int J Epidemiol 2024; 53:dyae052. [PMID: 38609324 PMCID: PMC11014784 DOI: 10.1093/ije/dyae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Congenital hearing loss (HL), one of the most common paediatric chronic conditions, significantly affects speech and language development. Its early diagnosis and medical intervention can be achieved via newborn hearing screening. However, data on the prevalence and aetiology of congenital HL in infants who fail newborn hearing screening are limited. METHODS The sample population included 153 913 infants who underwent newborn hearing screening, and the prevalence of congenital HL, defined as moderate to profound bilateral HL (BHL) or unilateral HL (UHL) (≥40 dB HL), in one prefecture of Japan was measured to minimize the loss-to-follow-up rate, a common factor affecting the screening procedure. Comprehensive aetiological investigation, including physiology, imaging, genetic tests, and congenital cytomegalovirus screening, was performed on children diagnosed with congenital HL. RESULTS The calculated prevalence of congenital HL was 1.62 per 1000 newborns (bilateral, 0.84; unilateral, 0.77). More than half of the cases with congenital bilateral or severe to profound UHL showed genetic aetiology or cochlear nerve deficiency (CND), respectively. Approximately 4% and 6% of the cases of congenital BHL and UHL were associated with congenital cytomegalovirus infection and auditory neuropathy spectrum disorder, respectively. CONCLUSIONS This is an epidemiological and comprehensive aetiological study of congenital HL, as determined via newborn hearing screening according to its severity and laterality, in a large-scale general population of a developed country. Our findings can serve as a reference for optimizing care and intervention options for children with HL and their families.
Collapse
Affiliation(s)
- Hidekane Yoshimura
- Department of Otorhinolaryngology – Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takuya Okubo
- Department of Otorhinolaryngology – Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Jun Shinagawa
- Department of Otorhinolaryngology – Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Shin-Ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yutaka Takumi
- Department of Otorhinolaryngology – Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
2
|
Choe G, Park SK, Kim BJ. Hearing loss in neonates and infants. Clin Exp Pediatr 2023; 66:369-376. [PMID: 36634668 PMCID: PMC10475863 DOI: 10.3345/cep.2022.01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Hearing in neonates and infants is crucial for their development of language and communication skills. Unless hearing loss is appropriately managed early, it can cause a significant socioeconomic burden considering its detrimental impact on the child's development and its common nature. It is also the most common congenital sensory deficit, with an approximate incidence of 1.5 per 1,000 newborns. Its etiologies are heterogeneous: genetic causes are reportedly involved in up to 80% of cases, while congenital cytomegalovirus infection is the leading environmental factor contributing to congenital hearing loss. The introduction of newborn hearing screening using automated auditory brainstem response and/or automated otoacoustic emission in many developed countries has helped detect and manage hearing loss early. Current auditory rehabilitation options such as cochlear implantation implementing cutting-edge technologies can treat almost all degrees of hearing loss, emphasizing the importance of early hearing detection and intervention. Rapidly developing genetic diagnostic technologies and future cutting-edge treatment options, including gene therapy, will shed light on the future management of hearing loss in neonates and infants.
Collapse
Affiliation(s)
- Goun Choe
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Korea
| | - Su-Kyoung Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Korea
| |
Collapse
|
3
|
Al-Ani RM. Various aspects of hearing loss in newborns: A narrative review. World J Clin Pediatr 2023; 12:86-96. [PMID: 37342452 PMCID: PMC10278076 DOI: 10.5409/wjcp.v12.i3.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/22/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Hearing loss is considered the most common birth defect. The estimated prevalence of moderate and severe hearing loss in a normal newborn is 0.1%-0.3%, while the prevalence is 2%-4% in newborns admitted to the newborn intensive care unit. Neonatal hearing loss can be congenital (syndromic or non-syndromic) or acquired such as ototoxicity. In addition, the types of hearing loss can be conductive, sensorineural, or mixed. Hearing is vital for the acquisition of language and learning. Therefore, early detection and prompt treatment are of utmost importance in preventing the unwanted sequel of hearing loss. The hearing screening program is mandatory in many nations, especially for high-risk newborns. An automated auditory brainstem response test is used as a screening tool in newborns admitted to the newborn intensive care unit. Moreover, genetic testing and screening for cytomegalovirus in newborns are essential in identifying the cause of hearing loss, particularly, mild and delayed onset types of hearing loss. We aimed to update the knowledge on the various aspects of hearing loss in newborns with regard to the epidemiology, risk factors, causes, screening program, investigations, and different modalities of treatment.
