1
|
Yang J, Zeng Y, Li C, Liu S, Meng W, Zhang W, He M, Wang L, Zuo Z, Yue C, Li D, Peng G. Occurrence and Molecular Characteristics of Microsporidia in Captive Red Pandas ( Ailurus fulgens) in China. Animals (Basel) 2023; 13:1864. [PMID: 37889781 PMCID: PMC10251819 DOI: 10.3390/ani13111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/07/2023] [Accepted: 05/26/2023] [Indexed: 10/29/2023] Open
Abstract
Enterocytozoon bieneusi and Encephalitozoon spp. are microsporidian pathogens with zoonotic potential that pose significant public health concerns. To ascertain the occurrence and genotypes of E. bieneusi and Encephalitozoon spp., we used nested PCR to amplify the internal transcribed spacer (ITS) gene and DNA sequencing to analyze 198 fecal samples from red pandas from 6 zoos in China. The total rate of microsporidial infection was 15.7% (31/198), with 12.1% (24/198), 1.0% (2/198), 2.0% (4/198) and 1.0% (2/198) for infection rate of E. bieneusi, Encephalitozoon cuniculi, Encephalitozoon intestinalis and Encephalitozoon hellem, respectively. One red panda was detected positive for a mixed infection (E. bieneusi and E. intestinalis). Red pandas living in semi-free conditions are more likely to be infected with microsporidia (χ2 = 6.212, df = 1, p < 0.05). Three known (SC02, D, and PL2) and one novel (SCR1) genotypes of E. bieneusi were found. Three genotypes of E. bieneusi (SC02, D, SCR1) were grouped into group 1 with public health importance, while genotype PL2 formed a separate clade associated with group 2. These findings suggest that red pandas may serve as a host reservoir for zoonotic microsporidia, potentially allowing transmission from red pandas to humans and other animals.
Collapse
Affiliation(s)
- Jinpeng Yang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.)
| | - Yangyang Zeng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.)
| | - Caiwu Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | - Songrui Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Wanyu Meng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.)
| | - Wenqing Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.)
| | - Ming He
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | | | | | - Chanjuan Yue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Desheng Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | - Guangneng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.)
| |
Collapse
|
2
|
Guo Y, Li N, Feng Y, Xiao L. Zoonotic parasites in farmed exotic animals in China: Implications to public health. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 14:241-247. [PMID: 33898224 PMCID: PMC8056123 DOI: 10.1016/j.ijppaw.2021.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Several species of wild mammals are farmed in China as part of the rural development and poverty alleviation, including fur animals, bamboo rats, and macaque monkeys. Concerns have been raised on the potential dispersal of pathogens to humans and other farm animals brought in from native habitats. Numerous studies have been conducted on the genetic identity and public health potential of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in these newly farmed exotic animals. The data generated have shown a high prevalence of the pathogens in farmed wildlife, probably due to the stress from the short captivity and congregation of large numbers of susceptible animals. Host adaptation at species/genotype and subtype levels has reduced the potential for cross-species and zoonotic transmission of pathogens, but the farm environment appears to favor the transmission of some species, genotypes, and subtypes, with reduced pathogen diversity compared with their wild relatives. Most genotypes and subtypes of the pathogens detected appear to be brought in from their native habitats. A few of the subtypes have emerged as human pathogens. One Health measures should be developed to slow the dispersal of indigenous pathogens among farmed exotic animals and prevent their spillover to other farm animals and humans.
Collapse
Affiliation(s)
- Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
3
|
Yu M, Liu X, Xie M, Li D, Ni Q, Zhang M, Wu J, Xu H, Yao Y. Epidemiological investigation and genotypes of Enterocytozoon bieneusi in 11 captive Rhesus macaque populations. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 13:191-195. [PMID: 33145162 PMCID: PMC7591549 DOI: 10.1016/j.ijppaw.2020.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022]
Abstract
Enterocytozoon bieneusi is an obligate intracellular parasite and the most common pathogen of microsporidiosis in humans and animals. In this study, a total of 198 fecal samples were collected from 11 captive populations of Rhesus macaque in Chinese zoos, to investigate the prevalence and analyze the zoonotic potential of E. bieneusi by genotype of the Internal Transcribed Spacer (ITS) gene on the rRNA of E. bieneusi via nested PCR. Results showed that the average infection rate of E. bieneusi in the 11 populations was 13.6%, and the highest infection rate was 56.5% in the population of Xinjiang Tianshan Zoo. Seven genotypes were identified including 2 known genotypes (D and CM1) and 5 novel genotypes (Mul1, Mul2, Mul3, Mul4 and Mul5). Phylogenetic analysis revealed that the novel genotypes Mul2, Mul3, Mul4 and Mul5 belonged to Group 1 showed the zoonotic potential.These findings extend the distribution of E. bieneusi genotypes and provide baseline data for controlling E. bieneusi infection. The overall prevalence of E. bieneusi was 13.6%(27/198) based on PCR analysis of the ITS region of the ribosomal RNA gene. Seven genotypes of Enterocytozoon bieneusi were identified. One zoonotic genotypes (D) and five novel genotypes (Mul1-5) were identified.
