1
|
Underwood TSA, Grassberger C, Bass R, MacDonald SM, Meyersohn NM, Yeap BY, Jimenez RB, Paganetti H. Asymptomatic Late-phase Radiographic Changes Among Chest-Wall Patients Are Associated With a Proton RBE Exceeding 1.1. Int J Radiat Oncol Biol Phys 2018; 101:809-819. [PMID: 29976493 DOI: 10.1016/j.ijrobp.2018.03.037] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 02/13/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE Clinical practice assumes a fixed proton relative biological effectiveness (RBE) of 1.1, but in vitro experiments demonstrate higher RBEs at the distal edge of the proton spread-out Bragg peak, that is, in a region that falls within the lung for chest-wall patients. We performed retrospective qualitative and quantitative analyses of lung-density changes-indicative of asymptomatic fibrosis-for chest-wall patients treated with protons or photons. Our null hypothesis was that, assuming a fixed RBE of 1.1, these changes would be the same for the 2 cohorts, supporting current RBE practice. Our alternative hypothesis was that radiographic abnormalities would be greater for the proton cohort, suggesting an RBE > 1.1. METHODS AND MATERIALS We analyzed follow-up computed tomography (CT) scans for 20 proton and photon patients. All were prescribed 50.4 Gy (RBE) in 28 fractions, assuming a fixed RBE of 1.1 for protons and 1 for photons. Deformable registrations enabled us to calculate density changes in the normal lung, specifically (1) median Hounsfield unit (HU) values among posttreatment CT scans and (2) changes in median HU values between pretreatment and posttreatment CT scans, both as a function of grays (RBE). In addition, qualitative abnormality grading was performed by a radiologist. RESULTS Proton patients exhibited higher values of HU/Gy (RBE) (endpoint 1) and ΔHU/Gy (RBE) (endpoint 2): P = .049 and P = .00019, respectively, were obtained (likelihood ratio tests of full linear mixed-effects models against models without "modality"). Furthermore, qualitative radiologic scoring indicated a significant difference between the cohorts (Wilcoxon P = .018; median score, 3 of 9 for protons and 1.5 of 9 for photons). CONCLUSIONS Our data support the hypothesis that the proton RBE for lung-density changes exceeds 1.1. This RBE elevation could be attributable to (1) the late, normal tissue endpoint that we consider or (2) end-of-range proton linear energy transfer elevation-or a combination of the two. Regardless, our results suggest that variations in proton RBE prove important in vivo as well as in vitro.
Collapse
Affiliation(s)
- Tracy S A Underwood
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rhedise Bass
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nandini M Meyersohn
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Beow Y Yeap
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rachel B Jimenez
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Okunieff P, Casey-Sawicki K, Lockney NA, Hoppe BS, Enderling H, Pinnix C, Welsh J, Krishnan S, Yothers G, Brown M, Knox S, Bristow R, Spellman P, Mitin T, Nabavizadeh N, Jaboin J, Manning HC, Feng F, Galbraith S, Solanki AA, Harkenrider MM, Tuli R, Decker RH, Finkelstein SE, Hsu CC, Ha CS, Jagsi R, Shumway D, Daly M, Wang TJC, Fitzgerald TJ, Laurie F, Marshall DT, Raben D, Constine L, Thomas CR, Kachnic LA. Report from the SWOG Radiation Oncology Committee: Research Objectives Workshop 2017. Clin Cancer Res 2018; 24:3500-3509. [PMID: 29661779 DOI: 10.1158/1078-0432.ccr-17-3202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/12/2018] [Accepted: 04/10/2018] [Indexed: 11/16/2022]
Abstract
The Radiation Therapy Committee of SWOG periodically evaluates its strategic plan in an effort to maintain a current and relevant scientific focus, and to provide a standard platform for future development of protocol concepts. Participants in the 2017 Strategic Planning Workshop included leaders in cancer basic sciences, molecular theragnostics, pharmaceutical and technology industries, clinical trial design, oncology practice, and statistical analysis. The committee discussed high-priority research areas, such as optimization of combined modality therapy, radiation oncology-specific drug design, identification of molecular profiles predictive of radiation-induced local or distant tumor responses, and methods for normal tissue-specific mitigation of radiation toxicity. The following concepts emerged as dominant questions ready for national testing: (i) what is the role of radiotherapy in the treatment of oligometastatic, oligorecurrent, and oligoprogressive disease? (ii) How can combined modality therapy be used to enhance systemic and local response? (iii) Can we validate and optimize liquid biopsy and other biomarkers (such as novel imaging) to supplement current response criteria to guide therapy and clinical trial design endpoints? (iv) How can we overcome deficiencies of randomized survival endpoint trials in an era of increasing molecular stratification factors? And (v) how can we mitigate treatment-related side effects and maximize quality of life in cancer survivors? The committee concluded that many aspects of these questions are ready for clinical evaluation and example protocol concepts are provided that could improve rates of cancer cure and quality of survival. Clin Cancer Res; 24(15); 3500-9. ©2018 AACR.