Collapse
Affiliation(s)
- Raid M Al-Ani
- Department of Surgery/Otolaryngology, University of Anbar, College of Medicine, Ramadi 31001, Anbar, Iraq
| |
Collapse
|
4
|
Zhu Y, Hu L, Yang L, Wang L, Lu Y, Dong X, Xiao T, Xu Z, Wu B, Zhou W. Association Between Expanded Genomic Sequencing Combined With Hearing Screening and Detection of Hearing Loss Among Newborns in a Neonatal Intensive Care Unit. JAMA Netw Open 2022; 5:e2220986. [PMID: 35816303 PMCID: PMC9274323 DOI: 10.1001/jamanetworkopen.2022.20986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
IMPORTANCE Hearing loss is a global social burden. Early identification of hearing loss missed by newborn hearing screening tests in the neonatal intensive care unit is crucial. OBJECTIVE To assess the association between expanded genomic sequencing combined with hearing screening and detection of hearing loss as well as improvement in the neonatal intensive care unit. DESIGN, SETTING, AND PARTICIPANTS This cohort study was performed between August 8, 2016, and December 31, 2020, among 8078 newborns admitted to the neonatal intensive care unit of the Children's Hospital of Fudan University in Shanghai, China. Follow-up for hearing status was performed via telephone interviews between September 1 and November 30, 2021. EXPOSURES A hearing screening test and the expanded genomic sequencing targeting 2742 genes were administered to each patient. Those who failed the hearing screening test or had positive genetic findings were referred for diagnostic audiometry at a median of 3 months of age. MAIN OUTCOMES AND MEASURES The primary outcome was hearing loss missed by hearing screening test. Secondary outcomes were genetic findings and benefits associated with the expanded genomic sequencing for clinical management of patients in the neonatal intensive care unit. RESULTS Of 8078 patients (4666 boys [57.8%]; median age, 6.3 days [IQR, 3.0-12.0 days]), 52 of 240 (21.7%) received a diagnosis of hearing loss. Expanded genomic sequencing combined with hearing screening was associated with a 15.6% increase (7 of 45 patients) in cases of diagnosed hearing loss that were missed by hearing screening. Of the 52 patients with hearing loss, genetic factors were identified for 39 patients (75.0%); GJB2 and SLC26A4 were the most common genes identified. Patients with genetic findings experienced a more severe degree of hearing loss than those without genetic findings (21 profound, 4 severe, 7 moderate, and 7 mild vs 2 severe, 4 moderate, and 7 mild; P = .005), with more bilateral hearing loss (39 of 39 [100%] vs 9 of 13 [69.2%]; P = .003). Clinical management strategies were changed for patients who underwent genomic sequencing combined with hearing screening. CONCLUSIONS AND RELEVANCE This study suggests that expanded genomic sequencing combined with hearing screening may be effective at detecting hearing loss among patients in the neonatal intensive care unit.
Collapse
Affiliation(s)
- Yunqian Zhu
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Liyuan Hu
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Laishuan Wang
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Tiantian Xiao
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Zhengmin Xu
- Department of Otolaryngology–Head and Neck Surgery, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wenhao Zhou
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
5
|
Cai L, Liu Y, Xu Y, Yang H, Lv L, Li Y, Chen Q, Lin X, Yang Y, Hu G, Zheng G, Zhou J, Qian Q, Xu MA, Fang J, Ding J, Chen W, Gao J. Multi-Center in-Depth Screening of Neonatal Deafness Genes: Zhejiang, China. Front Genet 2021; 12:637096. [PMID: 34276761 PMCID: PMC8282931 DOI: 10.3389/fgene.2021.637096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose The conventional genetic screening for deafness involves 9-20 variants from four genes. This study expands screening to analyze the mutation types and frequency of hereditary deafness genes in Zhejiang, China, and explore the significance of in-depth deafness genetic screening in newborns. Methods This was a multi-centre study conducted in 5,120 newborns from 12 major hospitals in the East-West (including mountains and islands) of Zhejiang Province. Concurrent hearing and genetic screening was performed. For genetic testing, 159 variants of 22 genes were screened, including CDH23, COL11A1, DFNA5, DFNB59, DSPP, GJB2, GJB3, KCNJ10, MT-RNR1, MT-TL1, MT-TS1, MYO15A, MYO7A, OTOF, PCDH15, SLC26A4, SOX10, TCOF1, TMC1, USH1G, WFS1, and WHRN using next-generation sequencing. Newborns who failed to have genetic mutations or hearing screening were diagnosed audiologically at the age of 6 months. Results A total of 4,893 newborns (95.57%) have passed the initial hearing screening, and 7 (0.14%) have failed in repeated