1
|
Srinivasan T, Redfield S, Poorvu T, Kenna MA. Management of Prenatal Expanded Genetic Carrier Screening Results for Autosomal Recessive Sensorineural Hearing Loss. Otolaryngol Head Neck Surg 2024. [PMID: 39523564 DOI: 10.1002/ohn.1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Expanded carrier screening (ECS) identified couples at-risk to have a baby with an autosomal recessive genetic condition. Several genes implicated in sensorineural hearing loss (SNHL) are included in prenatal or preconception genetics ECS testing. Early identification of SNHL risk may enable prognostication of hearing loss, early educational intervention, and minimization of unnecessary diagnostic testing. We sought to describe cases where ECS enabled early SNHL-risk identification. STUDY DESIGN Retrospective chart review. SETTING Maternal-Fetal Care Center and Otolaryngology department at an academic tertiary hospital. METHODS Medical records of parent-infant dyads with positive ECS results for variants in autosomal recessive SNHL genes were reviewed. Data regarding genetic diagnostic testing, newborn hearing screening, time to HL diagnosis, audiological evaluation, and clinical consultations were compiled. RESULTS Fifteen pregnant with positive ECS results for SNHL were referred for consultation with a pediatric otolaryngologist and genetic counselor. Generally, these couples were highly educated and adequately insured. 14 had pathogenic variants for GJB2 and 1 for USH2A. Four couples pursued prenatal genetic diagnosis via amniocentesis; 11 couples deferred genetic testing to the postnatal period or waited for initial hearing evaluation. Six babies inherited biallelic GJB2 mutations. Four were found to have SNHL on ABR by age 5 weeks and received follow-up management, 1 had a normal hearing evaluation despite being gene-positive, and 1 was lost to follow-up before hearing evaluation. CONCLUSIONS Carrier screening and confirmatory prenatal or neonatal genetic testing provided considerable lead time for early audiometric testing and appropriate intervention services including hearing aid fitting.
Collapse
Affiliation(s)
| | - Shelby Redfield
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tabitha Poorvu
- Maternal Fetal Care Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Margaret A Kenna
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Lee NK, Uhler KM, Yoon PJ, Santos-Cortez RLP. Clinical Genetic Testing for Hearing Loss: Implications for Genetic Counseling and Gene-Based Therapies. Biomedicines 2024; 12:1427. [PMID: 39062005 PMCID: PMC11274279 DOI: 10.3390/biomedicines12071427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Genetic factors contribute significantly to congenital hearing loss, with non-syndromic cases being more prevalent and genetically heterogeneous. Currently, 150 genes have been associated with non-syndromic hearing loss, and their identification has improved our understanding of auditory physiology and potential therapeutic targets. Hearing loss gene panels offer comprehensive genetic testing for hereditary hearing loss, and advancements in sequencing technology have made genetic testing more accessible and affordable. Currently, genetic panel tests available at a relatively lower cost are offered to patients who face financial barriers. In this study, clinical and audiometric data were collected from six pediatric patients who underwent genetic panel testing. Known pathogenic variants in MYO15A, GJB2, and USH2A were most likely to be causal of hearing loss. Novel pathogenic variants in the MYO7A and TECTA genes were also identified. Variable hearing phenotypes and inheritance patterns were observed amongst individuals with different pathogenic variants. The identification of these variants contributes to the continually expanding knowledge base on genetic hearing loss and lays the groundwork for personalized treatment options in the future.
Collapse
Affiliation(s)
- Nam K. Lee
- Department of Otolaryngology—Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristin M. Uhler
- Department of Physical Medicine and Rehabilitation, Children’s Hospital Colorado, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
- Department of Pediatric Otolaryngology, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Patricia J. Yoon
- Department of Otolaryngology—Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatric Otolaryngology, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Regie Lyn P. Santos-Cortez
- Department of Otolaryngology—Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Sang S, Ling J, Liu X, Mei L, Cai X, Li T, Li W, Li M, Wen J, Liu X, Liu J, Liu Y, Chen H, He C, Feng Y. Proband Whole-Exome Sequencing Identified Genes Responsible for Autosomal Recessive Non-Syndromic Hearing Loss in 33 Chinese Nuclear Families. Front Genet 2019; 10:639. [PMID: 31379920 PMCID: PMC6650584 DOI: 10.3389/fgene.2019.00639] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/18/2019] [Indexed: 11/22/2022] Open
Abstract
Autosomal recessive non-syndromic hearing loss (ARNSHL) is a highly heterogeneous disease involving more than 70 pathogenic genes. However, most ARNSHL families have small-sized pedigrees with limited genetic information, rendering challenges for the molecular diagnosis of these patients. Therefore, we attempted to establish a strategy for identifying deleterious variants associated with ARNSHL by applying proband whole-exome sequencing (proband-WES). Aside from desiring to improve molecular diagnostic rates, we also aimed to search for novel deafness genes shared by patients with similar phenotype, making up for the deficiency of small ARNSHL families. In this study, 48.5% (16/33) families were detected the pathogenic variants in eight known deafness genes, including 10 novel variants identified in TMPRSS3 (MIM 605551), MYO15A (MIM 602666), TMC1 (MIM 606706), ADGRV1 (MIM 602851), and PTPRQ (MIM 603317). Apart from six novel variants with a truncating effect (nonsense, deletion, insertion, and splice-site), four novel missense variants were not found in 200 unrelated control population by using Sanger sequencing. It is important to note that none of novel genes were shared across different pedigrees, indicating that a larger sample size might be needed. Proband-WES is a cost-effective and precise way of identifying causative variants in nuclear families with ARNSHL. This economical strategy may be appropriated as a clinical application to provide molecular diagnostics, genetic counseling, and individualized health maintenance measures for patients with ARNSHL at hearing clinics.
Collapse
Affiliation(s)
- Shushan Sang
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Jie Ling
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Molecular Precision Medicine, Changsha, China
| | - Xuezhong Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lingyun Mei
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Xinzhang Cai
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Taoxi Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China.,Hunan Jiahui Genetics Hospital, Changsha, China
| | - Wu Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Meng Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Jie Wen
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Xianlin Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Jing Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Yalan Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Hongsheng Chen
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Chufeng He
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Otolaryngology Major Diseases Research of Hunan Province, Changsha, China.,Hunan Jiahui Genetics Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|