1
|
Diaz-Suarez A, Noreikiene K, Kahar S, Ozerov MY, Gross R, Kisand V, Vasemägi A. DNA metabarcoding reveals spatial and temporal variation of fish eye fluke communities in lake ecosystems. Int J Parasitol 2024; 54:33-46. [PMID: 37633409 DOI: 10.1016/j.ijpara.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/28/2023]
Abstract
Eye flukes (Diplostomidae) are diverse and abundant trematode parasites that form multi-species communities in fish with negative effects on host fitness and survival. However, the environmental factors and host-related characteristics that determine species diversity, composition, and coexistence in such communities remain poorly understood. Here, we developed a cost-effective cox1 region-specific DNA metabarcoding approach to characterize parasitic diplostomid communities in two common fish species (Eurasian perch and common roach) collected from seven temperate lakes in Estonia. We found considerable inter- and intra-lake, as well as inter-host species, variation in diplostomid communities. Sympatric host species characterization revealed that parasite communities were typically more diverse in roach than perch. Additionally, we detected five positive and two negative diplostomid species associations in roach, whereas only a single negative association was observed in perch. These results indicate that diplostomid communities in temperate lakes are complex and dynamic systems exhibiting both spatial and temporal heterogeneity. They are influenced by various environmental factors and by host-parasite and inter-parasite interactions. We expect that the described methodology facilitates ecological and biodiversity research of diplostomid parasites. It is also adaptable to other parasite groups where it could serve to improve current understanding of diversity, distribution, and interspecies interactions of other understudied taxa.
Collapse
Affiliation(s)
- Alfonso Diaz-Suarez
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia.
| | - Kristina Noreikiene
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia. https://twitter.com/snaudale
| | - Siim Kahar
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia
| | - Mikhail Y Ozerov
- Biodiversity Unit, University of Turku, 20014 Turku, Finland; Department of Biology, University of Turku, 20014 Turku, Finland; Department of Aquatic Resources, Swedish University of Agricultural Sciences, Stångholmsvägen 2, 17893 Drottningholm, Sweden
| | - Riho Gross
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia
| | - Veljo Kisand
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Anti Vasemägi
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia; Department of Aquatic Resources, Swedish University of Agricultural Sciences, Stångholmsvägen 2, 17893 Drottningholm, Sweden
| |
Collapse
|
2
|
Frey RA, Barrett LM, Parkin L, Blakeley B, Ålund M, Byford G, Euhus A, Tsarnas C, Boughman JW, Stenkamp DL. Eye flukes (Diplostomum spp) damage retinal tissue and may cause a regenerative response in wild threespine stickleback fish. Exp Eye Res 2022; 225:109298. [PMID: 36288754 DOI: 10.1016/j.exer.2022.109298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 01/29/2023]
Abstract
Fish rely upon vision as a dominant sensory system for foraging, predator avoidance, and mate selection. Damage to the visual system, in particular to the neural retina of the eye, has been demonstrated to result in a regenerative response in captive fish that serve as model organisms (e.g. zebrafish), and this response restores some visual function. The purpose of the present study is to determine whether damage to the visual system that occurs in wild populations of fish also results in a regenerative response, offering a potentially ecologically relevant model of retinal regeneration. Adult threespine stickleback were collected from several water bodies of Iceland, and cryosectioned eye tissues were processed for hematoxylin and eosin staining or for indirect immunofluorescence using cell-specific markers. In many of the samples, eye flukes (metacercariae of Diplostomum spp) were present, frequently between the neural retina and retinal pigmented epithelium (RPE). Damage to the retina and to the RPE was evident in eyes containing flukes, and RPE fragments were observed within fluke bodies, suggesting they had consumed this eye tissue. Expression of a cell proliferation marker was also observed in both retina and RPE, consistent with a proliferative response to the damage. Interestingly, some regions of infected retina displayed "laminar fusions," in which neuronal cell bodies were misplaced within the major synaptic layer of the retina. These laminar fusions are also frequently found in regenerated zebrafish retina following non-parasitic (experimental) forms of retinal damage. The stickleback retina may therefore respond to fluke-mediated damage by engaging in retinal regeneration.