Collapse
Affiliation(s)
- Paul Okunieff
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, Florida.
| | - Katherine Casey-Sawicki
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Natalie A Lockney
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Bradford S Hoppe
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Chelsea Pinnix
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - James Welsh
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Sunil Krishnan
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Greg Yothers
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Martin Brown
- Departments of Radiation Oncology and Neurology, Stanford University, Palo Alto, California
| | - Susan Knox
- Departments of Radiation Oncology and Neurology, Stanford University, Palo Alto, California
| | - Robert Bristow
- Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - Paul Spellman
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Timur Mitin
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Nima Nabavizadeh
- Department of Radiation Medicine, Oregon Health & Science University Knight Cancer Institute, Portland, Oregon
| | - Jerry Jaboin
- Department of Radiation Medicine, Oregon Health & Science University Knight Cancer Institute, Portland, Oregon
| | - H Charles Manning
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Felix Feng
- Department of Urology, University of California, San Francisco, California
| | | | - Abhishek A Solanki
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois
| | - Matthew M Harkenrider
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois
| | - Richard Tuli
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Roy H Decker
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut
| | | | - Charles C Hsu
- Department of Radiation Oncology, University of Arizona Cancer Center, Tucson, Arizona
| | - Chul S Ha
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, Texas
| | - Reshma Jagsi
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Dean Shumway
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Megan Daly
- Department of Radiation Oncology, University of California, San Diego, California
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Thomas J Fitzgerald
- Department of Radiation Oncology, University of Massachusetts Medical School, North Worcester, Massachusetts
| | - Fran Laurie
- Department of Radiation Oncology, University of Massachusetts Medical School, North Worcester, Massachusetts
| | - David T Marshall
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, South Carolina
| | - David Raben
- Department of Radiation Oncology, University of Colorado, Aurora, Colorado
| | - Louis Constine
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University Knight Cancer Institute, Portland, Oregon
| | - Lisa A Kachnic
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
3
|
Nielsen S, Bassler N, Grzanka L, Swakon J, Olko P, Andreassen CN, Overgaard J, Alsner J, Sørensen BS. Differential gene expression in primary fibroblasts induced by proton and cobalt-60 beam irradiation. Acta Oncol 2017; 56:1406-1412. [PMID: 28885067 DOI: 10.1080/0284186x.2017.1351623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Proton beam therapy delivers a more conformal dose distribution than conventional radiotherapy, thus improving normal tissue sparring. Increasing linear energy transfer (LET) along the proton track increases the relative biological effectiveness (RBE) near the distal edge of the Spread-out Bragg peak (SOBP). The severity of normal tissue side effects following photon beam radiotherapy vary considerably between patients. AIM The dual study aim was to identify gene expression patterns specific to radiation type and proton beam position, and to assess whether individual radiation sensitivity influences gene expression levels in fibroblast cultures irradiated in vitro. METHODS The study includes 30 primary fibroblast cell cultures from patients previously classified as either radiosensitive or radioresistant. Cells were irradiated at three different positions in the proton beam profile: entrance, mid-SOBP and at the SOBP distal edge. Dose was delivered in three fractions × 3.5 Gy(RBE) (RBE 1.1). Cobalt-60 (Co-60) irradiation was used as reference. Real-time qPCR was performed to determine gene expression levels for 17 genes associated with inflammation response, fibrosis and angiogenesis. RESULTS Differences in median gene expression levels were observed for multiple genes such as IL6, IL8 and CXCL12. Median IL6 expression was 30%, 24% and 47% lower in entrance, mid-SOBP and SOBP distal edge groups than in Co-60 irradiated cells. No genes were found to be oppositely regulated by different radiation qualities. Radiosensitive patient samples had the strongest regulation of gene expression; irrespective of radiation type. CONCLUSIONS Our findings indicate that the increased LET at the SOBP distal edge position did not generally lead to increased transcriptive response in primary fibroblast cultures. Inflammatory factors were generally less extensively upregulated by proton irradiation compared with Co-60 photon irradiation. These effects may possibly influence the development of normal tissue damage in patients treated with proton beam therapy.
Collapse
Affiliation(s)
- Steffen Nielsen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Bassler
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Leszek Grzanka
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Jan Swakon
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Pawel Olko
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Abravan A, Eide HA, Knudtsen IS, Løndalen AM, Helland Å, Malinen E. Assessment of pulmonary 18F-FDG-PET uptake and cytokine profiles in non-small cell lung cancer patients treated with radiotherapy and erlotinib. Clin Transl Radiat Oncol 2017; 4:57-63. [PMID: 29594209 PMCID: PMC5833916 DOI: 10.1016/j.ctro.2017.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 12/17/2022] Open
Abstract
Purpose To investigate effects of radiotherapy (RT) and erlotinib on pulmonary glucose uptake using 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) positron emission tomography (PET) during and after treatment of non-small cell lung cancer (NSCLC) and to identify associations between serum cytokine levels and lung glucose uptake. Material and methods Twenty-seven patients with advanced NSCLC, receiving RT alone or concomitant RT and erlotinib therapy, were examined by 18F-FDG PET before, during, and after treatment. A total of 57 18F-FDG PET scans were analyzed. Pulmonary 18F-FDG uptake and radiotherapy dose mapping were used to acquire dose-response curves for each patient, where subsequent linear regression gave a glucose uptake level in the un-irradiated parts of the lungs (SUV0) and a response slope (ΔSUV). Serum cytokine levels at corresponding time points were assessed using a multiplex bioassay. Correlations between the most robust cytokines and lung 18F-FDG dose response parameters were further investigated. Results From the dose response analysis, SUV0 at post-therapy was significantly higher (P < 0.001) than at mid- and pre-therapy (45% and 58%, respectively) for the group receiving RT + erlotinib. Also, SUV0 at post-therapy was higher for patients receiving RT + erlotinib compared to RT alone (42%; P < 0.001). No differences in ΔSUV were seen with treatments or time. SUV0 was positively associated (r = 0.47, P = 0.01) with serum levels of the chemokine C-C motif ligand 21 (CCL21) for patients receiving RT + erlotinib. Conclusions Concomitant RT and erlotinib causes an elevation in pulmonary 18F-FDG uptake post treatment compared to RT alone. Pulmonary glucose uptake is associated with an upregulation of a chemokine (CCL21) involved in inflammatory reactions.
