1
|
Lo Presti K, Jégo M, Frieß W. "The More, the Better?": The Impact of Sugar-to-Protein Molar Ratio in Freeze-Dried Monoclonal Antibody Formulations on Protein Stability. Mol Pharm 2024. [PMID: 39564766 DOI: 10.1021/acs.molpharmaceut.4c01174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Lyophilization is widely used to ensure the stability of protein drugs by minimizing chemical and physical degradation in the dry solid state. To this end, proteins are typically formulated with sugars that form an amorphous immobilizing matrix and stabilize hydrogen bonds replacing water molecules. The optimal amount of sugar required and protein stability at low excipient-to-protein molar ratios are not well understood. We investigated this by focusing on the physical stability of formulations, reflecting highly concentrated monoclonal antibody (mAb) lyophilizates at low sucrose to mAb ratios between 25:1 and 360:1. Additionally, the impact of different excipient types, buffer concentrations, and polysorbates was studied. The mAb stability was evaluated over up to three months at 25 and 40 °C. We investigated the "the more, the better" approach regarding excipient usage in protein formulation and the existence of a potential stabilizing threshold. Our findings show efficient monomeric content preservation even at low molar ratios, which could be explained based on the water replacement theory. We identified an exponential correlation between the sucrose to protein molar ratio and aggregate formation and found that there is no molar ratio threshold to achieve minimum stabilization. Sucrose demonstrated the best stabilization effect. Both mannitol, used as a cryoprotectant at low concentrations, and arginine reduced aggregation compared to the pure mAb formulation. The higher ionic strength of 5 mM histidine buffer enhanced protein stability compared to that of 0.1 mM histidine buffer, which was more pronounced at lower molar ratios. The addition of polysorbate 20 contributed an additional interfacial stabilizing effect, complementing the cryoprotective and lyoprotective properties of sucrose. Overall, a model could be developed to optimize the quantity of sugar required for protein stabilization and facilitate a more rational design of protein lyophilizates. The molar ratio of sugar to protein for high-concentration mAb products is limited by the acceptable tonicity, but we showed that sufficient stabilization can be achieved even at low molar ratios.
Collapse
Affiliation(s)
- Ken Lo Presti
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Mathilde Jégo
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Munich 81377, Germany
- Université Claude Bernard, 43 Bd du 11 Novembre 1918, Villeurbanne 69100, France
| | - Wolfgang Frieß
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Munich 81377, Germany
| |
Collapse
|
2
|
Kölbel J, Anuschek ML, Stelzl I, Santitewagun S, Friess W, Zeitler JA. Dynamical Transition in Dehydrated Proteins. J Phys Chem Lett 2024; 15:3581-3590. [PMID: 38527099 PMCID: PMC11000241 DOI: 10.1021/acs.jpclett.3c03584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Terahertz time-domain spectroscopy and differential scanning calorimetry were used to study the role of the dynamics of biomolecules decoupled from solvent effects. Lyophilized sucrose exhibited steadily increasing absorption with temperature as anharmonic excitations commenced as the system emerged from a deep minimum of the potential energy landscape where harmonic vibrations dominate. The polypeptide bacitracin and two globular proteins, lysozyme and human serum albumin, showed a more complex temperature dependence. Further analysis focused on the spectral signature below and above the boson peak. We found evidence of the onset of anharmonic motions that are characteristic for partial unfolding and molecular jamming in the dry biomolecules. The activation of modes of the protein molecules at temperatures comparable to the protein dynamical transition temperature was observed in the absence of hydration. No evidence of Fröhlich coherence, postulated to facilitate biological function, was found in our experiments.
Collapse
Affiliation(s)
- Johanna Kölbel
- Department
of Chemical Engineering, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Moritz L. Anuschek
- Department
of Chemical Engineering, University of Cambridge, Cambridge CB3 0AS, U.K.
- Department
of Pharmacy - Center for Drug Research, Pharmaceutical Technology
and Biopharmaceutics, Ludwig-Maximilians
Universität, Butenandtstrasse
5, 81377 Munich, Germany
| | - Ivonne Stelzl
- Department
of Pharmacy - Center for Drug Research, Pharmaceutical Technology
and Biopharmaceutics, Ludwig-Maximilians
Universität, Butenandtstrasse
5, 81377 Munich, Germany
| | - Supawan Santitewagun
- Department
of Chemical Engineering, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Wolfgang Friess
- Department
of Pharmacy - Center for Drug Research, Pharmaceutical Technology
and Biopharmaceutics, Ludwig-Maximilians
Universität, Butenandtstrasse
5, 81377 Munich, Germany
| | - J. Axel Zeitler
- Department
of Chemical Engineering, University of Cambridge, Cambridge CB3 0AS, U.K.
