1
|
Jin H, Ranasinghe KG, Prabhu P, Dale C, Gao Y, Kudo K, Vossel K, Raj A, Nagarajan SS, Jiang F. Dynamic functional connectivity MEG features of Alzheimer's disease. Neuroimage 2023; 281:120358. [PMID: 37699440 PMCID: PMC10865998 DOI: 10.1016/j.neuroimage.2023.120358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Dynamic resting state functional connectivity (RSFC) characterizes time-varying fluctuations of functional brain network activity. While many studies have investigated static functional connectivity, it has been unclear whether features of dynamic functional connectivity are associated with neurodegenerative diseases. Popular sliding-window and clustering methods for extracting dynamic RSFC have various limitations that prevent extracting reliable features to address this question. Here, we use a novel and robust time-varying dynamic network (TVDN) approach to extract the dynamic RSFC features from high resolution magnetoencephalography (MEG) data of participants with Alzheimer's disease (AD) and matched controls. The TVDN algorithm automatically and adaptively learns the low-dimensional spatiotemporal manifold of dynamic RSFC and detects dynamic state transitions in data. We show that amongst all the functional features we investigated, the dynamic manifold features are the most predictive of AD. These include: the temporal complexity of the brain network, given by the number of state transitions and their dwell times, and the spatial complexity of the brain network, given by the number of eigenmodes. These dynamic features have higher sensitivity and specificity in distinguishing AD from healthy subjects than the existing benchmarks do. Intriguingly, we found that AD patients generally have higher spatial complexity but lower temporal complexity compared with healthy controls. We also show that graph theoretic metrics of dynamic component of TVDN are significantly different in AD versus controls, while static graph metrics are not statistically different. These results indicate that dynamic RSFC features are impacted in neurodegenerative disease like Alzheimer's disease, and may be crucial to understanding the pathophysiological trajectory of these diseases.
Collapse
Affiliation(s)
- Huaqing Jin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kamalini G Ranasinghe
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Pooja Prabhu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Corby Dale
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Yijing Gao
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kiwamu Kudo
- Medical Imaging Business Center, Ricoh Company, Ltd., Kanazawa, 920-0177, Japan
| | - Keith Vossel
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Fei Jiang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Chen Q, Chen F, Zhu Y, Long C, Lu J, Zhang X, Nedelska Z, Hort J, Chen J, Ma G, Zhang B. Reconfiguration of brain network dynamics underlying spatial deficits in subjective cognitive decline. Neurobiol Aging 2023; 127:82-93. [PMID: 37116409 DOI: 10.1016/j.neurobiolaging.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/12/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Brain dynamics and the associations with spatial navigation in individuals with subjective cognitive decline (SCD) remain unknown. In this study, a hidden Markov model (HMM) was inferred from resting-state functional magnetic resonance imaging data in a cohort of 80 SCD and 77 normal control (NC) participants. By HMM, 12 states with distinct brain activity were identified. The SCD group showed increased fractional occupancy in the states with less activated ventral default mode, posterior salience, and visuospatial networks, while decreased fractional occupancy in the state with general network activation. The SCD group also showed decreased probabilities of transition into and out of the state with general network activation, suggesting an inability to dynamically upregulate and downregulate brain network activity. Significant correlations between brain dynamics and spatial navigation were observed. The combined features of spatial navigation and brain dynamics showed an area under the curve of 0.854 in distinguishing between SCD and NC. The findings may provide exploratory evidence of the reconfiguration of brain network dynamics underlying spatial deficits in SCD.
Collapse
|
3
|
Yang F, Jiang X, Yue F, Wang L, Boecker H, Han Y, Jiang J. Exploring dynamic functional connectivity alterations in the preclinical stage of Alzheimer's disease: an exploratory study from SILCODE. J Neural Eng 2022; 19. [PMID: 35147522 DOI: 10.1088/1741-2552/ac542d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Exploring functional connectivity (FC) alterations is important for the understanding of underlying neuronal network alterations in subjective cognitive decline (SCD). The objective of this study was to prove that dynamic FC can better reflect the changes of brain function in individuals with SCD compared to static FC, and further to explore the association between FC alterations and amyloid pathology in the preclinical stage of Alzheimer's disease (AD). METHODS 101 normal control (NC) subjects, 97 SCDs, and 55 cognitive impairment (CI) subjects constituted the whole-cohort. Of these, 29 NCs and 52 SCDs with amyloid images were selected as the sub-cohort. First, independent components (ICs) were identified by independent component analysis and static and dynamic FC were calculated by pairwise correlation coefficient between ICs. Second, FC alterations were identified through group comparison, and seed-based dynamic FC analysis was done. Analysis of variance (ANOVA) was used to compare the seed-based dynamic FC maps and measure the group or amyloid effects. Finally, correlation analysis was conducted between the altered dynamic FC and amyloid burden. RESULTS The results showed that 42 ICs were revealed. Significantly altered dynamic FC included those between the salience/ventral attention network, the default mode network, and the visual network. Specifically, the thalamus/caudate (IC 25) drove the hub role in the group differences. In the seed-based dynamic FC analysis, the dynamic FC between the thalamus/caudate and the middle temporal/frontal gyrus was observed to be higher in the SCD and CI groups. Moreover, a higher dynamic FC between the thalamus/caudate and visual cortex was observed in the amyloid positive group. Finally, the altered dynamic FC was associated with the amyloid global standardized uptake value ratio (SUVr). CONCLUSION Our findings suggest SCD-related alterations could be more reflected by dynamic FC than static FC, and the alterations are associated with global SUVr.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai University, Shangda Road, Baoshan district, Shanghai, Shanghai, 200444, CHINA