Collapse
Key Words
- 18F-FDG
- 18F-FDG, 2-deoxy-2-(18F)fluoro-D-glucose
- CCL, Chemokine (CC motif) ligand
- CT, Computed tomography
- EGFR, Epidermal growth factor receptor
- EORTC QLQ-C30, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30
- EORTC QLQ-LC13, EORTC QLQ Lung Cancer 13
- Erlotinib
- GTV, Gross tumor volume
- HU, Hounsfield Unit
- IL, Interleukin
- Lung cancer
- MMP, Matrix metalloproteinase
- NSCLC, Non-small cell lung cancer
- PET, Positron emission tomography
- Positron emission tomography
- RILT, Radiation induced lung toxicity
- RT, Radiotherapy
- SUV, Standard uptake value
- Standardized uptake value
- Thoracic radiotherapy
Collapse
Affiliation(s)
- Azadeh Abravan
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| | - Hanne Astrid Eide
- Department of Oncology, Oslo University Hospital, Oslo, Norway.,Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ingerid Skjei Knudtsen
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| | | | - Åslaug Helland
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Eirik Malinen
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Mendes F, Antunes C, Abrantes AM, Gonçalves AC, Nobre-Gois I, Sarmento AB, Botelho MF, Rosa MS. Lung cancer: the immune system and radiation. Br J Biomed Sci 2016; 72:78-84. [DOI: 10.1080/09674845.2015.11666801] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- F. Mendes
- Biophysics Unit-IBILI, Faculty of Medicine, University of Coimbra
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine
| | - C. Antunes
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School
| | - A. M. Abrantes
- Biophysics Unit-IBILI, Faculty of Medicine, University of Coimbra
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine
| | - A. C. Gonçalves
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine
- Applied Molecular Biology and Clinical University of Hematology, Faculty of Medicine, University of Coimbra
| | - I. Nobre-Gois
- Radiation Oncology Department, Hospital and University Center of Coimbra
| | - A. B. Sarmento
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine
- Applied Molecular Biology and Clinical University of Hematology, Faculty of Medicine, University of Coimbra
| | - M. F. Botelho
- Biophysics Unit-IBILI, Faculty of Medicine, University of Coimbra
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine
| | - M. S. Rosa
- Immunology Institute, Faculty of Medicine, University of Coimbra, Portugal
| |
Collapse
|
6
|
Hoppe BS, Henderson R, Pham D, Cury JD, Bajwa A, Morris CG, D'Agostino H, Flampouri S, Huh S, Li Z, McCook B, Nichols RC. A Phase 2 Trial of Concurrent Chemotherapy and Proton Therapy for Stage III Non-Small Cell Lung Cancer: Results and Reflections Following Early Closure of a Single-Institution Study. Int J Radiat Oncol Biol Phys 2015; 95:517-522. [PMID: 26774428 DOI: 10.1016/j.ijrobp.2015.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE Proton therapy has been shown to reduce radiation dose to organs at risk (OAR) and could be used to safely escalate the radiation dose. We analyzed outcomes in a group of phase 2 study patients treated with dose-escalated proton therapy with concurrent chemotherapy for stage 3 non-small cell lung cancer (NSCLC). METHODS AND MATERIALS From 2009 through 2013, LU02, a phase 2 trial of proton therapy delivering 74 to 80 Gy at 2 Gy/fraction with concurrent chemotherapy for stage 3 NSCLC, was opened to accrual at our institution. Due to slow accrual and competing trials, the study was closed after just 14 patients (stage IIIA, 9 patients; stage IIIB, 5 patients) were accrued over 4 years. During that same time period, 55 additional stage III patients were treated with high-dose proton therapy, including 7 in multi-institutional proton clinical trials, 4 not enrolled due to physician preference, and 44 who were ineligible based on strict entry criteria. An unknown number of patients were ineligible for enrollment due to insurance coverage issues and thus were treated with photon radiation. Median follow-up of surviving patients was 52 months. RESULTS Two-year overall survival and progression-free survival rates were 57% and 25%, respectively. Median lengths of overall survival and progression-free survival were 33 months and 14 months, respectively. There were no acute grade 3 toxicities related to proton therapy. Late grade 3 gastrointestinal toxicity and pulmonary toxicity each occurred in 1 patient. CONCLUSIONS Dose-escalated proton therapy with concurrent chemotherapy was well tolerated with encouraging results among a small cohort of patients. Unfortunately, single-institution proton studies may be difficult to accrue and consideration for pragmatic and/or multicenter trial design should be considered when developing future proton clinical trials.