| |
Collapse
|
3
|
Shmool T, Martin LK, Matthews RP, Hallett JP. Ionic Liquid-Based Strategy for Predicting Protein Aggregation Propensity and Thermodynamic Stability. JACS AU 2022; 2:2068-2080. [PMID: 36186557 PMCID: PMC9516703 DOI: 10.1021/jacsau.2c00356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 05/26/2023]
Abstract
Novel drug candidates are continuously being developed to combat the most life-threatening diseases; however, many promising protein therapeutics are dropped from the pipeline. During biological and industrial processes, protein therapeutics are exposed to various stresses such as fluctuations in temperature, solvent pH, and ionic strength. These can lead to enhanced protein aggregation propensity, one of the greatest challenges in drug development. Recently, ionic liquids (ILs), in particular, biocompatible choline chloride ([Cho]Cl)-based ILs, have been used to hinder stress-induced protein conformational changes. Herein, we develop an IL-based strategy to predict protein aggregation propensity and thermodynamic stability. We examine three key variables influencing protein misfolding: pH, ionic strength, and temperature. Using dynamic light scattering, zeta potential, and variable temperature circular dichroism measurements, we systematically evaluate the structural, thermal, and thermodynamic stability of fresh immunoglobin G4 (IgG4) antibody in water and 10, 30, and 50 wt % [Cho]Cl. Additionally, we conduct molecular dynamics simulations to examine IgG4 aggregation propensity in each system and the relative favorability of different [Cho]Cl-IgG4 packing interactions. We re-evaluate each system following 365 days of storage at 4 °C and demonstrate how to predict the thermodynamic properties and protein aggregation propensity over extended storage, even under stress conditions. We find that increasing [Cho]Cl concentration reduced IgG4 aggregation propensity both fresh and following 365 days of storage and demonstrate the potential of using our predictive IL-based strategy and formulations to radically increase protein stability and storage.
Collapse
Affiliation(s)
- Talia
A. Shmool
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Laura K. Martin
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
| | - Richard P. Matthews
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Jason P. Hallett
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
4
|
Shmool TA, Constantinou A, Jirkas A, Zhao C, Georgiou TK, Hallett J. Next Generation Strategy for Tuning the Thermoresponsive Properties of Micellar and Hydrogel Drug Delivery Vehicles Using Ionic Liquids. Polym Chem 2022. [DOI: 10.1039/d2py00053a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amongst the greatest challenges in developing injectable controlled thermoresponsive micellar and hydrogel drug delivery vehicles include tuning the cloud point (CP) and reducing the gelation temperature (Tgel), below 37 °C,...
Collapse
|
5
|
Shmool TA, Martin LK, Bui-Le L, Moya-Ramirez I, Kotidis P, Matthews RP, Venter GA, Kontoravdi C, Polizzi KM, Hallett JP. An experimental approach probing the conformational transitions and energy landscape of antibodies: a glimmer of hope for reviving lost therapeutic candidates using ionic liquid. Chem Sci 2021; 12:9528-9545. [PMID: 34349928 PMCID: PMC8278930 DOI: 10.1039/d1sc02520a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
Understanding protein folding in different environmental conditions is fundamentally important for predicting protein structures and developing innovative antibody formulations. While the thermodynamics and kinetics of folding and unfolding have been extensively studied by computational methods, experimental methods for determining antibody conformational transition pathways are lacking. Motivated to fill this gap, we prepared a series of unique formulations containing a high concentration of a chimeric immunoglobin G4 (IgG4) antibody with different excipients in the presence and absence of the ionic liquid (IL) choline dihydrogen phosphate. We determined the effects of different excipients and IL on protein thermal and structural stability by performing variable temperature circular dichroism and bio-layer interferometry analyses. To further rationalise the observations of conformational changes with temperature, we carried out molecular dynamics simulations on a single antibody binding fragment from IgG4 in the different formulations, at low and high temperatures. We developed a methodology to study the conformational transitions and associated thermodynamics of biomolecules, and we showed IL-induced conformational transitions. We showed that the increased propensity for conformational change was driven by preferential binding of the dihydrogen phosphate anion to the antibody fragment. Finally, we found that a formulation containing IL with sugar, amino acids and surfactant is a promising candidate for stabilising proteins against conformational destabilisation and aggregation. We hope that ultimately, we can help in the quest to understand the molecular basis of the stability of antibodies and protein misfolding phenomena and offer new candidate formulations with the potential to revive lost therapeutic candidates.