screening. Of these, 446 (8.71%) newborns carried at least one genetic deafness-associated variant. High-risk pathogenic variants were found in 11 newborns (0.21%) (nine homozygotes and two compound heterozygotes), and eight of these infants have passed the hearing screening. The frequency of mutations in GJB2, GJB3, SLC26A4, 12SrRNA, and TMC1 was 5.43%, 0.59%, 1.91%, 0.98%, and 0.02%, respectively. The positive rate of in-depth screening was significantly increased when compared with 20 variants in four genes of traditional testing, wherein GJB2 was increased by 97.2%, SLC26A4 by 21% and MT-RNR1 by 150%. The most common mutation variants were GJB2c.235delC and SLC26A4c.919-2A > G, followed by GJB2c.299_300delAT. Homoplasmic mutation in MT-RNR1 was the most common, including m.1555A > G, m.961T > C, m.1095T > C. All these infants have passed routine hearing screening. The positive rate of MT-RNR1 mutation was significantly higher in newborns with high-risk factors of maternal pregnancy. Conclusion The positive rate of deafness gene mutations in the Zhejiang region is higher than that of the database, mainly in GJB2c.235delC, SLC26A4 c.919-2A > G, and m.1555A > G variants. The expanded genetic screening in the detection rate of diseasecausing variants was significantly improved. It is helpful in identifying high-risk children for follow-up intervention.
Collapse
Affiliation(s)
- Luhang Cai
- Department of Otorhinolaryngology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Yang
- Department of Otorhinolaryngology, Jiangshan People's Hospital, Quzhou, China
| | - Lihui Lv
- Department of Otorhinolaryngology, Fenghua People's Hospital, Ningbo, China
| | - Yang Li
- Department of Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiongqiong Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojiang Lin
- Department of Otorhinolaryngology, Kaihua People's Hospital, Quzhou, China
| | - Yihui Yang
- Department of Otorhinolaryngology, Ningbo Women and Children's Hospital, Ningbo, China
| | - Guangwei Hu
- Department of Otorhinolaryngology, Zhoushan Hospital, Zhoushan, China
| | - Guofeng Zheng
- Department of Otorhinolaryngology, Shaoxing Second Hospital, Shaoxing, China
| | - Jing Zhou
- Department of Otorhinolaryngology, Ruian People's Hospital, Wenzhou, China
| | - Qiyong Qian
- Department of Otorhinolaryngology, Shengzhou People's Hospital, Shaoxing, China
| | - Mei-Ai Xu
- Department of Otorhinolaryngology, Sanmen People's Hospital, Taizhou, China
| | - Jin Fang
- Department of Otorhinolaryngology, Zhejiang Xin'an International Hospital, Jiaxing, China
| | - Jianjun Ding
- Department of Otorhinolaryngology, Linhai First People's Hospital, Taizhou, China
| | - Wei Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiong Gao
- Beijing Genomics Institute, Shenzhen, China
| |
Collapse
|
6
|
Satterfield-Nash A, Umrigar A, Lanzieri TM. Etiology of Prelingual Hearing Loss in the Universal Newborn Hearing Screening Era: A Scoping Review. Otolaryngol Head Neck Surg 2020; 163:662-670. [PMID: 32423335 PMCID: PMC7541667 DOI: 10.1177/0194599820921870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/26/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To conduct a scoping review on etiologic investigation of prelingual hearing loss among children <2 years of age in the era of universal newborn hearing screening (UNHS). DATA SOURCES PubMed, Embase, PsycInfo, CINAHL, and Cochrane Library databases. REVIEW METHODS We searched for articles published from January 1, 1998, to February 19, 2020. We reviewed studies that (1) included children identified with either congenital or delayed-onset hearing loss before 2 years of age among cohorts who had undergone UNHS and (2) investigated ≥1 etiologies of hearing loss. We defined hearing loss as congenital when confirmed after UNHS failure and as delayed onset when diagnosed after ≥1 assessments with normal hearing. RESULTS Among 2069 unique citations, 115 studies met criteria for full-text assessment, and 20 met our inclusion criteria. Six studies tested children diagnosed with hearing loss for genetic etiology, 9 for congenital cytomegalovirus (CMV) infection, and 5 for both. Among 1787 children with congenital hearing loss and etiologic investigation, 933 (52.2%) were tested for genetic mutations and 1021 (57.1%) for congenital CMV infection. The proportion of congenital hearing loss cases attributable to genetic etiology ranged between 7.7% and 83.3% and to congenital CMV infection between 0.0% and 32.0%. CONCLUSION Data are lacking on the identification and etiology of delayed-onset hearing loss in children <2 years of age in the UNHS era. The proportion of congenital hearing loss cases attributable to genetic etiologies and congenital CMV infection appears to vary widely.