Collapse
Affiliation(s)
- Bradford S Hoppe
- University of Florida Health Proton Therapy Institute, Jacksonville, Florida.
| | - Randal Henderson
- University of Florida Health Proton Therapy Institute, Jacksonville, Florida
| | - Dat Pham
- Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida
| | - James D Cury
- Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida
| | - Abubakr Bajwa
- Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida
| | | | - Harry D'Agostino
- Department of Surgery, University of Florida College of Medicine, Jacksonville, Florida
| | - Stella Flampouri
- University of Florida Health Proton Therapy Institute, Jacksonville, Florida
| | - Soon Huh
- University of Florida Health Proton Therapy Institute, Jacksonville, Florida
| | - Zuofeng Li
- University of Florida Health Proton Therapy Institute, Jacksonville, Florida
| | - Barry McCook
- Department of Radiology, University of Florida College of Medicine, Jacksonville, Florida
| | - Romaine C Nichols
- University of Florida Health Proton Therapy Institute, Jacksonville, Florida
| |
Collapse
|
7
|
Abstract
In addition to the physical advantages (Bragg peak), the use of charged particles in cancer therapy can be associated with distinct biological effects compared to X-rays. While heavy ions (densely ionizing radiation) are known to have an energy- and charge-dependent increased Relative Biological Effectiveness (RBE), protons should not be very different from sparsely ionizing photons. A slightly increased biological effectiveness is taken into account in proton treatment planning by assuming a fixed RBE of 1.1 for the whole radiation field. However, data emerging from recent studies suggest that, for several end points of clinical relevance, the biological response is differentially modulated by protons compared to photons. In parallel, research in the field of medical physics highlighted how variations in RBE that are currently neglected might actually result in deposition of significant doses in healthy organs. This seems to be relevant in particular for normal tissues in the entrance region and for organs at risk close behind the tumor. All these aspects will be considered and discussed in this review, highlighting how a re-discussion of the role of a variable RBE in proton therapy might be well-timed.
Collapse
|
8
|
Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 2014; 59:R419-72. [PMID: 25361443 DOI: 10.1088/0031-9155/59/22/r419] [Citation(s) in RCA: 638] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proton therapy treatments are based on a proton RBE (relative biological effectiveness) relative to high-energy photons of 1.1. The use of this generic, spatially invariant RBE within tumors and normal tissues disregards the evidence that proton RBE varies with linear energy transfer (LET), physiological and biological factors, and clinical endpoint. Based on the available experimental data from published literature, this review analyzes relationships of RBE with dose, biological endpoint and physical properties of proton beams. The review distinguishes between endpoints relevant for tumor control probability and those potentially relevant for normal tissue complication. Numerous endpoints and experiments on sub-cellular damage and repair effects are discussed. Despite the large amount of data, considerable uncertainties in proton RBE values remain. As an average RBE for cell survival in the center of a typical spread-out Bragg peak (SOBP), the data support a value of ~1.15 at 2 Gy/fraction. The proton RBE increases with increasing LETd and thus with depth in an SOBP from ~1.1 in the entrance region, to ~1.15 in the center, ~1.35 at the distal edge and ~1.7 in the distal fall-off (when averaged over all cell lines, which may not be clinically representative). For small modulation widths the values could be increased. Furthermore, there is a trend of an increase in RBE as (α/β)x decreases. In most cases the RBE also increases with decreasing dose, specifically for systems with low (α/β)x. Data on RBE for endpoints other than clonogenic cell survival are too diverse to allow general statements other than that the RBE is, on average, in line with a value of ~1.1. This review can serve as a source for defining input parameters for applying or refining biophysical models and to identify endpoints where additional radiobiological data are needed in order to reduce the uncertainties to clinically acceptable levels.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 30 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
9
|
Wang SY, Tsai CM, Lin CC. Relationship of Cytokines to Symptom Distress and Symptom Clusters Among Non-small-cell Lung Cancer Patients Receiving Gefitinib Treatment: A Pilot Study. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.jecm.2014.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Archambeau JO, Tovmasyan A, Pearlstein RD, Crapo JD, Batinic-Haberle I. Superoxide dismutase mimic, MnTE-2-PyP(5+) ameliorates acute and chronic proctitis following focal proton irradiation of the rat rectum. Redox Biol 2013; 1:599-607. [PMID: 24363995 PMCID: PMC3863774 DOI: 10.1016/j.redox.2013.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 01/05/2023] Open
Abstract
Radiation proctitis, an inflammation and damage to the lower part of colon, is a common adverse event of the radiotherapy of tumors in the abdominal and pelvic region (colon, prostate, cervical). Several Mn(III) porphyrin-based superoxide dismutase mimics have been synthesized and successfully evaluated in preclinical models as radioprotectants. Here we report for the first time the remarkable rectal radioprotection of frequently explored Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+). A batch prepared in compliance with good manufacturing practice (GMP), which has good safety/toxicity profile, was used for this study. MnTE-2-PyP(5+) was given subcutaneously at 5 mg/kg, either 1 h before or 1 h after irradiation, with additional drug administered at weekly intervals thereafter. MnTE-2-PyP(5+) ameliorated both acute and chronic radiation proctitis in male Sprague-Dawley rats irradiated with 20-30 Gy protons delivered to 2.5 cm span of rectum using spread-out Bragg peak of a proton treatment beam. Focal irradiation of the rectum produced acute proctitis, which healed, followed by chronic rectal dilation and symptomatic proctitis. MnTE-2-PyP(5+) protected rectal mucosa from radiation-induced crypt loss measured 10 days post-irradiation. Significant effects were observed with both pre- and post-treatment regimens. However, only MnTE-2-PyP(5+) pre-treatment, but not post-treatment, prevented the development of rectal dilation, indicating that proper dosing regimen is critical for radioprotection. The pre-treatment also prevented or delayed the development of chronic proctitis depending on the radiation dose. Further work aimed at developing MnTE-2-PyP(5+) and similar drugs as adjunctive agents for radiotherapy of pelvic tumors is warranted. The present study substantiates the prospects of employing this and similar analogs in preserving normal tissue during cancer radiation as well as any other radiation exposure.
