1
|
Liu S, Hu X, Zhang J, Lv L, He Y, Jiang L, Qin G. Bibliometric analysis of T cells in allergic rhinitis. Heliyon 2024; 10:e32756. [PMID: 38975117 PMCID: PMC11226833 DOI: 10.1016/j.heliyon.2024.e32756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
By reviewing the relevant literature in the field of T cell and allergic rhinitis, we determined the development status, study hotspots, and research frontiers viewpoints of this field to provide a reference for researchers and clinical workers. METHODS Web of Science Core Collection (WoSCC) was applied to obtain the studies related to T cells and allergic rhinitis (AR) from 2003 to 2023, and the information extracted from these studies was analyzed using CiteSpace 6.1. R6 and VOSviewer 1.6.18. RESULTS In total, 1585 articles were collected from WoSCC, with the time set between 2003 and 2023. Overall, a growing number of articles are being published annually. The countries and institutions with the maximum publications volume are China (370, 23.34 %) and Sun Yat-sen University (34, 2.15 %). The biggest contributor to the field was Durham, Stephen R. from the UK (22, 1.39 %). The Journal of Allergy and Clinical Immunology published the most related papers in the field (88, 5.54 %). Immunotherapy, Th cells, and inflammation were found to be the research hotspots in this area of T cells and allergic rhinitis in recent years. Pathway, model, Regulatory T cells (Treg cells), regulatory B cells, immunoglobulin E,and innate lymphoid cells were the current research hotspots in this field. CONCLUSION The field of T cell and allergic rhinitis is developing rapidly, and many countries significantly contributed to this field. Most researchers in this field mainly focused on immunotherapy, Th cell, and inflammation. Pathway, model, Treg cell, regulatory B cell, immunoglobulin E,and innate lymphoid cells were the main subject of current research, and future development is expected to occur in this field.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital of Deyang City, Sichuan, Deyang, 618000, People's Republic of China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Xiaoyan Hu
- Department of Pathogen Biology, School of Basic Medicine, Southwest Medical University, Luzhou, 646000, People's Republic of China
- Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Jing Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Liangge Lv
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yuxiao He
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Liang Jiang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| |
Collapse
|
2
|
Lee DF, Everest DJ, Cooley W, Chambers MA. Investigation of nasal epithelial cells as a surrogate for bronchial epithelial cells in the research of equine asthma. PLoS One 2023; 18:e0293956. [PMID: 37943759 PMCID: PMC10635438 DOI: 10.1371/journal.pone.0293956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Equine asthma, previously known as Recurrent Airway Obstruction (RAO) or Inflammatory Airway Disease (IAD), is an often-debilitating condition that may severely affect both performance and quality of life. Research is hindered by the low sample numbers of subjects recruited to studies, a consequence in part of the invasive nature of the sampling methods of bronchial brushing and biopsy. We present an alternative method of sampling equine airway epithelial cells, the 'nasal brush method' (NBM). Obtained by light brushing of the ventral meatus whilst the horse is under standing sedation, these cells express the same markers of differentiation as their deeper counterparts. Grown as 3-D spheroids or as air-liquid interface cultures, nasal epithelial cells are responsive to the inflammatory cytokine interleukin-13. This may be attenuated by modulation of the Notch signalling pathway using the gamma-secretase inhibitor Semagecestat; a previously unreported finding that cements the link between equine and human asthma research and strengthens the case for a One Health approach in researching asthma pathophysiology and therapeutic intervention.