Collapse
Affiliation(s)
- Ruth A Frey
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Lindsey M Barrett
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Lauren Parkin
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Brittany Blakeley
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Murielle Ålund
- Department of Integrative Biology, Michigan State University, Lansing, MI, 48824, USA
| | - Gregory Byford
- Department of Integrative Biology, Michigan State University, Lansing, MI, 48824, USA
| | - Abigail Euhus
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Christine Tsarnas
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Janette W Boughman
- Department of Integrative Biology, Michigan State University, Lansing, MI, 48824, USA
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
3
|
Nur FM, Batubara AS, Fadli N, Rizal S, Siti-Azizah MN, Wilkes M, Muchlisin ZA. Lernaea cyprinacea Linnaeus, 1758 (Copepoda: Lernaeidae) infection on Betta rubra Perugia, 1893 (Anabantiformes: Osphronemidae) from Aceh Province, Indonesia. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2022; 31:e020421. [PMID: 35293430 PMCID: PMC9901870 DOI: 10.1590/s1984-29612022015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 11/22/2022]
Abstract
Betta rubra is an ornamental freshwater fish endemic to northern Sumatra, Indonesia. The B. rubra population has decreased in recent decades, and is classified as an endangered species in the IUCN Red List. This study aims to report for the first time infection by L. cyprinacea in B. rubra harvested from the Aceh Besar region of Indonesia. The fish samples were obtained from the Cot Bira tributaries, Aceh Besar District, Indonesia from January to December 2020. The results showed that the parasite infected 6 out of 499 samples in August and September, with a prevalence and intensity rate of 1% and 2 parasites/fish, respectively. The eyes and pectoral fins were the common infection sites. Despite B. rubra is not an optimal host (small size) for the parasite, this parasite might serve as additional threatening factors for the endangered B. rubra fish population.
Collapse
Affiliation(s)
- Firman Muhammad Nur
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Agung Setia Batubara
- Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, North Sumatera, Indonesia
| | - Nur Fadli
- Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Syamsul Rizal
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia.,Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Mohd Nor Siti-Azizah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Martin Wilkes
- Center for Agroecology, Water and Resilience, Coventry University, Coventry, United Kingdom
| | - Zainal Abidin Muchlisin
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia.,Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
4
|
Molecular phylogeny of Diplostomum, Tylodelphys, Austrodiplostomum and Paralaria (Digenea: Diplostomidae) necessitates systematic changes and reveals a history of evolutionary host switching events. Int J Parasitol 2022; 52:47-63. [PMID: 34371018 PMCID: PMC8742756 DOI: 10.1016/j.ijpara.2021.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 01/03/2023]
Abstract
The Diplostomidae Poirier, 1886 is a large, globally distributed family of digeneans parasitic in intestines of their definitive hosts. Diplostomum and Tylodelphys spp. are broadly distributed, commonly reported, and the most often sequenced diplostomid genera. The majority of published DNA sequences from these genera originated from larval stages only, which typically cannot be identified to the species level based on morphology alone. We generated partial large ribosomal subunit (28S) rRNA and cytochrome c oxidase subunit 1 (cox1) mtDNA gene sequences from 14 species/species-level lineages of Diplostomum, six species/species-level lineages of Tylodelphys, two species/species-level lineages of Austrodiplostomum, one species previously assigned to Paralaria, two species/species-level lineages of Dolichorchis and one unknown diplostomid. Our DNA sequences of 11 species/species-level lineages of Diplostomum (all identified to species), four species/species-level lineages of Tylodelphys (all identified to species), Austrodiplostomum compactum, Paralaria alarioides and Dolichorchis lacombeensis originated from adult specimens. 28S sequences were used for phylogenetic inference to demonstrate the position of Paralaria alarioides and Dolichorchis spp. within the Diplostomoidea and study the interrelationships of Diplostomum, Tylodelphys and Austrodiplostomum. Our results demonstrate that two diplostomids from the North American river otter (P. alarioides and a likely undescribed taxon) belong within Diplostomum. Further, our results demonstrate the non-monophyly of Tylodelphys due to the position of Austrodiplostomum spp., based on our phylogenetic analyses and morphology. Furthermore, the results of phylogenetic analysis of 28S confirmed the status of Dolichorchis as a separate genus. The phylogenies suggest multiple definitive host-switching events (birds to otters and among major avian groups) and a New World origin of Diplostomum and Tylodelphys spp. Our DNA sequences from adult digeneans revealed identities of 10 previously published lineages of Diplostomum and Tylodelphys, which were previously identified to genus only. The novel DNA data from this work provide opportunities for future comparisons of larval diplostomines collected in ecological studies.