Collapse
Key Words
- AP-1, activator protein-1
- CGE, cobalt gray equivalent
- GSH, glutathione
- HIF-1α, hypoxia inducible factor-1
- Mn porphyrin
- MnP, Mn(III) porphyrins
- MnTDE-2-ImP5+, Mn(III) meso-tetrakis(N,N’-diethylimidazolium-2-yl)porphyrin (AEOL10150)
- MnTE-2-PyP5+
- MnTE-2-PyP5+, Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (AEOL10113, BMX-010)
- MnTM-2-PyP5+, Mn(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin (AEOL10112)
- MnTnBuOE-2-PyP5+, Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin
- MnTnHex-2-PyP5+, Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (BMX-001)
- NF-κB, nuclear factor κB
- PT, proton therapy
- Proton beam therapy
- Radiation proctitis
- Radioprotector
- SOD mimic
- SOD, superoxide dismutase
- SP-1, specificity protein-1
- TF, transcription factor
- kcat(O2−), the rate constant for the catalysis of O2− dismutation by Mn porphyrin or SOD enzyme
Collapse
Affiliation(s)
- John O Archambeau
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert D Pearlstein
- Department of Surgery (Neurosurgery), Duke University School of Medicine, Durham, NC 27710, USA
| | - James D Crapo
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Denver, CO 80206, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
11
|
Girdhani S, Sachs R, Hlatky L. Biological Effects of Proton Radiation: What We Know and Don't Know. Radiat Res 2013; 179:257-72. [DOI: 10.1667/rr2839.1] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Girdhani S, Lamont C, Hahnfeldt P, Abdollahi A, Hlatky L. Proton Irradiation Suppresses Angiogenic Genes and Impairs Cell Invasion and Tumor Growth. Radiat Res 2012; 178:33-45. [DOI: 10.1667/rr2724.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Swati Girdhani
- Center of Cancer Systems Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135
| | - Clare Lamont
- Center of Cancer Systems Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135
| | - Philip Hahnfeldt
- Center of Cancer Systems Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135
| | | | | |
Collapse
|
13
|
Koukourakis MI. Radiation damage and radioprotectants: new concepts in the era of molecular medicine. Br J Radiol 2012; 85:313-30. [PMID: 22294702 DOI: 10.1259/bjr/16386034] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exposure to ionising radiation results in mutagenesis and cell death, and the clinical manifestations depend on the dose and the involved body area. Reducing carcinogenesis in patients treated with radiotherapy, exposed to diagnostic radiation or who are in certain professional groups is mandatory. The prevention or treatment of early and late radiotherapy effects would improve quality of life and increase cancer curability by intensifying therapies. Experimental and clinical data have given rise to new concepts and a large pool of chemical and molecular agents that could be effective in the protection and treatment of radiation damage. To date, amifostine is the only drug recommended as an effective radioprotectant. This review identifies five distinct types of radiation damage (I, cellular depletion; II, reactive gene activation; III, tissue disorganisation; IV, stochastic effects; V, bystander effects) and classifies the radioprotective agents into five relevant categories (A, protectants against all types of radiation effects; B, death pathway modulators; C, blockers of inflammation, chemotaxis and autocrine/paracrine pathways; D, antimutagenic keepers of genomic integrity; E, agents that block bystander effects). The necessity of establishing and funding central committees that guide systematic clinical research into evaluating the novel agents revealed in the era of molecular medicine is stressed.
Collapse
Affiliation(s)
- M I Koukourakis
- Department of Radiotherapy and Oncology, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
14
|
The inhibitory effects of rh-endostatin (YH-16) in combination with radiotherapy on lung adenocarcinoma A549 in mice and the underlying mechanisms. ACTA ACUST UNITED AC 2010; 30:108-12. [DOI: 10.1007/s11596-010-0120-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Indexed: 11/24/2022]
|
15
|
Fokas E, Kraft G, An H, Engenhart-Cabillic R. Ion beam radiobiology and cancer: time to update ourselves. Biochim Biophys Acta Rev Cancer 2009; 1796:216-29. [PMID: 19682551 DOI: 10.1016/j.bbcan.2009.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/28/2009] [Accepted: 07/31/2009] [Indexed: 12/20/2022]
Abstract
High-energy protons and carbon ions exhibit an inverse dose profile allowing for increased energy deposition with penetration depth. Additionally, heavier ions like carbon beams have the advantage of a markedly increased biological effectiveness characterized by enhanced ionization density in the individual tracks of the heavy particles, where DNA damage becomes clustered and therefore more difficult to repair, but is restricted to the end of their range. These superior biophysical and biological profiles of particle beams over conventional radiotherapy permit more precise dose localization and make them highly attractive for treating anatomically complex and radioresistant malignant tumors but without increasing the severe side effects in the normal tissue. More than half a century since Wilson proposed their use in cancer therapy, the effects of particle beams have been extensively investigated and the biological complexity of particle beam irradiation begins to unfold itself. The goal of this review is to provide an as comprehensive and up-to-date summary as possible of the different radiobiological aspects of particle beams for effective application in cancer treatment.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Department of Radiotherapy and Radiation Oncology, University Hospital Giessen and Marburg, Medical Faculty of Philipps University, Baldingerstrasse, 35043 Marburg, Germany.