Collapse
Affiliation(s)
- Diane Frances Lee
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - William Cooley
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Mark Andrew Chambers
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
3
|
Zhong Z, Huang X, Zhang S, Zheng S, Cheng X, Li R, Wu D, Mo L, Qu S. Blocking Notch signalling reverses miR-155-mediated inflammation in allergic rhinitis. Int Immunopharmacol 2023; 116:109832. [PMID: 36764280 DOI: 10.1016/j.intimp.2023.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Although recent studies have shown that the Notch signalling pathway induces the production of Th2-related immune factors, the exact mechanism through which Notch signalling exacerbates allergic rhinitis (AR) remains unknown. To investigate the roles of Notch in AR, serum, nasal mucosa and spleen samples were isolated from BALB/c mice. Paraffin sections were stained with haematoxylin and eosin (H&E) or periodic acid-Schiff (PAS) to assess inflammation. Flow cytometry was performed to detect group 2 innate lymphoid cells (ILC2s) in the serum samples, and cytokine levels were measured by enzyme-linked immunosorbent assays (ELISAs). The mRNA expression levels of the Notch signalling pathway components and miR-155 were measured by quantitative real-time PCR (qRT-PCR). In addition, human nasal epithelial cells (HNEpCs) were cultured to investigate the functional consequences of Notch pathway inhibition. The findings demonstrated that symptomatology and pathology were substantially altered, and AR model mice were established. In vivo stimulation with ovalbumin (OVA) significantly increased the Th2-type immune responses and the expression of OVA-sIgE, IL-4, GATA3, NF-κB and miR-155. However, the Notch signalling pathway was significantly deteriorated in AR, and this effect was accompanied by reduced Notch1, Notch2, RBPj and Hes1 levels. These effects were abrogated by gamma-secretase inhibitor IX (DAPT) treatment, and DAPT inhibited the wound healing and proliferation of HNEpCs in a dose-dependent manner. Therefore, our results suggest that blocking the Notch pathway may alleviate miR-155-mediated inflammation via the regulation of immune homeostasis in AR.
Collapse
Affiliation(s)
- Ziling Zhong
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China; Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xueying Huang
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China
| | - Shaojie Zhang
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China
| | - Shaochuan Zheng
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China; Youjiang Medical University for Nationalities, Baize, Guangxi, China
| | - Xiqiao Cheng
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China; Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Rongrong Li
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China
| | - Di Wu
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China; Youjiang Medical University for Nationalities, Baize, Guangxi, China
| | - Liping Mo
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China
| | - Shenhong Qu
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Aquila G, Alaimo A, Marracino L, Martino V, Camponogara F, Vieceli Dalla Sega F, Fortini F, Pannuti A, Zanotti C, Malagutti N, Pelucchi S, Rizzo P. Characterization of the Notch pathway in nasal polyps of patients with chronic rhinosinusitis: A pilot study. Physiol Rep 2022; 10:e15403. [PMID: 36029197 PMCID: PMC9419157 DOI: 10.14814/phy2.15403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps is a widespread pathology characterized by persistent inflammation of nasal and paranasal mucosa. Although it represents one of the most frequent diseases of the nasal cavities, its etiology is still not completely elucidated. There is evidence suggesting that the Notch signaling, a highly conserved intercellular pathway known to regulate many cellular processes, including inflammation, is implicated in nasal polyps formation. The purpose of this study was to investigate the expression of genes of the Notch pathway in nasal polyps from patients with chronic rhinosinusitis. Nasal polyps and adjacent mucosa tissue were obtained from 10 patients. RNA was analyzed by quantitative reverse transcriptase-polymerase chain reaction for the expression level of (1) Notch pathway components such as receptors (NOTCH1-4), ligands (DLL4, JAGGED-1), and target genes (HEY1, 2, and HES1) and (2) genes providing information on the pathogenesis of polyposis (C-MYC and SCGB1A1) and on eosinophils content (CCL26, IL5, and SAA2). We report a Notch-driven gene expression pattern in nasal polyps which correlates with the expression of genes highly expressed in eosinophils, whose presence is an important parameter to define the pathophysiologic diversity characterizing nasal polyps. Taken together, our results suggest a role for Notch signaling in the pathophysiology of polyposis. Further studies are needed to elucidate the role of Notch in nasal polyps formation and to establish whether it could represent a novel therapeutic target for this pathology.
