1
|
Kharrat M, Triki C, Ben Isaa A, Bouchaala W, Alila O, Chouchen J, Ghouliya Y, Kamoun F, Tlili A, Fakhfakh F. Expanding the genetic and phenotypic spectrum of TRAPPC9 and MID2-related neurodevelopmental disabilities: report of two novel mutations, 3D-modelling, and molecular docking studies. J Hum Genet 2024; 69:291-299. [PMID: 38467738 DOI: 10.1038/s10038-024-01242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Intellectual disabilities (ID) and autism spectrum disorders (ASD) have a variety of etiologies, including environmental and genetic factors. Our study reports a psychiatric clinical investigation and a molecular analysis using whole exome sequencing (WES) of two siblings with ID and ASD from a consanguineous family. Bioinformatic prediction and molecular docking analysis were also carried out. The two patients were diagnosed with profound intellectual disability, brain malformations such as cortical atrophy, acquired microcephaly, and autism level III. The neurological and neuropsychiatric examination revealed that P2 was more severely affected than P1, as he was unable to walk, presented with dysmorphic feature and exhibited self and hetero aggressive behaviors. The molecular investigations revealed a novel TRAPPC9 biallelic nonsense mutation (c.2920 C > T, p.R974X) in the two siblings. The more severely affected patient (P2) presented, along with the TRAPPC9 variant, a new missense mutation c.166 C > T (p.R56C) in the MID2 gene at hemizygous state, while his sister P1 was merely a carrier. The 3D modelling and molecular docking analysis revealed that c.166 C > T variant could affect the ability of MID2 binding to Astrin, leading to dysregulation of microtubule dynamics and causing morphological abnormalities in the brain. As our knowledge, the MID2 mutation (p.R56C) is the first one to be detected in Tunisia and causing phenotypic variability between the siblings. We extend the genetic and clinical spectrum of TRAPPC9 and MID2 mutations and highlights the possible concomitant presence of X-linked as well as autosomal recessive inheritance to causing ID, microcephaly, and autism.
Collapse
Affiliation(s)
- Marwa Kharrat
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax University, Sfax, Tunisia.
| | - Chahnez Triki
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Abir Ben Isaa
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Wafa Bouchaala
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Olfa Alila
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax University, Sfax, Tunisia
| | - Jihen Chouchen
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yosra Ghouliya
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Fatma Kamoun
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax University, Sfax, Tunisia.
| |
Collapse
|
2
|
Alila-Fersi O, Tej A, Maalej M, Kharrat M, Boughamoura L, Chouchen J, Tlili A, Fakhfakh F. Mitochondrial genes modulate the phenotypic expression of congenital scoliosis syndrome caused by mutations in the TBXT gene. Gene 2024; 914:148388. [PMID: 38499212 DOI: 10.1016/j.gene.2024.148388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Congenital scoliosis (CS) is a spinal disorder caused by genetic-congenital vertebral malformations and may be associated with other congenital defects or may occur alone. It is genetically heterogeneous and numerous genes contributing to this disease have been identified. In addition, CS has a wide range of phenotypic and genotypic variability, which has been explained by the intervention of genetic factors like modifiers and environment genes. The aim of the present study was to determine the possible cause of CS in a Tunisian patient and to examine the association between mtDNA mutations and mtDNA content and CS. METHODS Here we performed Whole-Exome Sequencing (WES) in a patient presenting clinical features suggestive of severe congenital scoliosis syndrome. Direct sequencing of the whole mitochondrial DNA (mtDNA) was also performed in addition to copy number quantification in the blood of the indexed case. In silico prediction tools, 3D modeling and molecular docking approaches were used. RESULTS The WES revealed the homozygous missense mutation c.512A > G (p.H171R) in the TBXT gene. Bioinformatic analysis demonstrated that the p.H171R variant was highly deleterious and caused the TBXT structure instability. Molecular docking revealed that the p.H171R mutation disrupted the monomer stability which seemed to be crucial for maintaining the stability of the homodimer and consequently to the destabilization of the homodimer-DNA complex. On the other hand, we hypothesized that mtDNA can be a modifier factor, so, the screening of the whole mtDNA showed a novel heteroplasmic m.10150T > A (p.M31K) variation in the MT-ND3 gene. Further, qPCR analyses of the patient's blood excluded mtDNA depletion. Bioinformatic investigation revealed that the p.M31K mutation in the ND3 protein was highly deleterious and may cause the ND3 protein structure destabilization and could disturb the interaction between complex I subunits. CONCLUSION We described the possible role of mtDNA genetics on the pathogenesis of congenital scoliosis by hypothesizing that the presence of the homozygous variant in TBXT accounts for the CS phenotype in our patient and the MT-ND3 gene may act as a modifier gene.