| | | | | | | |
Collapse
|
16
|
Strategies for reconstituting and boosting T cell-based immunity following haematopoietic stem cell transplantation: pre-clinical and clinical approaches. Semin Immunopathol 2008; 30:457-77. [PMID: 18982327 DOI: 10.1007/s00281-008-0140-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/14/2008] [Indexed: 12/14/2022]
Abstract
Poor immune recovery is characteristic of bone marrow transplantation and leads to high levels of morbidity and mortality. The primary underlying cause is a compromised thymic function, resulting from age-induced atrophy and further compounded by the damaging effects of cytoablative conditioning regimes on thymic epithelial cells (TEC). Several strategies have been proposed to enhance T cell reconstitution. Some, such as the use of single biological agents, are currently being tested in clinical trials. However, a more rational approach to immune restoration will be to leverage the evolving repertoire of new technologies. Specifically, the combined targeting of TEC, thymocytes and peripheral T cells, together with the bone marrow niches, promises a more strategic clinical therapeutic platform.
Collapse
|
17
|
Widesott L, Amichetti M, Schwarz M. Proton therapy in lung cancer: clinical outcomes and technical issues. A systematic review. Radiother Oncol 2008; 86:154-64. [PMID: 18241945 DOI: 10.1016/j.radonc.2008.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 01/03/2008] [Accepted: 01/03/2008] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE To determine whether, according to the currently available literature, proton therapy (PT) has a role in the treatment of non-small-cell lung cancer (NSCLC), to assess its safety and efficacy and to evaluate the main technical issues specifically related to this treatment technique. MATERIALS AND METHODS During March 2007, two independent researchers conducted a systematic review of the current data on the treatment of NSCLC with PT. RESULTS In total, 113 reports were retrieved, 17 of which were included in the analysis. There were no prospective trials (randomized or non-randomized). Nine uncontrolled single-arm studies were available from three PT centers, providing clinical outcomes for 214 patients in total. These reports were mainly related to stage I-II tumors, with results comparable to those obtained with surgery, without significant toxicity. In addition, two papers were found that compared photon and proton dose distributions, which showed a potential for dose escalation and/or a sparing of the organ at risk with PT. Finally, six studies analyzed dosimetric and technical issues related with PT, mainly underlining the difficulties in designing dose distributions that are representative of the dose actually delivered during treatment. CONCLUSIONS Although from a physical point of view PT is a good option for the treatment of NSCLC, limited data are available on its application in the clinical practice. Furthermore, the application of PT to lung cancer does present technical challenges. Because of the small number of institutions involved in the treatment of this disease, number of patients, and methodological weaknesses of the trials it is therefore not possible to draw definitive conclusions about the superiority of PT with respect to the photon techniques currently available for the treatment of NSCLC.
Collapse
|
18
|
Zhou Q, Zhu XQ, Zhang J, Xu ZL, Lu P, Wu F. Changes in circulating immunosuppressive cytokine levels of cancer patients after high intensity focused ultrasound treatment. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:81-7. [PMID: 17854983 DOI: 10.1016/j.ultrasmedbio.2007.07.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/26/2007] [Accepted: 07/23/2007] [Indexed: 05/17/2023]
Abstract
Immunosuppression in a patient with malignant tumor is a major obstacle in cancer treatment. In this study, we investigated changes in the circulating level of all measured immunosuppressive cytokines in patients with malignancy before and after high intensity focused ultrasound (HIFU) treatment. Fifteen patients with solid malignancy were enrolled in this study and an enzyme-linked immunoabsorbent assay (ELISA) method was used to measure serum level of vascular endothelial growth factor (VEGF), transforming growth factor-beta1 (TGF-beta1), transforming growth factor-beta2 (TGF-beta2), interleukin 6 (IL-6) and interleukin 10 (IL-10), respectively before and 1 wk after HIFU treatment. Among them, seven patients had distant metastasis and the remaining eight had no metastasis. All patients received one-session HIFU treatment for primary cancer, including complete ablation in eight patients without metastasis, and partial ablation in seven patients with metastases. The results showed that serum immunosuppressive cytokine levels decreased after HIFU treatment, and there were significant decreases of VEGF, TGF-beta1, and TGF-beta2 before and after HIFU treatment. Compared with the values in the metastatic patients, serum levels of immunosuppressive cytokines were significantly lower in the nonmetastatic patients after HIFU treatment. It is concluded that HIFU can decrease tumor-secreted immunosuppressive cytokine production in addition to its direct tumor destruction. This change may lessen tumor-induced immunosuppression and renew antitumor immunity after HIFU in cancer patients.