Collapse
Affiliation(s)
- Giorgio Aquila
- Department of Medical SciencesUniversity of FerraraFerraraItaly
| | - Alessandra Alaimo
- Department of Ear, Nose and ThroatUniversity Hospital of FerraraFerraraItaly
| | - Luisa Marracino
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| | - Valeria Martino
- Department of Medical SciencesUniversity of FerraraFerraraItaly
| | - Francesca Camponogara
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| | - Francesco Vieceli Dalla Sega
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| | - Francesca Fortini
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| | - Antonio Pannuti
- University of Hawaii Cancer Center, University of HawaiiHonoluluHawaiiUSA
| | - Claudia Zanotti
- Department of Neuroscience DNS, Section of OtolaryngologyUniversity of PadovaPadovaItaly
| | - Nicola Malagutti
- Department of Ear, Nose and ThroatUniversity Hospital of FerraraFerraraItaly
| | - Stefano Pelucchi
- Department of Ear, Nose and ThroatUniversity Hospital of FerraraFerraraItaly
| | - Paola Rizzo
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| |
Collapse
|
5
|
Chen L, Shi L, Ma Y, Zheng C. Hub Genes Identification in a Murine Model of Allergic Rhinitis Based on Bioinformatics Analysis. Front Genet 2020; 11:970. [PMID: 33193578 PMCID: PMC7477359 DOI: 10.3389/fgene.2020.00970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
This study aimed to identify allergic rhinitis (AR)-related hub genes and functionally enriched pathways in a murine model. Dataset GSE52804 (including three normal controls and three AR mice) was downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) analyses of DEGs were performed to identify the hub genes in AR. The DEGs were classified into different modules by using the weighted gene co-expression network analysis (WGCNA). Moreover, to verify the potential hub genes, nasal mucosa tissues were obtained from murine AR models (n = 5) and controls (n = 5), and qRT-PCR and Western blot were performed. In this study, a total of 634 DEGs were identified. They were significantly enriched in 14 GO terms, such as integral component of membrane, plasma membrane, and G-protein-coupled receptor signaling pathway. Meanwhile, there were eight terms of KEGG pathways significantly enriched, such as Olfactory transduction, Cytokine-cytokine receptor interaction, and TNF signaling pathway. The top 10 hub genes (Rtp1, Rps27a, Penk, Cxcl2, Gng8, Gng3, Cxcl1, Cxcr2, Ccl9, and Anxa1) were identified by the PPI network. DEGs were classified into seven modules by WGCNA. According to qRT-PCR validation of the five genes of interest (Rtp1, Rps27a, Penk, Cxcl2, and Anxa1), the expression level of Rtp1 mRNA was significantly decreased in the AR group compared with the control group, while there are enhanced Rps27a, Penk, Cxcl2, and Anxa1 mRNA expressions in the AR mice group compared with the control group. Western blot was also performed to further explore the expression of Anxa1 in the protein level, and the results showed a similar expression trend.
Collapse
Affiliation(s)
- Le Chen
- Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Le Shi
- Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Yue Ma
- Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Chunquan Zheng
- Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Zhao C, Li J, Yang J, Yang L, Chen P, Dou J, Zhao S. Inhibitor of γ-secretase alleviates middle ear inflammation by regulating Th2 response in OVA-mediated allergic OME in vivo. Immunobiology 2019; 224:765-773. [DOI: 10.1016/j.imbio.2019.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022]
|
7
|
Webb LM, Tait Wojno ED. Notch Signaling Orchestrates Helminth-Induced Type 2 Inflammation. Trends Immunol 2019; 40:538-552. [PMID: 31103422 PMCID: PMC6545262 DOI: 10.1016/j.it.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Infection with helminth parasites poses a significant challenge to the mammalian immune system. The type 2 immune response to helminth infection is critical in limiting worm-induced tissue damage and expelling parasites. Conversely, aberrant type 2 inflammation can cause debilitating allergic disease. Recent studies have revealed that key type 2 inflammation-associated immune and epithelial cell types respond to Notch signaling, broadly regulating gene expression programs in cell development and function. Here, we discuss new advances demonstrating that Notch is active in the development, recruitment, localization, and cytokine production of immune and epithelial effector cells during type 2 inflammation. Understanding how Notch signaling controls type 2 inflammatory processes could inform the development of Notch pathway modulators to treat helminth infections and allergies.
Collapse
Affiliation(s)
- Lauren M Webb
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, New York, USA.
| |
Collapse
|
8
|
Jiao WE, Wei JF, Kong YG, Xu Y, Tao ZZ, Chen SM. Notch Signaling Promotes Development of Allergic Rhinitis by Suppressing Foxp3 Expression and Treg Cell Differentiation. Int Arch Allergy Immunol 2018; 178:33-44. [DOI: 10.1159/000493328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/28/2018] [Indexed: 11/19/2022] Open
|