Collapse
Affiliation(s)
- Mengshi Yu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xue Liu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Meng Xie
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Diyan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiayun Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
- Corresponding author.
| |
Collapse
|
4
|
Xu J, Wang X, Jing H, Cao S, Zhang X, Jiang Y, Yin J, Cao J, Shen Y. Identification and genotyping of Enterocytozoon bieneusi in wild Himalayan marmots (Marmota himalayana) and Alashan ground squirrels (Spermophilus alashanicus) in the Qinghai-Tibetan Plateau area (QTPA) of Gansu Province, China. Parasit Vectors 2020; 13:367. [PMID: 32698833 PMCID: PMC7376879 DOI: 10.1186/s13071-020-04233-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
Background Enterocytozoon bieneusi is the most frequently detected microsporidian species in humans and animals. Currently, to the best of our knowledge, no information on E. bieneusi infection in Himalayan marmots (Marmota himalayana) and Alashan ground squirrels (Spermophilus alashanicus) is available worldwide. The aim of the present study was to understand the occurrence and genetic characterizations of E. bieneusi in Himalayan marmots and Alashan ground squirrels in the Qinghai-Tibetan Plateau area (QTPA), Gansu Province, China. Methods A total of 498 intestinal contents were collected from 399 Himalayan marmots and 99 Alashan ground squirrels in QTPA. These samples were screened for the presence of E. bieneusi by using nested polymerase chain reaction and sequencing of the internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene. The ITS-positive sequences were aligned and phylogenetically analyzed to determine the genotypes of E. bieneusi. Results The average infection rate of E. bieneusi was 10.0% (50/498), with 11.8% (47/399) in Himalayan marmots and 3.0% (3/99) in Alashan ground squirrels. A total of 7 distinct E. bieneusi genotypes were confirmed: 1 known genotype, YAK1 (n = 18) and 6 novel genotypes, named as ZY37 (n = 27), HN39 (n = 1), HN96 (n = 1), SN45 (n = 1), XH47 (n = 1) and ZY83 (n = 1). All the genotypes obtained in the present study were classified into group 1. Conclusions To our knowledge, this is the first report of E. bieneusi in Himalayan marmots and Alashan ground squirrels in China. The identification of genotype YAK1 in the two rodent species expanded the host range of this genotype. All the seven genotypes were clustered into zoonotic group 1, suggesting that these animal species can be potential epidemiological vectors of zoonotic microsporidiosis caused by E. bieneusi and pose a threat to ecological security. It is necessary to strengthen management practices and surveillance in the investigated areas to reduce the risk of E. bieneusi infection from the two rodent species to humans.![]()
Collapse
Affiliation(s)
- Jie Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Xin Wang
- National Institute of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Huaiqi Jing
- National Institute of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Shengkui Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Xiaofan Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Yanyan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China. .,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China. .,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China. .,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China. .,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China.
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China. .,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China. .,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China. .,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China. .,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China.
| |
Collapse
|
5
|
Javanmard E, Nemati S, Sharifdini M, Rostami A, Mirjalali H, Zali MR. The First Report and Molecular Analysis of Enterocytozoon bieneusi from Raccoon (Procyon lotor) in North of Iran. J Eukaryot Microbiol 2020; 67:359-368. [PMID: 31943500 DOI: 10.1111/jeu.12786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/21/2019] [Accepted: 01/06/2020] [Indexed: 11/29/2022]
Abstract
Microsporidia are known opportunistic microorganisms and usually transmitted via the fecal-oral route. However, there is no information about human-infecting microsporidia in wildlife in Iran. This study aimed to investigate and analyze human-infecting microsporidia isolated from raccoons in north of Iran. Totally, 30 fecal samples were collected; then, DNA extraction was performed and specific fragments of the SSU rRNA gene of Enterocytozoon bieneusi and Encephalitozoon species were amplified. After amplification and sequencing the ITS, the results were compared to the GenBank database. Phylogenetic trees and network analysis were employed to explore probable relationships. E. bieneusi was the only detected microsporidia among samples. Genotyping showed the genotypes D, E, and RA in 15/18 (83.33%), 1/18 (5.55%), and 2/18 (11.11%) of samples, respectively. Novel genotypes RA1 and RA2 grouped together and apart from other genotypes. E. bieneusi genotypes D and E clustered with the genotypes previously reported from animals, humans, and environmental samples. Network analysis revealed six distinct sequence types among raccoon's isolates. This study demonstrated that E. bieneusi genotype D was the most prevalent microsporidia among raccoons. It seems that wildlife may play a role in dispersion of microsporidia spores.
Collapse
Affiliation(s)
- Ehsan Javanmard
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Arabi Street, 1985717413, Chamran Highway, Tehran, Iran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Arabi Street, 1985717413, Chamran Highway, Tehran, Iran
| | - Meysam Sharifdini
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Tehran Road Km6, Rasht, 3363, Guilan, Iran
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Ganjafrooz Street, 47176-47745, Babol, Mazandaran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Arabi Street, 1985717413, Chamran Highway, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Arabi Street, 1985717413, Chamran Highway, Tehran, Iran
| |
Collapse
|