1
|
Jaspers M, Tegel F, Roelofs TP, Starsich F, Song YL, Meir B, Elkes R, Dickhoff BH. Process intensification of pharmaceutical powder blending at commercial throughputs by utilizing semi-continuous mini-blending. Int J Pharm X 2024; 8:100264. [PMID: 39040515 PMCID: PMC11262166 DOI: 10.1016/j.ijpx.2024.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Process intensification involves the miniaturization of equipment while retaining process throughput and performance. The pharmaceutical industry can benefit from this approach especially during drug product development, where the availability of active pharmaceutical ingredients (API) is often limited. It reduces the need for process scale up, as equipment used during product development and commercial production is identical. However, applications of process intensification for processing pharmaceutical powders are limited so far. Here we show that semi-continuous mini-blending can be utilized for process intensification of blending of API and excipients. Uniform blending at commercially relevant throughputs was achieved through mini-blends with a volume of less than ten liters. Our results demonstrate that blending speed, cycle time and blender fill level can be optimized without compromising blending performance. Acceptable blend uniformity is obtained over a broad range of operating parameters, by choosing the right excipients. The optimized throughput of the mini-blending process is in line with the desired throughput of a commercial Continuous Direct Compression (CDC) process.
Collapse
Affiliation(s)
| | - Florian Tegel
- Gericke AG, Althardstrasse 120, CH-8105 Regensdorf, Switzerland
| | | | - Fabian Starsich
- Gericke AG, Althardstrasse 120, CH-8105 Regensdorf, Switzerland
| | | | - Bernhard Meir
- Gericke AG, Althardstrasse 120, CH-8105 Regensdorf, Switzerland
| | | | | |
Collapse
|
2
|
Janssen PHM, Fathollahi S, Dickhoff BHJ, Frijlink HW. Critical review on the role of excipient properties in pharmaceutical powder-to-tablet continuous manufacturing. Expert Opin Drug Deliv 2024; 21:1069-1079. [PMID: 39129595 DOI: 10.1080/17425247.2024.2384698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION The pharmaceutical industry is gradually changing batch-wise manufacturing processes to continuous manufacturing processes, due to the advantages it has to offer. The final product quality and process efficiency of continuous manufacturing processes is among others impacted by the properties of the raw materials. Existing knowledge on the role of raw material properties in batch processing is however not directly transferable to continuous processes, due to the inherent differences between batch and continuous processes. AREAS COVERED A review is performed to evaluate the role of excipient properties for different unit operations used in continuous manufacturing processes. Unit operations that will be discussed include feeding, blending, granulation, final blending, and compression. EXPERT OPINION Although the potency of continuous manufacturing is widely recognized, full utilization still requires a number of challenges to be addressed effectively. An expert opinion will be provided that discusses those challenges and potential solutions to overcome those challenges. The provided overview can serve as a framework for the pharmaceutical industry to push ahead process optimization and formulation development for continuous manufacturing processes.
Collapse
Affiliation(s)
- Pauline H M Janssen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
- Innovation & Technical Solutions, DFE Pharma, Goch, Germany
| | | | | | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Bekaert B, Janssen P, Fathollahi S, Vanderroost D, Roelofs T, Dickhoff B, Vervaet C, Vanhoorne V. Batch vs. continuous direct compression - a comparison of material processability and final tablet quality. Int J Pharm X 2024; 7:100226. [PMID: 38235316 PMCID: PMC10792456 DOI: 10.1016/j.ijpx.2023.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, an in-depth comparison was made between batch and continuous direct compression using similar compression set-ups. The overall material processability and final tablet quality were compared and evaluated. Correlations between material properties, process parameters and final tablet properties were made via multivariate data analyses. In total, 10 low-dosed (1% w/w) and 10 high-dosed (40% w/w) formulations were processed, using a total of 10 different fillers/filler combinations. The trials indicated that the impact of filler type, drug load or process settings was similar for batch and continuous direct compression. The main differentiator between batch and continuous was the flow dynamics in the operating system, where properties related to flow, compressibility and permeability played a crucial role. The less consistent flow throughout a batch process resulted in a significantly higher variability within the tablet press (σCF) and for the tablet quality responses (σMass, σTS). However, the better controlled blending procedure prior to batch processing was reflected in a more consistent API concentration variability. Overall, the comparison showed the benefits of selecting appropriate excipients and process settings to achieve a specific outcome, keeping in mind some key differentiators between both processes.
Collapse
Affiliation(s)
- B. Bekaert
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - P.H.M. Janssen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
- DFE Pharma, Klever Strasse 187, 47568 Goch, Germany
| | | | - D. Vanderroost
- GEA Process Engineering, Keerbaan 70, B-2160 Wommelgem, Belgium
| | - T. Roelofs
- DFE Pharma, Klever Strasse 187, 47568 Goch, Germany
| | | | - C. Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - V. Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
4
|
Leane M, Pitt K, Reynolds G, Tantuccio A, Moreton C, Crean A, Kleinebudde P, Carlin B, Gamble J, Gamlen M, Stone E, Kuentz M, Gururajan B, Khimyak YZ, Van Snick B, Andersen S, Misic Z, Peter S, Sheehan S. Ten years of the manufacturing classification system: a review of literature applications and an extension of the framework to continuous manufacture. Pharm Dev Technol 2024; 29:395-414. [PMID: 38618690 DOI: 10.1080/10837450.2024.2342953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The MCS initiative was first introduced in 2013. Since then, two MCS papers have been published: the first proposing a structured approach to consider the impact of drug substance physical properties on manufacturability and the second outlining real world examples of MCS principles. By 2023, both publications had been extensively cited by over 240 publications. This article firstly reviews this citing work and considers how the MCS concepts have been received and are being applied. Secondly, we will extend the MCS framework to continuous manufacture. The review structure follows the flow of drug product development focussing first on optimisation of API properties. The exploitation of links between API particle properties and manufacturability using large datasets seems particularly promising. Subsequently, applications of the MCS for formulation design include a detailed look at the impact of percolation threshold, the role of excipients and how other classification systems can be of assistance. The final review section focusses on manufacturing process development, covering the impact of strain rate sensitivity and modelling applications. The second part of the paper focuses on continuous processing proposing a parallel MCS framework alongside the existing batch manufacturing guidance. Specifically, we propose that continuous direct compression can accommodate a wider range of API properties compared to its batch equivalent.
Collapse
Affiliation(s)
- Michael Leane
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Kendal Pitt
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Gavin Reynolds
- Oral Product Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Anthony Tantuccio
- Technology Intensification, Hovione LLC, East Windsor, New Jersey, USA
| | | | - Abina Crean
- SSPC, the SFI Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Peter Kleinebudde
- Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Brian Carlin
- Owner, Carlin Pharma Consulting, Lawrenceville, New Jersey, USA
| | - John Gamble
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Michael Gamlen
- Chief Scientific Officer, Gamlen Tableting Ltd, Heanor, UK
| | - Elaine Stone
- Consultant, Stonepharma Ltd. ATIC, Loughborough, UK
| | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Muttenz, Switzerland
| | - Bindhu Gururajan
- Pharmaceutical Development, Novartis Pharma AG, Basel, Switzerland
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Bernd Van Snick
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Sune Andersen
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Zdravka Misic
- Innovation Research and Development, dsm-firmenich, Kaiseraugst, Switzerland
| | - Stefanie Peter
- Research and Development Division, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Stephen Sheehan
- External Development and Manufacturing, Alkermes Pharma Ireland Limited, Dublin 4, Ireland
| |
Collapse
|