| | - Xueyan Jiang
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Feng Yue
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Luyao Wang
- Shanghai University, Shangda road, Baoshan district, shanghai, Shanghai, 200444, CHINA
| | - Henning Boecker
- University Hospital Bonn, Positron Emission Tomography (PET) Group, Bonn, Germany, Bonn, Nordrhein-Westfalen, 53127, GERMANY
| | - Ying Han
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Jiehui Jiang
- Shanghai University, Shangda road, Baoshan district, Shanghai, Shanghai, 200444, CHINA
| |
Collapse
|
4
|
Dong G, Yang L, Li CSR, Wang X, Zhang Y, Du W, Han Y, Tang X. Dynamic network connectivity predicts subjective cognitive decline: the Sino-Longitudinal Cognitive impairment and dementia study. Brain Imaging Behav 2021; 14:2692-2707. [PMID: 32361946 PMCID: PMC7606422 DOI: 10.1007/s11682-019-00220-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Subjective cognitive decline (SCD) is the preclinical stage of Alzheimer's disease (AD), the most common neurodegenerative disease in the elderly. We collected resting-state functional MRI data and applied novel graph-theoretical analyses to investigate the dynamic spatiotemporal cerebral connectivities in 63 individuals with SCD and 67 normal controls (NC). Temporal flexibility and spatiotemporal diversity were mapped to reflect dynamic time-varying functional interactions among the brain regions within and outside communities. Temporal flexibility indicates how frequently a brain region interacts with regions of other communities across time; spatiotemporal diversity describes how evenly a brain region interacts with regions belonging to other communities. SCD and NC differed in large-scale brain dynamics characterized by the two measures, which, with support vector machine, demonstrated higher classification accuracies than conventional static parameters and structural metrics. The findings characterize dynamic network dysfunction that may serve as a biomarker of the preclinical stage of AD.
Collapse
Affiliation(s)
- Guozhao Dong
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Liu Yang
- Department of Neurology, Xuanwu hospital of Capital Medical University, No.45 Street Changchun, District Xichen, Beijing, 100053, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoni Wang
- Department of Neurology, Xuanwu hospital of Capital Medical University, No.45 Street Changchun, District Xichen, Beijing, 100053, China
| | - Yihe Zhang
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Wenying Du
- Department of Neurology, Xuanwu hospital of Capital Medical University, No.45 Street Changchun, District Xichen, Beijing, 100053, China
| | - Ying Han
- Department of Neurology, Xuanwu hospital of Capital Medical University, No.45 Street Changchun, District Xichen, Beijing, 100053, China. .,National Clinical Research Center for Geriatric Disorders, Beijing, China.
| | - Xiaoying Tang
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of technology, 5 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
5
|
Chen Q, Lu J, Zhang X, Sun Y, Chen W, Li X, Zhang W, Qing Z, Zhang B. Alterations in Dynamic Functional Connectivity in Individuals With Subjective Cognitive Decline. Front Aging Neurosci 2021; 13:646017. [PMID: 33613274 PMCID: PMC7886811 DOI: 10.3389/fnagi.2021.646017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To investigate the dynamic functional connectivity (DFC) and static parameters of graph theory in individuals with subjective cognitive decline (SCD) and the associations of DFC and topological properties with cognitive performance. Methods: Thirty-three control subjects and 32 SCD individuals were enrolled in this study, and neuropsychological evaluations and resting-state functional magnetic resonance imaging scanning were performed. Thirty-three components were selected by group independent component analysis to construct 7 functional networks. Based on the sliding window approach and k-means clustering, distinct DFC states were identified. We calculated the temporal properties of fractional windows in each state, the mean dwell time in each state, and the number of transitions between each pair of DFC states. The global and local static parameters were assessed by graph theory analysis. The differences in DFC and topological metrics, and the associations of the altered neuroimaging measures with cognitive performance were assessed. Results: The whole cohort demonstrated 4 distinct connectivity states. Compared to the control group, the SCD group showed increased fractional windows and an increased mean dwell time in state 4, characterized by hypoconnectivity both within and between networks. The SCD group also showed decreased fractional windows and a decreased mean dwell time in state 2, dominated by hyperconnectivity within and between the auditory, visual and somatomotor networks. The number of transitions between state 1 and state 2, between state 2 and state 3, and between state 2 and state 4 was significantly reduced in the SCD group compared to the control group. No significant differences in global or local topological metrics were observed. The altered DFC properties showed significant correlations with cognitive performance. Conclusion: Our findings indicated DFC network reconfiguration in the SCD stage, which may underlie the early cognitive decline in SCD subjects and serve as sensitive neuroimaging biomarkers for the preclinical detection of individuals with incipient Alzheimer's disease.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Sun