Collapse
Affiliation(s)
| | - Ayesha Umrigar
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Tatiana M. Lanzieri
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Dai P, Huang LH, Wang GJ, Gao X, Qu CY, Chen XW, Ma FR, Zhang J, Xing WL, Xi SY, Ma BR, Pan Y, Cheng XH, Duan H, Yuan YY, Zhao LP, Chang L, Gao RZ, Liu HH, Zhang W, Huang SS, Kang DY, Liang W, Zhang K, Jiang H, Guo YL, Zhou Y, Zhang WX, Lyu F, Jin YN, Zhou Z, Lu HL, Zhang X, Liu P, Ke J, Hao JS, Huang HM, Jiang D, Ni X, Long M, Zhang L, Qiao J, Morton CC, Liu XZ, Cheng J, Han DM. Concurrent Hearing and Genetic Screening of 180,469 Neonates with Follow-up in Beijing, China. Am J Hum Genet 2019; 105:803-812. [PMID: 31564438 PMCID: PMC6817518 DOI: 10.1016/j.ajhg.2019.09.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/04/2019] [Indexed: 02/05/2023] Open
Abstract
Concurrent hearing and genetic screening of newborns is expected to play important roles not only in early detection and diagnosis of congenital deafness, which triggers intervention, but also in predicting late-onset and progressive hearing loss and identifying individuals who are at risk of drug-induced HL. Concurrent hearing and genetic screening in the whole newborn population in Beijing was launched in January 2012. This study included 180,469 infants born in Beijing between April 2013 and March 2014, with last follow-up on February 24, 2018. Hearing screening was performed using transiently evoked otoacoustic emission (TEOAE) and automated auditory brainstem response (AABR). For genetic testing, dried blood spots were collected and nine variants in four genes, GJB2, SLC26A4, mtDNA 12S rRNA, and GJB3, were screened using a DNA microarray platform. Of the 180,469 infants, 1,915 (1.061%) were referred bilaterally or unilaterally for hearing screening; 8,136 (4.508%) were positive for genetic screening (heterozygote, homozygote, or compound heterozygote and mtDNA homoplasmy or heteroplasmy), among whom 7,896 (4.375%) passed hearing screening. Forty (0.022%) infants carried two variants in GJB2 or SLC26A4 (homozygote or compound heterozygote) and 10 of those infants passed newborn hearing screening. In total, 409 (0.227%) infants carried the mtDNA 12S rRNA variant (m.1555A>G or m.1494C>T), and 405 of them passed newborn hearing screening. In this cohort study, 25% of infants with pathogenic combinations of GJB2 or SLC26A4 variants and 99% of infants with an m.1555A>G or m.1494C>T variant passed routine newborn hearing screening, indicating that concurrent screening provides a more comprehensive approach for management of congenital deafness and prevention of ototoxicity.
Collapse
Affiliation(s)
- Pu Dai
- Department of Otolaryngology Head and Neck Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, P. R. China
| | - Li-Hui Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, P. R. China; Beijing Institute of Otolaryngology, Beijing, 100005, P. R. China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, 100005, P. R. China
| | - Guo-Jian Wang
- Department of Otolaryngology Head and Neck Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, P. R. China
| | - Xue Gao
- Department of Otolaryngology Head and Neck Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, P. R. China
| | - Chun-Yan Qu
- China Rehabilitation Research Center for Hearing and Speech Impairment, A8, Huixinli, Anwai, Chaoyang District, Beijing, 100029, P. R. China
| | - Xiao-Wei Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Peking Union Medical College Hospital, Beijing, 100730, P. R. China
| | - Fu-Rong Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Jie Zhang
- Beijing Children's Hospital, Capital Medical University, National Center of Children's Health, Beijing, 100045, P. R. China
| | - Wan-Li Xing
- Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, 100084, P. R. China
| | - Shu-Yan Xi
- Beijing Municipal Health Commission, Beijing, 100053, P. R. China
| | - Bin-Rong Ma
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, P. R. China
| | - Ying Pan
- Department of MCH, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, P. R. China
| | - Xiao-Hua Cheng
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, P. R. China; Beijing Institute of Otolaryngology, Beijing, 100005, P. R. China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, 100005, P. R. China
| | - Hong Duan
- Department of Otolaryngology Head and Neck Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, P. R. China
| | - Yong-Yi Yuan
- Department of Otolaryngology Head and Neck Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, P. R. China
| | - Li-Ping Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, P. R. China; Beijing Institute of Otolaryngology, Beijing, 100005, P. R. China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, 100005, P. R. China
| | - Liang Chang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, P. R. China
| | - Ru-Zhen Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Peking Union Medical College Hospital, Beijing, 100730, P. R. China
| | - Hai-Hong Liu
- Beijing Children's Hospital, Capital Medical University, National Center of Children's Health, Beijing, 100045, P. R. China
| | - Wei Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, P. R. China; Beijing Institute of Otolaryngology, Beijing, 100005, P. R. China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, 100005, P. R. China
| | - Sha-Sha Huang
- Department of Otolaryngology Head and Neck Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, P. R. China
| | - Dong-Yang Kang
- Department of Otolaryngology Head and Neck Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, P. R. China
| | - Wei Liang