Collapse
Affiliation(s)
- Olfa Alila-Fersi
- Molecular Genetics and Functional Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax 3000, Tunisia.
| | - Amel Tej
- Department of Pediatrics, University Hospital Farhat Hached, Sousse, Tunisia
| | - Marwa Maalej
- Molecular Genetics and Functional Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Marwa Kharrat
- Molecular Genetics and Functional Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Lamia Boughamoura
- Department of Pediatrics, University Hospital Farhat Hached, Sousse, Tunisia
| | - Jihen Chouchen
- Molecular Genetics and Stem Cell Research Laboratory, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelaziz Tlili
- Human Genetics and Stem Cell Research Group, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Faiza Fakhfakh
- Molecular Genetics and Functional Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax 3000, Tunisia.
| |
Collapse
|
3
|
Maalej M, Sfaihi L, Fersi OA, Khabou B, Ammar M, Felhi R, Kharrat M, Chouchen J, Kammoun T, Tlili A, Fakhfakh F. Molecular and in silico investigation of a novel ECHS1 gene mutation in a consanguine family with short-chain enoyl-CoA hydratase deficiency and Mt-DNA depletion: effect on trimer assembly and catalytic activity. Metab Brain Dis 2024; 39:611-623. [PMID: 38363494 DOI: 10.1007/s11011-024-01343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Short-chain enoyl-CoA hydratase deficiency (ECHS1D) is a rare congenital metabolic disorder that follows an autosomal recessive inheritance pattern. It is caused by mutations in the ECHS1 gene, which encodes a mitochondrial enzyme involved in the second step of mitochondrial β-oxidation of fatty acids. The main characteristics of the disease are severe developmental delay, regression, seizures, neurodegeneration, high blood lactate, and a brain MRI pattern consistent with Leigh syndrome. Here, we report three patients belonging to a consanguineous family who presented with mitochondrial encephalomyopathy. Whole-exome sequencing revealed a new homozygous mutation c.619G > A (p.Gly207Ser) at the last nucleotide position in exon 5 of the ECHS1 gene. Experimental analysis showed that normal ECHS1 pre-mRNA splicing occurred in all patients compared to controls. Furthermore, three-dimensional models of wild-type and mutant echs1 proteins revealed changes in catalytic site interactions, conformational changes, and intramolecular interactions, potentially disrupting echs1 protein trimerization and affecting its function. Additionally, the quantification of mtDNA copy number variation in blood leukocytes showed severe mtDNA depletion in all probands.
Collapse
Affiliation(s)
- Marwa Maalej
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences, University of Sfax, Sfax, 3000, Tunisia.
| | - Lamia Sfaihi
- Faculty of Medecine of Sfax, Avenue Magida Boulila, 3029, Sfax, Tunisia
- Departments of Pediatry, University Hospital Hedi Chaker, Sfax, 3029, Tunisia
| | - Olfa-Alila Fersi
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences, University of Sfax, Sfax, 3000, Tunisia
| | - Boudour Khabou
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences, University of Sfax, Sfax, 3000, Tunisia
| | - Marwa Ammar
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences, University of Sfax, Sfax, 3000, Tunisia
| | - Rahma Felhi
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences, University of Sfax, Sfax, 3000, Tunisia
| | - Marwa Kharrat
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences, University of Sfax, Sfax, 3000, Tunisia
| | - Jihen Chouchen
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 - Room 107, P.O. Box 27272, Sharjah, UAE
| | - Thouraya Kammoun
- Departments of Pediatry, University Hospital Hedi Chaker, Sfax, 3029, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 - Room 107, P.O. Box 27272, Sharjah, UAE
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences, University of Sfax, Sfax, 3000, Tunisia.