Collapse
|
5
|
Hunger games: foraging behaviour and shelter use in fish under the context-dependent influence of parasitism. Parasitol Res 2021; 120:3681-3692. [PMID: 34515862 DOI: 10.1007/s00436-021-07296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Diseases, and the parasitic organisms that cause them, can impact aspects of ecosystems ranging from altering food web connectivity to population dynamics. Apart from interspecific interactions, parasites can affect how their hosts behave with conspecifics, such as during competition for resources. Fish are important hosts to a variety of parasite taxa that can, through physical impairment or invasion of sense organs, affect how they interact with conspecifics for food, territory, or mates. In New Zealand, the common bully Gobiomorphus cotidianus plays host to a variety of parasites, encysting throughout the body (Apatemon sp.) or residing within the eyes (Tylodelphys darbyi). We hypothesized that fish with lower levels of infection would secure territories closer to a food patch and be more likely to tolerate sharing that territory. Our experiments show that parasites infecting different areas may have variable impacts on how far the host positions itself from a food patch and the likelihood that it shares its territory. Fish with higher intensities of T. darbyi tended to be closer to the food patch, but Apatemon sp. did not show a similar pattern. Higher infection levels of both parasites were statistically associated with bullies being less likely to share territory. Further, bigger fish were less likely to share their territory at higher intensities infection, and we observed individual variation in a fish's response between trials. Our findings support that parasites matter in ecological interactions but also emphasize the context dependence of their effects.
Collapse
|
6
|
Vivas Muñoz JC, Feld CK, Hilt S, Manfrin A, Nachev M, Köster D, Jochmann MA, Schmidt TC, Sures B, Ziková A, Knopf K. Eye fluke infection changes diet composition in juvenile European perch (Perca fluviatilis). Sci Rep 2021; 11:3440. [PMID: 33564005 PMCID: PMC7873217 DOI: 10.1038/s41598-021-81568-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
Intraspecific diet specialization, usually driven by resource availability, competition and predation, is common in natural populations. However, the role of parasites on diet specialization of their hosts has rarely been studied. Eye flukes can impair vision ability of their hosts and have been associated with alterations of fish feeding behavior. Here it was assessed whether European perch (Perca fluviatilis) alter their diet composition as a consequence of infection with eye flukes. Young-of-the-year (YOY) perch from temperate Lake Müggelsee (Berlin, Germany) were sampled in two years, eye flukes counted and fish diet was evaluated using both stomach content and stable isotope analyses. Perch diet was dominated by zooplankton and benthic macroinvertebrates. Both methods indicated that with increasing eye fluke infection intensity fish had a more selective diet, feeding mainly on the benthic macroinvertebrate Dikerogammarus villosus, while less intensively infected fish appeared to be generalist feeders showing no preference for any particular prey type. Our results show that infection with eye flukes can indirectly affect interaction of the host with lower trophic levels by altering the diet composition and highlight the underestimated role of parasites in food web studies.
Collapse
Affiliation(s)
- Jenny C Vivas Muñoz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12589, Berlin, Germany.
- Faculty of Life Sciences, Humboldt University, Invalidenstrasse 42, 10115, Berlin, Germany.