- China Rehabilitation Research Center for Hearing and Speech Impairment, A8, Huixinli, Anwai, Chaoyang District, Beijing, 100029, P. R. China
| | - Ke Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Hong Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Peking Union Medical College Hospital, Beijing, 100730, P. R. China
| | - Yong-Li Guo
- Beijing Children's Hospital, Capital Medical University, National Center of Children's Health, Beijing, 100045, P. R. China
| | - Yi Zhou
- Beijing Children's Hospital, Capital Medical University, National Center of Children's Health, Beijing, 100045, P. R. China
| | - Wan-Xia Zhang
- Department of MCH, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, P. R. China
| | - Fan Lyu
- Beijing Municipal Health Commission, Beijing, 100053, P. R. China
| | - Ying-Nan Jin
- Beijing Municipal Health Commission, Beijing, 100053, P. R. China
| | - Zhen Zhou
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, P. R. China
| | - Hong-Li Lu
- CapitalBio Corporation & National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, P. R. China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, P. R. China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, P. R. China
| | - Jia Ke
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Jin-Sheng Hao
- Beijing Children's Hospital, Capital Medical University, National Center of Children's Health, Beijing, 100045, P. R. China
| | - Hai-Meng Huang
- CapitalBio Corporation & National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, P. R. China
| | - Di Jiang
- CapitalBio Corporation & National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, P. R. China
| | - Xin Ni
- Beijing Children's Hospital, Capital Medical University, National Center of Children's Health, Beijing, 100045, P. R. China
| | - Mo Long
- China Rehabilitation Research Center for Hearing and Speech Impairment, A8, Huixinli, Anwai, Chaoyang District, Beijing, 100029, P. R. China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, P. R. China; Beijing Institute of Otolaryngology, Beijing, 100005, P. R. China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, 100005, P. R. China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, P. R. China
| | - Cynthia Casson Morton
- Department of Obstetrics and Gynecology and of Pathology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Manchester Center for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Xue-Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jing Cheng
- Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, 100084, P. R. China; Center for Precision Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| | - De-Min Han
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, P. R. China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, 100005, P. R. China.
| |
Collapse
|
8
|
Landry LG, Rehm HL. Association of Racial/Ethnic Categories With the Ability of Genetic Tests to Detect a Cause of Cardiomyopathy. JAMA Cardiol 2019; 3:341-345. [PMID: 29490334 DOI: 10.1001/jamacardio.2017.5333] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Individuals of all races/ethnicities have a fundamental right to access health care and benefit from advances in science and medicine, including genetic testing. Objective To determine whether detection rates for cardiomyopathy genetic testing differed between white people, Asian people, and underrepresented minorities (individuals of black, Hispanic, Native American, Alaskan Native, or Pacific Islander descent). Design, Setting, and Participants We conducted a cross-sectional analysis of the genetic panel test results of 5729 probands who had a suspected diagnosis or family history of cardiomyopathy and who had been referred for testing between October 2003 and December 2017. Testing was performed at the Laboratory for Molecular Medicine at Partners Personalized Medicine in Cambridge, Massachusetts. Results were stratified into 3 categories of self-reported race/ethnicity: white, Asian, and underrepresented minorities. Main Outcomes and Measures The primary outcome was whether a pathogenic or likely pathogenic variant was identified that explained the features or family history of cardiomyopathy. A secondary outcome was the number of test results that were inconclusive because of the presence of 1 or more variants of uncertain significance in the absence of an explanation for cardiomyopathy features or family history. Results A total of 5729 probands were studied (of whom 3523 [61.5%] were male). Of these, 4539 (79.2%) were white, 348 (6.1%) were Asian individuals, and 842 (14.7%) were underrepresented minorities. Positive detection occurred in 1314 white individuals (29.0%) compared with 155 underrepresented minorities (18.4%; χ21 = 39.8; P < .001) and 87 Asian individuals (25.0%; χ21 = 2.5; P = .12). Inconclusive results were found in 1115 white individuals (24.6%) compared with 335 underrepresented minorities (39.8%; χ21 = 83.6; P < .001) and 136 Asian individuals (39.2%; χ21 = 35.8; P < .001). Conclusions and Relevance These results show a significantly higher positive detection rate and a significantly lower rate of inconclusive results in white individuals in comparison with underrepresented minorities. This suggests greater clinical usefulness of genetic testing for cardiomyopathy in white persons in comparison with people of other racial/ethnic groups. This clear disparity warrants further study to understand the gaps in usefulness, which may derive from a lack of clinical testing and research in underrepresented minority populations, in the hopes of improving genetic testing outcomes for cardiomyopathy in nonwhite groups.