| |
Collapse
|
4
|
Kharrat M, Issa AB, Tlili A, Jallouli O, Alila-Fersi O, Maalej M, Chouchen J, Ghouylia Y, Kamoun F, Triki C, Fakhfakh F. A Novel Mutation in the MAP7D3 Gene in Two Siblings with Severe Intellectual Disability and Autistic Traits: Concurrent Assessment of BDNF Functional Polymorphism, X-Inactivation and Oxidative Stress to Explain Disease Severity. J Mol Neurosci 2023; 73:853-864. [PMID: 37817054 DOI: 10.1007/s12031-023-02163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
Intellectual disabilities (ID) and autism spectrum disorders (ASD) are characterized by extreme genetic and phenotypic heterogeneity. However, understanding this heterogeneity is difficult due to the intricate interplay among multiple interconnected genes, epigenetic factors, oxidative stress, and environmental factors. Employing next-generation sequencing (NGS), we revealed the genetic cause of ID and autistic traits in two patients from a consanguineous family followed by segregation analysis. Furthermore, in silico prediction methods and 3D modeling were conducted to predict the effect of the variants. To establish genotype-phenotype correlation, X-chromosome inactivation using Methylation-specific PCR and oxidative stress markers were also investigated. By analyzing the NGS data of the two patients, we identified a novel frameshift mutation c.2174_2177del (p.Thr725MetfsTer2) in the MAP7D3 gene inherited from their mother along with the functional BDNF Val66Met polymorphism inherited from their father. The 3D modeling demonstrated that the p.Thr725MetfsTer2 variant led to the loss of the C-terminal tail of the MAP7D3 protein. This change could destabilize its structure and impact kinesin-1's binding to microtubules via an allosteric effect. Moreover, the analysis of oxidative stress biomarkers revealed an elevated oxidative stress in the two patients compared to the controls. To the best of our knowledge, this is the first report describing severe ID and autistic traits in familial cases with novel frameshift mutation c.2174_2177del in the MAP7D3 gene co-occurring with the functional polymorphism Val66M in the BDNF gene. Besides, our study underlines the importance of investigating combined genetic variations, X-chromosome inactivation (XCI) patterns, and oxidative stress markers for a better understanding of ID and autism etiology.
Collapse
Affiliation(s)
- Marwa Kharrat
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia.
| | - Abir Ben Issa
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Olfa Jallouli
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Olfa Alila-Fersi
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia
| | - Marwa Maalej
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia
| | - Jihen Chouchen
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yosra Ghouylia
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Fatma Kamoun
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Chahnez Triki
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia.
| |
Collapse
|
5
|
Sharma N, Kumari D, Panigrahi I, Khetarpal P. A systematic review of the monogenic causes of Non-Syndromic Hearing Loss (NSHL) and discussion of Current Diagnosis and Treatment options. Clin Genet 2023; 103:16-34. [PMID: 36089522 DOI: 10.1111/cge.14228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022]
Abstract
Hearing impairment is one of the most widespread inheritable sensory disorder affecting at least 1 in every 1000 born. About two-third of hereditary hearing loss (HHL) disorders are non-syndromic. To provide comprehensive update of monogenic causes of non-syndromic hearing loss (NSHL), literature search has been carried out with appropriate keywords in the following databases-PubMed, Google Scholar, Cochrane library, and Science Direct. Out of 2214 papers, 271 papers were shortlisted after applying inclusion and exclusion criterion. Data extracted from selected papers include information about gene name, identified pathogenic variants, ethnicity of the patient, age of onset, gender, title, authors' name, and year of publication. Overall, pathogenic variants in 98 different genes have been associated with NSHL. These genes have important role to play during early embryonic development in ear structure formation and hearing development. Here, we also review briefly the recent information about diagnosis and treatment approaches. Understanding pathogenic genetic variants are helpful in the management of affected and may offer targeted therapies in future.