| | - Christian K Feld
- Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Sabine Hilt
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12589, Berlin, Germany
- Faculty of Life Sciences, Humboldt University, Invalidenstrasse 42, 10115, Berlin, Germany
| | - Alessandro Manfrin
- Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- Environmental Campus Birkenfeld, University of Applied Sciences Trier, Post Box 1380, 55761, Birkenfeld, Germany
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau/Pfalz, Germany
| | - Milen Nachev
- Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Daniel Köster
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Maik A Jochmann
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Torsten C Schmidt
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Bernd Sures
- Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Andrea Ziková
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12589, Berlin, Germany
| | - Klaus Knopf
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12589, Berlin, Germany
- Faculty of Life Sciences, Humboldt University, Invalidenstrasse 42, 10115, Berlin, Germany
| |
Collapse
|
7
|
Carpenter N, Herrmann KK. Parasitism in Gambusia affinis: Fitness Effects in an Incipient Matrotroph. J Parasitol 2020; 106:268-275. [PMID: 32294758 DOI: 10.1645/20-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Gambusia affinis (western mosquitofish) serves as a host for a variety of larval and adult parasites. Gambusia affinis is also an incipient matrotroph, exhibiting adjustments in post-fertilization provisioning to some offspring within a brood using recently acquired resources. Nutrient transfer to embryos is expected to limit the loss of embryo mass during development resulting in larger offspring. Since larger offspring are more likely to survive, maternal contributions are expected to increase fitness. The presence of parasites, particularly intestinal helminths, potentially reduces body condition and resources available for developing offspring, thereby reducing host fitness. The effects of parasitism on the fitness of G. affinis were investigated in the present study. Fish were collected from 3 sites monthly from June 2015 through August 2016. All helminth parasites were collected during necropsy and identified. Brood size and embryo developmental stage were recorded for each female fish. Additionally, 10 ova/embryos of each developmental stage from each female fish collected from May through August 2016 were haphazardly selected and individually weighed. From 429 female mosquitofish, 5,072 helminths were collected. Brood size varied among collection sites and was positively influenced by maternal body condition, the number of daylight hours, water temperature, and the intensity of both plerocercoid and adult Schyzocotyle acheilognathi. However, brood size was negatively related to the intensity of Neoechinorhynchus cylindratus cystacanth and an increasing number of days between collection and dissection. Embryo weight increased with the presence of either Camallanidae or Contracaecum multipapulatum, embryo developmental stage, and relative host density. These results indicate that some parasitic helminth species negatively affect the fitness of G. affinis, while some positively affect fitness, and that effect can vary with intensity.
Collapse
Affiliation(s)
- Nichole Carpenter
- Department of Biological Sciences, Tarleton State University, Box T-0100, Stephenville, Texas 76402
| | - Kristin K Herrmann
- Department of Biological Sciences, Tarleton State University, Box T-0100, Stephenville, Texas 76402
| |
Collapse
|
8
|
Ruehle B, Poulin R. Risky business: influence of eye flukes on use of risky microhabitats and conspicuousness of a fish host. Parasitol Res 2020; 119:423-430. [PMID: 31912275 DOI: 10.1007/s00436-019-06589-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/22/2019] [Indexed: 12/27/2022]
Abstract
A prerequisite for a parasitic manipulation to be considered adaptive is that it confers a fitness benefit to the parasite, such as increased transmission to another host. These manipulations can involve alterations to a wide range of host phenotypic traits, including microhabitat choice. Eye flukes of the trematode family Diplostomidae use fish as intermediate hosts and must be transmitted by predation to a piscivorous bird. In New Zealand, the diplostomid Tylodelphys darbyi infects the eyes of a widespread endemic freshwater fish, the common bully Gobiomorphus cotidianus. Within the eye, T. darbyi metacercariae achieve large sizes and move freely about the aqueous and vitreous humors of the eye. We hypothesized that higher intensities of T. darbyi would (i) cause bullies to show increased activity and spend more time moving about in open space (i.e., more conspicuous, risky microhabitat) and (ii) reduce their ability to compete for shelter with fish harboring lower infection levels. Our experiments showed that heavily infected fish were more active and spent more time in the open, although the effect was age-dependent, with immature fish displaying decreases in activity and time spent in the open with increasing intensities of infection. We also demonstrated that heavily infected female bullies have a lower probability of using shelter, but males show the opposite pattern. It is possible that using more risky microhabitats increases the likelihood of the fish being eaten by the parasite's predatory avian definitive hosts. However, our findings indicate that age- and sex-dependent effects call for a more nuanced interpretation.
Collapse
Affiliation(s)
- Brandon Ruehle
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand.
| | - Robert Poulin
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand
| |
Collapse
|
9
|
Eye fluke (Tylodelphys clavata) infection impairs visual ability and hampers foraging success in European perch. Parasitol Res 2019; 118:2531-2541. [PMID: 31286263 DOI: 10.1007/s00436-019-06389-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/27/2019] [Indexed: 12/27/2022]
Abstract
Visual performance and environmental conditions can influence both behavioral patterns and predator-prey interactions of fish. Eye parasites can impair their host's sensory performance with important consequences for the detection of prey, predators, and conspecifics. We used European perch (Perca fluviatilis) experimentally infected with the eye fluke Tylodelphys clavata and evaluated their feeding behavior and competitive ability under competition with non-infected conspecifics, in groups of four individuals, for two different prey species (Asellus aquaticus and Daphnia magna). To test whether the effect of T. clavata infection differs at different light conditions, we performed the experiments at two light intensities (600 and 6 lx). Foraging efficiency of perch was significantly affected by infection but not by light intensity. The distance at which infected fish attacked both prey species was significantly shorter in comparison to non-infected conspecifics. Additionally, infected fish more often unsuccessfully attacked A. aquaticus. Although the outcome of competition depended on prey species, there was a general tendency that non-infected fish consumed more of the available prey under both light intensities. Even though individual prey preferences for either A. aquaticus or D. magna were observed, we could not detect that infected fish change their prey preference to compensate for a reduced competitive foraging ability. As infection of T. clavata impairs foraging efficiency and competitive ability, infected fish would need to spend more time foraging to attain similar food intake as non-infected conspecifics; this presumably increases predation risk and potentially enhances transmission success to the final host.
