1
|
Bekaert B, Janssen P, Fathollahi S, Vanderroost D, Roelofs T, Dickhoff B, Vervaet C, Vanhoorne V. Batch vs. continuous direct compression - a comparison of material processability and final tablet quality. Int J Pharm X 2024; 7:100226. [PMID: 38235316 PMCID: PMC10792456 DOI: 10.1016/j.ijpx.2023.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, an in-depth comparison was made between batch and continuous direct compression using similar compression set-ups. The overall material processability and final tablet quality were compared and evaluated. Correlations between material properties, process parameters and final tablet properties were made via multivariate data analyses. In total, 10 low-dosed (1% w/w) and 10 high-dosed (40% w/w) formulations were processed, using a total of 10 different fillers/filler combinations. The trials indicated that the impact of filler type, drug load or process settings was similar for batch and continuous direct compression. The main differentiator between batch and continuous was the flow dynamics in the operating system, where properties related to flow, compressibility and permeability played a crucial role. The less consistent flow throughout a batch process resulted in a significantly higher variability within the tablet press (σCF) and for the tablet quality responses (σMass, σTS). However, the better controlled blending procedure prior to batch processing was reflected in a more consistent API concentration variability. Overall, the comparison showed the benefits of selecting appropriate excipients and process settings to achieve a specific outcome, keeping in mind some key differentiators between both processes.
Collapse
Affiliation(s)
- B. Bekaert
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - P.H.M. Janssen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
- DFE Pharma, Klever Strasse 187, 47568 Goch, Germany
| | | | - D. Vanderroost
- GEA Process Engineering, Keerbaan 70, B-2160 Wommelgem, Belgium
| | - T. Roelofs
- DFE Pharma, Klever Strasse 187, 47568 Goch, Germany
| | | | - C. Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - V. Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
2
|
Leane M, Pitt K, Reynolds G, Tantuccio A, Moreton C, Crean A, Kleinebudde P, Carlin B, Gamble J, Gamlen M, Stone E, Kuentz M, Gururajan B, Khimyak YZ, Van Snick B, Andersen S, Misic Z, Peter S, Sheehan S. Ten years of the manufacturing classification system: a review of literature applications and an extension of the framework to continuous manufacture. Pharm Dev Technol 2024; 29:395-414. [PMID: 38618690 DOI: 10.1080/10837450.2024.2342953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The MCS initiative was first introduced in 2013. Since then, two MCS papers have been published: the first proposing a structured approach to consider the impact of drug substance physical properties on manufacturability and the second outlining real world examples of MCS principles. By 2023, both publications had been extensively cited by over 240 publications. This article firstly reviews this citing work and considers how the MCS concepts have been received and are being applied. Secondly, we will extend the MCS framework to continuous manufacture. The review structure follows the flow of drug product development focussing first on optimisation of API properties. The exploitation of links between API particle properties and manufacturability using large datasets seems particularly promising. Subsequently, applications of the MCS for formulation design include a detailed look at the impact of percolation threshold, the role of excipients and how other classification systems can be of assistance. The final review section focusses on manufacturing process development, covering the impact of strain rate sensitivity and modelling applications. The second part of the paper focuses on continuous processing proposing a parallel MCS framework alongside the existing batch manufacturing guidance. Specifically, we propose that continuous direct compression can accommodate a wider range of API properties compared to its batch equivalent.
Collapse
Affiliation(s)
- Michael Leane
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Kendal Pitt
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Gavin Reynolds
- Oral Product Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Anthony Tantuccio
- Technology Intensification, Hovione LLC, East Windsor, New Jersey, USA
| | | | - Abina Crean
- SSPC, the SFI Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Peter Kleinebudde
- Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Brian Carlin
- Owner, Carlin Pharma Consulting, Lawrenceville, New Jersey, USA
| | - John Gamble
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Michael Gamlen
- Chief Scientific Officer, Gamlen Tableting Ltd, Heanor, UK
| | - Elaine Stone
- Consultant, Stonepharma Ltd. ATIC, Loughborough, UK
| | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Muttenz, Switzerland
| | - Bindhu Gururajan
- Pharmaceutical Development, Novartis Pharma AG, Basel, Switzerland
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Bernd Van Snick
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Sune Andersen
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Zdravka Misic
- Innovation Research and Development, dsm-firmenich, Kaiseraugst, Switzerland
| | - Stefanie Peter
- Research and Development Division, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Stephen Sheehan
- External Development and Manufacturing, Alkermes Pharma Ireland Limited, Dublin 4, Ireland
| |
Collapse
|