Collapse
Affiliation(s)
- Nandita Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Divya Kumari
- Department of Pediatrics Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Inusha Panigrahi
- Department of Pediatrics Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Preeti Khetarpal
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
6
|
Felhi R, Monastiri K, Ben Hamida H, Ammar M, Chioukh FZ, Tabarki B, Chouchen J, Fakhfakh F, Tlili A, Mkaouar-Rebai E. First description of the MEGDEHL syndrome in the Tunisian population via whole-exome sequencing: Novel nonsense mutation in SERAC1 gene. Int J Dev Neurosci 2022; 82:736-747. [PMID: 35943861 DOI: 10.1002/jdn.10223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION MEGDEL syndrome is a rare recessive disorder, with about 100 cases reported worldwide, which is defined by 3-methylglutaconic aciduria (MEG), deafness (D), encephalopathy (E) and Leigh-like syndrome (L). When these manifestations were added to hepatopathy (H), the syndrome was labelled as MEGD(H)EL. Mutations in SERAC1 gene encoding a serine active site containing 1 protein were described in patients affected by this syndrome. PATIENTS AND METHODS The present study reports the Whole Exome Sequencing (WES) of the first case of MEGDEHL syndrome in Tunisia in a consanguineous family with three affected children. Bioinformatic analysis was also performed in addition to mtDNA deletion screening and mtDNA copy number quantification in the blood of the indexed case, carried out, respectively by Long-Range PCR and qPCR. RESULTS The WES revealed a novel homozygous nonsense mutation (c.1379G > A; p.W460X) in the SERAC1 gene, which was confirmed by Sanger sequencing. This nonsense mutation was present at a homozygous state in the three affected children and was heterozygous in the parents. In silico analysis using various softwares was performed, and the predictive results supported the pathogenic effect of the identified mutation. Further, long-range PCR and qPCR analyses of the patient's blood excluded any mtDNA deletions or depletions. CONCLUSION Sequencing results and bioinformatic tools confirmed that the novel mutation (p.W460X) in the SERAC1 gene causes the severe phenotype in the studied family with MEGDEHL syndrome.
Collapse
Affiliation(s)
- Rahma Felhi
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| | - Kamel Monastiri
- Maternity and Neonatology Center of Monastir, Faculty of Medicine of Monastir, Monastir, Tunisia
| | - Hayet Ben Hamida
- Maternity and Neonatology Center of Monastir, Faculty of Medicine of Monastir, Monastir, Tunisia
| | - Marwa Ammar
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| | - Fatma Zohra Chioukh
- Maternity and Neonatology Center of Monastir, Faculty of Medicine of Monastir, Monastir, Tunisia
| | - Brahim Tabarki
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Jihene Chouchen
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Faiza Fakhfakh
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Emna Mkaouar-Rebai
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
7
|
Tawalbeh M, Aburizeg D, Abu Alragheb BO, Alaqrabawi WS, Dardas Z, Srour L, Altarayra BH, Zayed AA, El Omari Z, Azab B. SLC26A4 Phenotypic Variability Influences Intra- and Inter-Familial Diagnosis and Management. Genes (Basel) 2022; 13:genes13122192. [PMID: 36553459 PMCID: PMC9778369 DOI: 10.3390/genes13122192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
SLC26A4 is one of the most common genes causing autosomal recessive non-syndromic sensorineural hearing loss (SNHL). It has been reported to cause Pendred Syndrome (PDS) and DFNB4 which is deafness with enlarged vestibular aqueduct (EVA). However, mutated SLC26A4 is not conclusive for having either DFNB4 or PDS. Three unrelated Jordanian families consisting of eight affected individuals with congenital bilateral hearing loss (HL) participated in this study. Whole-exome and Sanger sequencing were performed to investigate the underlying molecular etiology of HL. Further clinical investigations, including laboratory blood workup for the thyroid gland, CT scan for the temporal bone, and thyroid ultrasound were performed. Three disease-causing variants were identified in SLC26A4 in the three families, two of which were novel. Two families had a novel pathogenic homozygous splice-site accepter variant (c.165-1G>C), while the third family had compound heterozygous pathogenic variants (c.1446G>A; p.Trp482* and c.304G>A; p.Gly102Arg). Our approach helped in redirecting the diagnosis of several affected members of three different families from non-syndromic HL to syndromic HL. Two of the affected individuals had typical PDS, one had DFNB4, while the rest had atypical PDS. Our work emphasized the intra- and inter-familial variability of SLC26A4-related phenotypes. In addition, we highlighted the variable phenotypic impact of SLC26A4 on tailoring a personalized healthcare management.