Collapse
Affiliation(s)
- Talia A Shmool
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Laura K Martin
- Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Liem Bui-Le
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Ignacio Moya-Ramirez
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Pavlos Kotidis
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Richard P Matthews
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Gerhard A Venter
- Scientific Computing Research Unit, Department of Chemistry, University of Cape Town Rondebosch Cape Town 7701 South Africa
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Jason P Hallett
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| |
Collapse
|
6
|
Lykina AA, Nazarov MM, Konnikova MR, Mustafin IA, Vaks VL, Anfertev VA, Domracheva EG, Chernyaeva MB, Kistenev YV, Vrazhnov DA, Prischepa VV, Kononova YA, Korolev DV, Cherkasova OP, Shkurinov AP, Babenko AY, Smolyanskaya OA. Terahertz spectroscopy of diabetic and non-diabetic human blood plasma pellets. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200355SSR. [PMID: 33580640 PMCID: PMC7880624 DOI: 10.1117/1.jbo.26.4.043006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE The creation of fundamentally new approaches to storing various biomaterial and estimation parameters, without irreversible loss of any biomaterial, is a pressing challenge in clinical practice. We present a technology for studying samples of diabetic and non-diabetic human blood plasma in the terahertz (THz) frequency range. AIM The main idea of our study is to propose a method for diagnosis and storing the samples of diabetic and non-diabetic human blood plasma and to study these samples in the THz frequency range. APPROACH Venous blood from patients with type 2 diabetes mellitus and conditionally healthy participants was collected. To limit the impact of water in the THz spectra, lyophilization of liquid samples and their pressing into a pellet were performed. These pellets were analyzed using THz time-domain spectroscopy. The differentiation between the THz spectral data was conducted using multivariate statistics to classify non-diabetic and diabetic groups' spectra. RESULTS We present the density-normalized absorption and refractive index for diabetic and non-diabetic pellets in the range 0.2 to 1.4 THz. Over the entire THz frequency range, the normalized index of refraction of diabetes pellets exceeds this indicator of non-diabetic pellet on average by 9% to 12%. The non-diabetic and diabetic groups of the THz spectra are spatially separated in the principal component space. CONCLUSION We illustrate the potential ability in clinical medicine to construct a predictive rule by supervised learning algorithms after collecting enough experimental data.
Collapse
Affiliation(s)
- Anastasiya A. Lykina
- Institute of Photonics and Optical Information Technologies, ITMO University, Saint-Petersburg, Russia
| | | | - Maria R. Konnikova
- Institute on Laser and Information Technologies, Russian Academy of Sciences — Branch of Federal Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, Russia
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia
| | | | - Vladimir L. Vaks
- Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Vladimir A. Anfertev
- Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Elena G. Domracheva
- Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Mariya B. Chernyaeva
- Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | | | - Denis A. Vrazhnov
- Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia
| | | | | | | | - Olga P. Cherkasova
- Institute on Laser and Information Technologies, Russian Academy of Sciences — Branch of Federal Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, Russia
- Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander P. Shkurinov
- Institute on Laser and Information Technologies, Russian Academy of Sciences — Branch of Federal Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, Russia
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Alina Y. Babenko
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Olga A. Smolyanskaya
- Institute of Photonics and Optical Information Technologies, ITMO University, Saint-Petersburg, Russia
| |
Collapse
|
7
|
Shmool TA, Martin LK, Clarke CJ, Bui-Le L, Polizzi KM, Hallett JP. Exploring conformational preferences of proteins: ionic liquid effects on the energy landscape of avidin. Chem Sci 2020; 12:196-209. [PMID: 34163590 PMCID: PMC8178808 DOI: 10.1039/d0sc04991c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this work we experimentally investigate solvent and temperature induced conformational transitions of proteins and examine the role of ion–protein interactions in determining the conformational preferences of avidin, a homotetrameric glycoprotein, in choline-based ionic liquid (IL) solutions. Avidin was modified by surface cationisation and the addition of anionic surfactants, and the structural, thermal, and conformational stabilities of native and modified avidin were examined using dynamic light scattering, differential scanning calorimetry, and thermogravimetric analysis experiments. The protein-surfactant nanoconjugates showed higher thermostability behaviour compared to unmodified avidin, demonstrating distinct conformational ensembles. Small-angle X-ray scattering data showed that with increasing IL concentration, avidin became more compact, interpreted in the context of molecular confinement. To experimentally determine the detailed effects of IL on the energy landscape of avidin, differential scanning fluorimetry and variable temperature circular dichroism spectroscopy were performed. We show that different IL solutions can influence avidin conformation and thermal stability, and we provide insight into the effects of ILs on the folding pathways and thermodynamics of proteins. To further study the effects of ILs on avidin binding and correlate thermostability with conformational heterogeneity, we conducted a binding study. We found the ILs examined inhibited ligand binding in native avidin while enhancing binding in the modified protein, indicating ILs can influence the conformational stability of the distinct proteins differently. Significantly, this work presents a systematic strategy to explore protein conformational space and experimentally detect and characterise ‘invisible’ rare conformations using ILs. Revealing solvent and temperature induced conformational transitions of proteins and the role of ion–protein interactions in determining the conformational preferences of avidin in ionic liquids.![]()
Collapse
Affiliation(s)
- Talia A Shmool
- Department of Chemical Engineering, Imperial College London London SW7 2AZ UK +44 (0)20 7594 5388
| | - Laura K Martin
- Department of Chemical Engineering, Imperial College London London SW7 2AZ UK +44 (0)20 7594 5388.,Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
| | - Coby J Clarke
- Department of Chemical Engineering, Imperial College London London SW7 2AZ UK +44 (0)20 7594 5388
| | - Liem Bui-Le
- Department of Chemical Engineering, Imperial College London London SW7 2AZ UK +44 (0)20 7594 5388
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London London SW7 2AZ UK +44 (0)20 7594 5388.,Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
| | - Jason P Hallett
- Department of Chemical Engineering, Imperial College London London SW7 2AZ UK +44 (0)20 7594 5388
| |
Collapse
|