Collapse
Affiliation(s)
- Qiang Zhou
- Clinical Center for Tumor Therapy of the 2nd Affiliated Hospital and Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
19
|
Swennen ELR, Dagnelie PC, Van den Beucken T, Bast A. Radioprotective effects of ATP in human blood ex vivo. Biochem Biophys Res Commun 2007; 367:383-7. [PMID: 18164682 DOI: 10.1016/j.bbrc.2007.12.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 11/19/2022]
Abstract
Damage to healthy tissue is a major limitation of radiotherapy treatment of cancer patients, leading to several side effects and complications. Radiation-induced release of pro-inflammatory cytokines is thought to be partially responsible for the radiation-associated complications. The aim of the present study was to investigate the protective effects of extracellular ATP on markers of oxidative stress, radiation-induced inflammation and DNA damage in irradiated blood ex vivo. ATP inhibited radiation-induced TNF-alpha release and increased IL-10 release. The inhibitory effect of ATP on TNF- alpha release was completely reversed by adenosine 5'-O-thiomonophosphate, indicating a P2Y(11) mediated effect. Furthermore, ATP attenuated radiation-induced DNA damage immediate, 3 and 6h after irradiation. Our study indicates that ATP administration alleviates radiation-toxicity to blood cells, mainly by inhibiting radiation-induced inflammation and DNA damage.
Collapse
Affiliation(s)
- Els L R Swennen
- Department of Epidemiology, NUTRIM Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | |
Collapse
|
20
|
Tsoutsou PG, Koukourakis MI. Radiation pneumonitis and fibrosis: Mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys 2006; 66:1281-93. [PMID: 17126203 DOI: 10.1016/j.ijrobp.2006.08.058] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 08/21/2006] [Accepted: 08/23/2006] [Indexed: 12/11/2022]
Abstract
Radiation pneumonitis and subsequent radiation pulmonary fibrosis are the two main dose-limiting factors when irradiating the thorax that can have severe implications for patients' quality of life. In this article, the current concepts about the pathogenetic mechanisms underlying radiation pneumonitis and fibrosis are presented. The clinical course of fibrosis, a postulated acute inflammatory stage, and a late fibrotic and irreversible stage are discussed. The interplay of cells and the wide variety of molecules orchestrating the immunologic response to radiation, their interactions with specific receptors, and the cascade of events they trigger are elucidated. Finally, the implications of this knowledge with respect to the therapeutic interventions are critically presented.
Collapse
Affiliation(s)
- Pelagia G Tsoutsou
- Department of Radiation Oncology, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
21
|
Evans ES, Kocak Z, Zhou SM, Kahn DA, Huang H, Hollis DR, Light KL, Anscher MS, Marks LB. Does transforming growth factor-beta1 predict for radiation-induced pneumonitis in patients treated for lung cancer? Cytokine 2006; 35:186-92. [PMID: 16979900 PMCID: PMC1829192 DOI: 10.1016/j.cyto.2006.07.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 05/22/2006] [Accepted: 07/21/2006] [Indexed: 11/18/2022]
Abstract
The purpose of the study was to reassess the utility of transforming growth factor-beta-1 (TGF-beta1) together with dosimetric and tumor parameters as a predictor for radiation pneumonitis (RP). Of the 121 patients studied, 32 (26.4%) developed grade > or =1 RP, and 27 (22.3%) developed grade > or =2 RP. For the endpoint of grade > or =1 RP, those with V30>30% and an end-RT/baseline TGF-beta1 ratio> or =1 had a significantly higher incidence of RP than did those with V30>30% and an end-RT/baseline TGF-beta1 ratio<1. For most other patient groups, there were no clear associations between TGF-beta1 values and rates of RP. These findings suggest that TGF-beta1 is generally not predictive for RP except for the group of patients with a high V30.
Collapse
Affiliation(s)
- Elizabeth S. Evans
- Department of Radiation Oncology, Duke University Medical Center, Box 3085, Durham, NC 27710, USA
| | - Zafer Kocak
- Department of Radiation Oncology, Duke University Medical Center, Box 3085, Durham, NC 27710, USA
| | - Su-Min Zhou
- Department of Radiation Oncology, Duke University Medical Center, Box 3085, Durham, NC 27710, USA
| | - Daniel A. Kahn
- Department of Radiation Oncology, Duke University Medical Center, Box 3085, Durham, NC 27710, USA
| | - Hong Huang
- Department of Radiation Oncology, Duke University Medical Center, Box 3085, Durham, NC 27710, USA
| | - Donna R. Hollis
- Department of Biostatistics, Duke University Medical Center, Box 3958, Durham, NC 27710, USA
| | - Kim L. Light
- Department of Radiation Oncology, Duke University Medical Center, Box 3085, Durham, NC 27710, USA
| | - Mitchell S. Anscher
- Department of Radiation Oncology, Duke University Medical Center, Box 3085, Durham, NC 27710, USA
| | - Lawrence B. Marks
- Department of Radiation Oncology, Duke University Medical Center, Box 3085, Durham, NC 27710, USA
| |
Collapse
|
22
|
Li M, Ping G, Plathow C, Trinh T, Lipson KE, Hauser K, Krempien R, Debus J, Abdollahi A, Huber PE. Small molecule receptor tyrosine kinase inhibitor of platelet-derived growth factor signaling (SU9518) modifies radiation response in fibroblasts and endothelial cells. BMC Cancer 2006; 6:79. [PMID: 16556328 PMCID: PMC1458351 DOI: 10.1186/1471-2407-6-79] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 03/24/2006] [Indexed: 11/10/2022] Open
Abstract