Collapse
Affiliation(s)
- Latrice G Landry
- US Food and Drug Administration, Silver Spring, Maryland.,Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Heidi L Rehm
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
9
|
D'Aguillo C, Bressler S, Yan D, Mittal R, Fifer R, Blanton SH, Liu X. Genetic screening as an adjunct to universal newborn hearing screening: literature review and implications for non-congenital pre-lingual hearing loss. Int J Audiol 2019; 58:834-850. [PMID: 31264897 DOI: 10.1080/14992027.2019.1632499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Universal newborn hearing screening (UNHS) uses otoacoustic emissions testing (OAE) and auditory brainstem response testing (ABR) to screen all newborn infants for hearing loss (HL), but may not identify infants with mild HL at birth or delayed onset HL. The purpose of this review is to examine the role of genetic screening to diagnose children with pre-lingual HL that is not detected at birth by determining the rate of children who pass UNHS but have a positive genetic screening. This includes a summary of the current UNHS and its limitations and a review of genetic mutations and screening technologies used to detect patients with an increased risk of undiagnosed pre-lingual HL.Design: Literature review of studies that compare UNHS with concurrent genetic screening.Study sample: Infants and children with HLResults: Sixteen studies were included encompassing 137,895 infants. Pathogenic mutations were detected in 8.66% of patients. In total, 545 patients passed the UNHS but had a positive genetic screening. The average percentage of patients who passed UNHS but had a positive genetic screening was 1.4%.Conclusions: This review demonstrates the positive impact of concurrent genetic screening with UNHS to identify patients with pre-lingual HL.
Collapse
Affiliation(s)
- Christine D'Aguillo
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sara Bressler
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert Fifer
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Human Genetics, Dr. John T. Macdonald Foundation, Miami, FL, USA.,John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Human Genetics, Dr. John T. Macdonald Foundation, Miami, FL, USA.,John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Tsinghua University School of Medicine, Beijing, PR China
| |
Collapse
|
10
|
Wasant P, Padilla C, Lam S, Thong MK, Lai PS. Asia Pacific Society of Human Genetics (APSHG) from conception to 2019: 13 years of collaboration to tackle congenital malformation and genetic disorders in Asia. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:155-165. [PMID: 31050142 DOI: 10.1002/ajmg.c.31701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022]
Abstract
Putting together the reports in this issue that come from a representation of the different countries in Asia presents an opportunity to share the unique story of the Asia Pacific Society of Human Genetics (APSHG), which has provided the authors of many of these articles. This paper, authored by the Past Presidents of the Society, shares glimpses of how medical genetics activities were first organized in the Asia Pacific region and provides interesting corollaries on how under-developed and developing countries in this part of the world had developed a unique network for exchange and sharing of expertise and resources. Although APSHG was formally registered as a Society in Singapore in 2006, the Society has its origins as far back as in the 1990s with members from different countries meeting informally, exchanging ideas, and collaborating. This treatise documents the story of the experiences of the Society and hopes it will provide inspiration on how members of a genetics community can foster and build a thriving environment to promote this field.