Collapse
Affiliation(s)
- Mohamed Tawalbeh
- Department of Special Surgery, Jordan University Hospital, Amman 11942, Jordan
- Correspondence: (M.T.); (B.A.)
| | - Dunia Aburizeg
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Bayan O. Abu Alragheb
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Wala Sami Alaqrabawi
- Hearing and Speech Department, School of Rehabilitation Sciences, The University of Jordan, Amman 11942, Jordan
- Audiology Department, Faculty of Medical Sciences, Hacettepe University, Ankara 06100, Turkey
| | - Zain Dardas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luma Srour
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | | | - Ayman A. Zayed
- Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Jordan University Hospital, Amman 11942, Jordan
| | - Zaid El Omari
- Otolaryngology, Head and Neck Surgery Department, Jordanian Royal Medical Services, Amman 11855, Jordan
| | - Bilal Azab
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: (M.T.); (B.A.)
| |
Collapse
|
8
|
Elsayed O, Al‐Shamsi A. Mutation spectrum of non-syndromic hearing loss in the UAE, a retrospective cohort study and literature review. Mol Genet Genomic Med 2022; 10:e2052. [PMID: 36056583 PMCID: PMC9651598 DOI: 10.1002/mgg3.2052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hearing loss (HL) is a heterogeneous condition that causes partial or complete hearing impairment. Hundreds of variants in >60 genes have been reported to be associated with Hereditary HL (HHL), variants of the GJB2 gene are the most common cause of congenital SNHL, with >100 variants reported. The HHL prevalence is thought to be high in the Arab population; however, the genetic epidemiology of HHL among Emirati populations is understudied. AIMS To shed light on the mutational spectrum of NSHL in Emirati patients seen in the genetic clinic over 10 years and to capture founder mutation(s) if any were identified. METHODS Retrospective chart review of all Emirati patients assessed by clinical geneticists due to NSHL during the period between January 2010 to December 2020. Genetic tests were done based on clinical phenotypes of the patient and family history including targeted mutation testing, next-generation sequencing, or whole-exome sequencing (solo or trio). The authors did literature reviews using PubMed for all previously reported articles related to NSHL genes from UAE. RESULTS A total of 162 patients with HL, were evaluated during the period between January 2010 to December 2020. There were 82 patients with NSHL, and only 72 patients who completed the genetic evaluations were included in this retrospective study. Among the studied group, 42 (51.2%) were males and 40 (48.78%) were females. The youngest patient was 2 years old and the oldest patient was 50 years old. Consanguinity was documented in 76 patients (92.68%). A total of 14 mutations reported here are novel (23/72 i.e., 31.9%). Twelve missense mutations, 6 nonsense mutations, 6 frameshift mutations, 2 in-frame deletion mutations, and 1 splice site mutation was found. Variants in the GJB2 gene are the most commonly identified cause of NSHL, with c.35delG being the most followed by c.506G > A. The second commonly found variant is c.934C > G (p.Arg312Gly) in the CDC14A gene, found in 9 patients. This was followed by variants in OTOF and SLC26A4 genes, found in 8 patients, respectively. Chromosomal microdeletions encompassing genes causing NSHL were found in 3 patients. No mitochondrial mutations were found in this study group. A total of 11 previous reports about Emirati patients with NSHL were reviewed, with a total of 35 patients. CONCLUSION Emirati patients with NSHL have several mutations, most notably missense mutations. Novel mutations are worth further testing and represent the area for future researches.