Collapse
|
10
|
Pelegrini LS, Gião T, Vieira DHMD, Müller MI, da Silva RJ, de León GPP, de Azevedo RK, Abdallah VD. Molecular and morphological characterization of the metacercariae of two species of diplostomid trematodes (Platyhelminthes, Digenea) in freshwater fishes of the Batalha River, Brazil. Parasitol Res 2019; 118:2169-2182. [PMID: 31183598 DOI: 10.1007/s00436-019-06362-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/22/2019] [Indexed: 11/26/2022]
Abstract
The Diplostomidae include a large group of flatworms with complex life cycles and are frequently found parasitizing the eyes and central nervous system of freshwater fishes. The morphological identification of the metacercariae at species level is not always possible. Thus, molecular tools have become essential to assist in the parasite species determination. This study was aimed at describing two diplostomid metacercariae found in freshwater fish in São Paulo, Brazil, based on morphological characters and in the genetic characterization of COI sequences. Our results showed that the two recognized taxa (Tylodelphys sp. and Diplostomidae gen. sp.) appear to be different from the species already described in South America. Tylodelphys sp. differs morphologically from Tylodelphys xenopi, T. mashonense, T. jenynsiae, and T. scheuringi. The metacercariae of T. clavata and T. conifera are smaller than Tylodelphys sp., while T. podicipina is larger than the metacercariae described here. The phylogenetic analysis of COI sequences yielded Tylodelphys sp. as the sister species of Tylodelphys sp. 4, a species reported from the brain of the eleotrid Gobiomorus maculatus in Oaxaca, Mexico. The metacercariae identified as Diplostomidae gen. sp. are morphologically different from the known diplostomid metacercariae and did not match with other diplostomid sequences available. Diplostomidae gen. sp. is recovered as the sister species of Diplostomum ardeae. Although the morphological evidence and the COI sequences differentiate the metacercariae found, the absence of adult specimens of both species precludes the specific designation. This is one of the first papers that use an integrative taxonomy approach to describe the species diversity of diplostomid trematodes in Brazil.
Collapse
Affiliation(s)
- Larissa Sbeghen Pelegrini
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista (UNESP), Rua Prof. Dr. Antônio Celso Wagner Zanin, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-970, Brazil
| | - Thayana Gião
- Pró-reitoria de Pesquisa e Pós-graduação, Laboratório de Ictioparasitologia, Rua Irmã Arminda, Universidade do Sagrado Coração (USC), 10-50, Jardim Brasil, Bauru, São Paulo, 17011-160, Brazil
| | - Diego Henrique Mirandola Dias Vieira
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista (UNESP), Rua Prof. Dr. Antônio Celso Wagner Zanin, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-970, Brazil
| | - Maria Isabel Müller
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista (UNESP), Rua Prof. Dr. Antônio Celso Wagner Zanin, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-970, Brazil
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo (UNIFESP), Diadema, São Paulo, Brazil
| | - Reinaldo José da Silva
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista (UNESP), Rua Prof. Dr. Antônio Celso Wagner Zanin, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-970, Brazil
| | - Gerardo Pérez-Ponce de León
- Instituto de Biologia, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Rodney Kozlowiski de Azevedo
- Programa de Pós-Graduação em Análise de Sistemas Ambientais, Centro Universitário CESMAC, Maceió, Alagoas, Brazil
| | - Vanessa Doro Abdallah
- Programa de Pós-Graduação em Análise de Sistemas Ambientais, Centro Universitário CESMAC, Maceió, Alagoas, Brazil.
| |
Collapse
|