Collapse
Affiliation(s)
- Pornswan Wasant
- Advisory, Siriraj Hospital Faculty of Medicine, Mahidol University, Bangkok, Thailand.,Division of Medical Genetics, Department of Pediatrics, Siriraj Hospital Faculty of Medicine, Mahidol University, Bangkok, Thailand
| | - Carmencita Padilla
- Department of Pediatrics, College of Medicine and Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila, Philippines
| | - Stephen Lam
- Clinical Genetics Service, Hong Kong Sanatorium and Hospital, HKSH Medical Group, Hong Kong, China
| | - Meow-Keong Thong
- Genetic Medicine Unit, Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Poh-San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
11
|
Abdul Majid AH, Zakaria MN, Abdullah NAC, Hamzah S, Mukari SZMS. Determinants of caregivers' awareness of Universal Newborn Hearing Screening in Malaysia. Int J Pediatr Otorhinolaryngol 2017; 101:107-111. [PMID: 28964278 DOI: 10.1016/j.ijporl.2017.07.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This paper aims to investigate the effects of perceived attitude and anxiety on awareness of UNHS among caregivers in Malaysia. METHODS Using cross sectional research approach, data were collected and some 46 out of 87 questionnaires distributed to caregivers attending UNHS programs at selected public hospitals were usable for analysis (response rate of 52.8%). Partial Least Squares Method (PLS) algorithm and bootstrapping technique were employed to test the hypotheses of the study. RESULTS R square value is 0.205, and it implies that exogenous latent variables explained 21% of the variance of the endogenous latent variable. This value indicates moderate and acceptable level of R-squared values. Findings from PLS structural model evaluation revealed that anxiety has no significant influence (β = -0.091, t = 0.753, p > 0.10) on caregivers' awareness; but perceived attitude has significant effect (β = -0.444, t = 3.434, p < 0.01) on caregivers' awareness. CONCLUSION Caregivers' awareness of UNHS is influenced by their perceived attitude while anxiety is not associated with caregivers' awareness. This implies that caregivers may not believe in early detection of hearing impairment in children, thinking that their babies are too young to be tested for hearing loss. Moreover, socio-economic situation of the caregivers may have contributed to their failure to honor UNHS screening appointments as some of them may need to work to earn a living while some may perceive it a waste of time honoring such appointments. Non-significant relationship between anxiety and caregivers' awareness may be due to religious beliefs of caregivers. Limitations and suggestions were discussed.
Collapse
Affiliation(s)
| | - Mohd Normani Zakaria
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | - Sulaiman Hamzah
- Department of Otorhinology, Hospital Raja Permaisuri Bainun, Ipoh, Perak, Malaysia
| | | |
Collapse
|
12
|
Friedman JM, Cornel MC, Goldenberg AJ, Lister KJ, Sénécal K, Vears DF. Genomic newborn screening: public health policy considerations and recommendations. BMC Med Genomics 2017; 10:9. [PMID: 28222731 PMCID: PMC5320805 DOI: 10.1186/s12920-017-0247-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/14/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The use of genome-wide (whole genome or exome) sequencing for population-based newborn screening presents an opportunity to detect and treat or prevent many more serious early-onset health conditions than is possible today. METHODS The Paediatric Task Team of the Global Alliance for Genomics and Health's Regulatory and Ethics Working Group reviewed current understanding and concerns regarding the use of genomic technologies for population-based newborn screening and developed, by consensus, eight recommendations for clinicians, clinical laboratory scientists, and policy makers. RESULTS Before genome-wide sequencing can be implemented in newborn screening programs, its clinical utility and cost-effectiveness must be demonstrated, and the ability to distinguish disease-causing and benign variants of all genes screened must be established. In addition, each jurisdiction needs to resolve ethical and policy issues regarding the disclosure of incidental or secondary findings to families and ownership, appropriate storage and sharing of genomic data. CONCLUSION The best interests of children should be the basis for all decisions regarding the implementation of genomic newborn screening.