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenqian Chen
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin Li
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Wen Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhao Qing
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Mancho-Fora N, Montalà-Flaquer M, Farràs-Permanyer L, Zarabozo-Hurtado D, Gallardo-Moreno GB, Gudayol-Farré E, Peró-Cebollero M, Guàrdia-Olmos J. Network change point detection in resting-state functional connectivity dynamics of mild cognitive impairment patients. Int J Clin Health Psychol 2020; 20:200-212. [PMID: 32994793 PMCID: PMC7501449 DOI: 10.1016/j.ijchp.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/16/2020] [Indexed: 10/27/2022] Open
Abstract
Background/Objective: This study aims to characterize the differences on the short-term temporal network dynamics of the undirected and weighted whole-brain functional connectivity between healthy aging individuals and people with mild cognitive impairment (MCI). The Network Change Point Detection algorithm was applied to identify the significant change points in the resting-state fMRI register, and we analyzed the fluctuations in the topological properties of the sub-networks between significant change points. Method: Ten MCI patients matched by gender and age in 1:1 ratio to healthy controls screened during patient recruitment. A neuropsychological evaluation was done to both groups as well as functional magnetic images were obtained with a Philips 3.0T. All the images were preprocessed and statistically analyzed through dynamic point estimation tools. Results: No statistically significant differences were found between groups in the number of significant change points in the functional connectivity networks. However, an interaction effect of age and state was detected on the intra-participant variability of the network strength. Conclusions: The progression of states was associated to higher variability in the patient's group. Additionally, higher performance in the prospective and retrospective memory scale was associated with higher median network strength.
Collapse
Affiliation(s)
| | - Marc Montalà-Flaquer
- Facultat de Psicologia, Universitat de Barcelona, Spain.,UB Institute of Complex Systems, Universitat de Barcelona, Spain
| | | | | | | | - Esteban Gudayol-Farré
- Facultad de Psicología, Universidad Miochoacana San Nicolás de Hidalgo, Morelia, Mexico
| | - Maribel Peró-Cebollero
- Facultat de Psicologia, Universitat de Barcelona, Spain.,UB Institute of Complex Systems, Universitat de Barcelona, Spain.,Institute of Neuroscience, Universitat de Barcelona, Spain
| | - Joan Guàrdia-Olmos
- Facultat de Psicologia, Universitat de Barcelona, Spain.,UB Institute of Complex Systems, Universitat de Barcelona, Spain.,Institute of Neuroscience, Universitat de Barcelona, Spain
| |
Collapse
|
7
|
Inhibitory Control Deficits in Individuals with Amnestic Mild Cognitive Impairment: a Meta-Analysis. Neuropsychol Rev 2020; 30:97-125. [DOI: 10.1007/s11065-020-09428-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 02/05/2020] [Indexed: 01/07/2023]
|
8
|
Miraglia F, Vecchio F, Marra C, Quaranta D, Alù F, Peroni B, Granata G, Judica E, Cotelli M, Rossini PM. Small World Index in Default Mode Network Predicts Progression from Mild Cognitive Impairment to Dementia. Int J Neural Syst 2020; 30:2050004. [DOI: 10.1142/s0129065720500045] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aim of this study was to explore the EEG functional connectivity in amnesic mild cognitive impairments (MCI) subjects with multidomain impairment in order to characterize the Default Mode Network (DMN) in converted MCI (cMCI), which converted to Alzheimer’s disease (AD), compared to stable MCI (sMCI) subjects. A total of 59 MCI subjects were recruited and divided -after appropriate follow-up- into cMCI or sMCI. They were further divided in MCI with linguistic domain (LD) impairment and in MCI with executive domain (ED) impairment. Small World (SW) index was measured as index of balance between integration and segregation brain processes. SW, computed restricting to nodes of DMN regions for all frequency bands, evaluated how they differ between MCI subgroups assessed through clinical and neuropsychological four-years follow-up. In addition, SW evaluated how this pattern differs between MCI with LD and MCI with ED. Results showed that SW index significantly decreased in gamma band in cMCI compared to sMCI. In cMCI with LD impairment, the SW index significantly decreased in delta band, while in cMCI with ED impairment the SW index decreased in delta and gamma bands and increased in alpha1 band. We propose that the DMN functional alterations in cognitive impairment could reflect an abnormal flow of brain information processing during resting state possibly associated to a status of pre-dementia.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
- Via Val Cannuta, 247, 00166 Rome, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Camillo Marra
- Memory Clinic, Fondazione Policlinico Universitario, A. Gemelli IRCCS, Rome, Italy
| | - Davide Quaranta
- Memory Clinic, Fondazione Policlinico Universitario, A. Gemelli IRCCS, Rome, Italy
| | - Francesca Alù
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Benedetta Peroni
- Institute of Neurology, Area of Neuroscience, Catholic University of The Sacred Heart, Rome, Italy
| | - Giuseppe Granata
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elda Judica
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milano, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | |
Collapse
|