Collapse
Affiliation(s)
- Omnia Elsayed
- Pediatrics DepartmentTawam HospitalAl AinUnited Arab Emirates
| | - Aisha Al‐Shamsi
- Genetic Division, Pediatrics DepartmentTawam HospitalAl AinUnited Arab Emirates
| |
Collapse
|
9
|
Ammar M, Safi W, Tlili A, Alila-Fersi O, Frikha F, Chouchen J, Mnif F, Kharrat M, Maalej M, Felhi R, Abid M, Mnif-Feki M, Kacem FH, Fakhfakh F, Mkaouar-Rebai E. A novel TYMP mutation in a family with MNGIE syndrome: Molecular docking, dynamic simulation and computational investigations. Int J Dev Neurosci 2022; 82:626-638. [PMID: 35841120 DOI: 10.1002/jdn.10215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/11/2022] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE; OMIM 603041) is a rare inherited metabolic disorder mostly caused by mutations in TYMP gene encoding thymidine phosphorylase (TP) protein that affects the mitochondrial nucleotide metabolism. TP, functionally active as a homodimer, is involved in the salvage pathway of pyrimidine nucleosides. MNGIE-like syndrome having an overlapping phenotype of MNGIE was also described and has been associated with mutations in POLG and RRM2B genes. In the present study, we report the molecular investigation of a consanguineous family including two patients with clinical features suggestive of MNGIE syndrome. Bioinformatics analyses were carried out in addition to mtDNA deletion screening and copy number quantification in the blood of the two patients. Whole exome sequencing and Sanger sequencing analyses revealed the segregation in the affected family a novel mutation c.1205T>A (p.L402Q) within the exon 9 of the TYMP gene. In addition, mtDNA analysis revealed the absence of mtDNA deletions and a decrease of the copy number in the blood of the two patients of the studied family. The p.Leu402Gln mutation was located in a conserved amino acid within the α/β domain of the TP protein and several software supported its pathogenicity. In addition, and based on docking and molecular dynamic simulation analyses, results revealed that L402Q caused a conformational change in TP mutated structure and could therefore alter its flexibility and stability. These changes prevent also the formation of stable homodimer leading to non-functional protein with partial or complete loss of its catalytic activity.
Collapse
Affiliation(s)
- Marwa Ammar
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences. University of Sfax, Tunisia
| | - Wajdi Safi
- Department of Endocrinology Diabetology, CHU Hedi Chaker, Sfax, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Olfa Alila-Fersi
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences. University of Sfax, Tunisia
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Jihen Chouchen
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Fatma Mnif
- Department of Endocrinology Diabetology, CHU Hedi Chaker, Sfax, Tunisia
| | - Marwa Kharrat
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences. University of Sfax, Tunisia
| | - Marwa Maalej
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences. University of Sfax, Tunisia
| | - Rahma Felhi
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences. University of Sfax, Tunisia
| | - Mohamed Abid
- Department of Endocrinology Diabetology, CHU Hedi Chaker, Sfax, Tunisia
| | - Mouna Mnif-Feki
- Department of Endocrinology Diabetology, CHU Hedi Chaker, Sfax, Tunisia
| | - Faten Hadj Kacem
- Department of Endocrinology Diabetology, CHU Hedi Chaker, Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences. University of Sfax, Tunisia
| | - Emna Mkaouar-Rebai
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences. University of Sfax, Tunisia
| |
Collapse
|
10
|
Genetic etiology of hereditary hearing loss in the Gulf Cooperation Council countries. Hum Genet 2021; 141:595-605. [PMID: 34338889 DOI: 10.1007/s00439-021-02323-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
The past 30 years have seen an exponential growth concerning the identification of genes and variants responsible for hereditary hearing loss (HL) worldwide. This has led to a huge gain in our understanding of molecular mechanisms of hearing and deafness, which improved diagnosis for populations with hereditary HL. Many communities around the world, especially in the Middle East and North Africa, have a high prevalence of consanguineous marriages. Congenital monogenic conditions, such as recessive HL, are more common in these populations due to high consanguinity rates. Many studies have shown that high rates of consanguinity, endogamy, and first cousin marriages were observed in the six countries of the Gulf Cooperation Council (GCC). The intent of this study is to investigate the etiology of HL in the GCC region. A deep literature review of genes and variants responsible for HL in this region revealed 89 recessive DNA pathogenic variants reported in 138 cases/familial cases. A total of 21 genes responsible for non-syndromic hearing loss (NSHL) and 17 genes associated with syndromic hearing loss (SHL) were reported in cases from the GCC region. Out of 156 reported affected cases, 112 showed HL only, and 44 showed HL associated with other clinical manifestations. This data suggests that in the GCC region 72% of HL forms are non-syndromic and 28% are syndromic. For individuals with NSHL, 66% of variants were detected in four genes (GJB2, OTOF, TMC1 and CDH23), with a predominance of variants located in the GJB2 gene (37.5%). However, among SHL, Usher syndrome was the more frequent as it has been observed in 41% of the reported syndromic GCC cases. Finally, our analysis showed that HL genetics testing and research in the GCC region took advantage of the next generation sequencing (NGS)-based techniques, as approximately 58% of reported variants were identified using this technology.
Collapse
|