Collapse
Affiliation(s)
- Jan M. Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Child & Family Research Institute, Vancouver, Canada
| | - Martina C. Cornel
- Section Clinical Genetics, Department of Clinical Genetics, VU University Medical Center, Amsterdam, Holland
- EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, Holland
| | - Aaron J. Goldenberg
- The Center for Genetic Research Ethics and Law, Department of Bioethics, Case Western Reserve University, Cleveland, OH USA
| | - Karla J. Lister
- Office of Population Health Genomics, Public Health Division, Department of Health, Government of Western Australia, Perth, Australia
| | - Karine Sénécal
- Centre of Genomics and Policy, Department of Human Genetics, McGill University, Montreal, Canada
| | - Danya F. Vears
- Centre for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Yan D, Tekin D, Bademci G, Foster J, Cengiz FB, Kannan-Sundhari A, Guo S, Mittal R, Zou B, Grati M, Kabahuma RI, Kameswaran M, Lasisi TJ, Adedeji WA, Lasisi AO, Menendez I, Herrera M, Carranza C, Maroofian R, Crosby AH, Bensaid M, Masmoudi S, Behnam M, Mojarrad M, Feng Y, Duman D, Mawla AM, Nord AS, Blanton SH, Liu XZ, Tekin M. Spectrum of DNA variants for non-syndromic deafness in a large cohort from multiple continents. Hum Genet 2016; 135:953-61. [PMID: 27344577 PMCID: PMC5497215 DOI: 10.1007/s00439-016-1697-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/11/2016] [Indexed: 12/21/2022]
Abstract
Hearing loss is the most common sensory deficit in humans with causative variants in over 140 genes. With few exceptions, however, the population-specific distribution for many of the identified variants/genes is unclear. Until recently, the extensive genetic and clinical heterogeneity of deafness precluded comprehensive genetic analysis. Here, using a custom capture panel (MiamiOtoGenes), we undertook a targeted sequencing of 180 genes in a multi-ethnic cohort of 342 GJB2 mutation-negative deaf probands from South Africa, Nigeria, Tunisia, Turkey, Iran, India, Guatemala, and the United States (South Florida). We detected causative DNA variants in 25 % of multiplex and 7 % of simplex families. The detection rate varied between 0 and 57 % based on ethnicity, with Guatemala and Iran at the lower and higher end of the spectrum, respectively. We detected causative variants within 27 genes without predominant recurring pathogenic variants. The most commonly implicated genes include MYO15A, SLC26A4, USH2A, MYO7A, MYO6, and TRIOBP. Overall, our study highlights the importance of family history and generation of databases for multiple ethnically discrete populations to improve our ability to detect and accurately interpret genetic variants for pathogenicity.
Collapse
Affiliation(s)
- Denise Yan
- Department of Otolaryngology (D-48), University of Miami Miller School of Medicine, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Demet Tekin
- Department of Otolaryngology (D-48), University of Miami Miller School of Medicine, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Guney Bademci
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA
| | - Joseph Foster
- Department of Otolaryngology (D-48), University of Miami Miller School of Medicine, 1666 NW 12th Avenue, Miami, FL, 33136, USA
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA
| | - F Basak Cengiz
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA
| | - Abhiraami Kannan-Sundhari
- Department of Otolaryngology (D-48), University of Miami Miller School of Medicine, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Shengru Guo
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA
| | - Rahul Mittal
- Department of Otolaryngology (D-48), University of Miami Miller School of Medicine, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Bing Zou
- Department of Otolaryngology (D-48), University of Miami Miller School of Medicine, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Mhamed Grati
- Department of Otolaryngology (D-48), University of Miami Miller School of Medicine, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Rosemary I Kabahuma
- Department of Otorhinolaryngology, Steve Biko Academic Hospital, University of Pretoria, Cnr Malan and Steve Biko Road, Gezina, Pretoria, South Africa
| | - Mohan Kameswaran
- Madras ENT Research Foundation (MERF), No-1, 1st Cross Street, Off. II Main Road, Raja Annamalai Puram, Chennai, 600028, Tamil Nadu, India
| | - Taye J Lasisi
- Department of Otorhinolaryngology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Waheed A Adedeji
- Department of Otorhinolaryngology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Akeem O Lasisi
- Department of Otorhinolaryngology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ibis Menendez
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA
| | - Marianna Herrera
- Institute for Research on Genetic and Metabolic Diseases, INVEGEM, Guatemala City, Guatemala
| | - Claudia Carranza
- Institute for Research on Genetic and Metabolic Diseases, INVEGEM, Guatemala City, Guatemala
| | - Reza Maroofian
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Wellcome Wolfson Centre, Exeter, UK
| | - Andrew H Crosby
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Wellcome Wolfson Centre, Exeter, UK
| | - Mariem Bensaid
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Saber Masmoudi
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | | | - Majid Mojarrad
- Department of Medical Genetics, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Duygu Duman
- Division of Genetics, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Alex M Mawla
- Department of Neurobiology, Physiology, and Behavior, Center for Neuroscience, UC Davis, Davis, CA, 95616, USA
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, UC Davis, Davis, CA, 95616, USA
| | - Alex S Nord
- Department of Neurobiology, Physiology, and Behavior, Center for Neuroscience, UC Davis, Davis, CA, 95616, USA
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, UC Davis, Davis, CA, 95616, USA
| | - Susan H Blanton
- Department of Otolaryngology (D-48), University of Miami Miller School of Medicine, 1666 NW 12th Avenue, Miami, FL, 33136, USA
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA
- Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Xue Z Liu
- Department of Otolaryngology (D-48), University of Miami Miller School of Medicine, 1666 NW 12th Avenue, Miami, FL, 33136, USA.
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA.
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Mustafa Tekin
- Department of Otolaryngology (D-48), University of Miami Miller School of Medicine, 1666 NW 12th Avenue, Miami, FL, 33136, USA.
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA.
- Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|