Background Several small receptor tyrosine kinase inhibitors (RTKI) have entered clinical cancer trials alone and in combination with radiotherapy or chemotherapy. The inhibitory spectrum of these compounds is often not restricted to a single target. For example Imatinib/Gleevec (primarily a bcr/abl kinase inhibitor) or SU11248 (mainly a VEGFR inhibitor) are also potent inhibitors of PDGFR and other kinases. We showed previously that PDGF signaling inhibition attenuates radiation-induced lung fibrosis in a mouse model. Here we investigate effects of SU9518, a PDGFR inhibitor combined with ionizing radiation in human primary fibroblasts and endothelial cells in vitro, with a view on utilizing RTKI for antifibrotic therapy. Methods Protein levels of PDGFR-α/-β and phosphorylated PDGFR in fibroblasts were analyzed using western and immunocytochemistry assays. Functional proliferation and clonogenic assays were performed (i) to assess PDGFR-mediated survival and proliferation in fibroblasts and endothelial cells after SU9518 (small molecule inhibitor of PDGF receptor tyrosine kinase); (ii) to test the potency und selectivity of the PDGF RTK inhibitor after stimulation with PDGF isoforms (-AB, -AA, -BB) and VEGF+bFGF. In order to simulate in vivo conditions and to understand the role of radiation-induced paracrine PDGF secretion, co-culture models consisting of fibroblasts and endothelial cells were employed. Results In fibroblasts, radiation markedly activated PDGF signaling as detected by enhanced PDGFR phosphorylation which was potently inhibited by SU9518. In fibroblast clonogenic assay, SU9518 reduced PDGF stimulated fibroblast survival by 57%. Likewise, SU9518 potently inhibited fibroblast and endothelial cell proliferation. In the co-culture model, radiation of endothelial cells and fibroblast cells substantially stimulated proliferation of non irradiated fibroblasts and vice versa. Importantly, the RTK inhibitor significantly inhibited this paracrine radiation-induced fibroblast and endothelial cell activation. Conclusion Radiation-induced autocrine and paracrine PDGF signaling plays an important role in fibroblast and endothelial cell proliferation. SU9518, a PDGFR tyrosine kinase inhibitor, reduces radiation-induced fibroblast and endothelial cell activation. This may explain therapeutic anticancer effects of Imatinib/Gleevec, and at the same time it could open a way of attenuating radiation-induced fibrosis.
Collapse
Affiliation(s)
- Minglun Li
- Department of Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- University of Heidelberg Medical School, Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Tuebingen, Germany
| | - Gong Ping
- Department of Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- University of Heidelberg Medical School, Heidelberg, Germany
| | - Christian Plathow
- University of Heidelberg Medical School, Heidelberg, Germany
- Department of Diagnostic Radiology, University Hospital Tuebingen, Germany
| | - Thuy Trinh
- Department of Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- University of Heidelberg Medical School, Heidelberg, Germany
| | | | - Kai Hauser
- Department of Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- University of Heidelberg Medical School, Heidelberg, Germany
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- Department of Mathematics, University of California, Berkeley, CA, USA
| | - Robert Krempien
- Department of Clinical Radiology, University Hospital Heidelberg, Germany
| | - Juergen Debus
- Department of Clinical Radiology, University Hospital Heidelberg, Germany
| | - Amir Abdollahi
- Department of Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- University of Heidelberg Medical School, Heidelberg, Germany
| | - Peter E Huber
- Department of Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- University of Heidelberg Medical School, Heidelberg, Germany
| |
Collapse
|
23
|
Luo X, Slater JM, Gridley DS. Enhancement of radiation effects by pXLG-mEndo in a lung carcinoma model. Int J Radiat Oncol Biol Phys 2005; 63:553-64. [PMID: 15964154 DOI: 10.1016/j.ijrobp.2005.01.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 01/19/2005] [Accepted: 01/19/2005] [Indexed: 12/20/2022]
Abstract
PURPOSE Endostatin is a potent antiangiogenesis protein with little or no toxicity that has potential to enhance radiotherapy. The major goal of this study was to evaluate the combination of radiation and endostatin gene therapy in a preclinical lung cancer model. METHODS Plasmid pXLG-mEndo, constructed in our laboratory, includes the mouse endostatin gene cloned into the pWS4 vector. The kinetics of endostatin expression and efficacy of the pXLG-mEndo and radiation ((60)Co gamma-rays) combination was evaluated in the C57BL/6 mouse-Lewis lung carcinoma (LLC) model. The LLC cells were implanted s.c. and pXLG-mEndo was injected intratumorally 12-14 days later without any transfection agent; a dose of 10 Gy radiation was applied approximately 16 h thereafter. Some groups received each modality twice. Endostatin, vascular endothelial growth factor (VEGF), and transforming growth factor-beta1 (TGF-beta1) were quantified in plasma and tumors, and tumor vasculature was examined. RESULTS Endostatin expression within LLC tumors peaked on Day 7 after pXLG-mEndo injection. Addition of radiation to pXLG-mEndo significantly enhanced the level of tumor endostatin compared with plasmid alone (p < 0.05). Tumor growth was significantly delayed in mice receiving pXLG-mEndo plus radiation compared with no treatment (p < 0.005), radiation (p < 0.05), and control plasmid (p < 0.05). The number of LLC tumor vessels was reduced after combined treatment (p < 0.05), and significant treatment-related changes were observed in both VEGF and TGF-beta1. CONCLUSIONS The data demonstrate that delivery of endostatin by pXLG-mEndo as an adjuvant to radiation can significantly enhance the antitumor efficacy of radiotherapy in the LLC mouse tumor model and support further investigation of this unique combination therapy.
Collapse
Affiliation(s)
- Xian Luo
- Department of Biochemistry and Microbiology, Loma Linda University and Medical Center, Loma Linda, CA 92354, USA
| | | | | |
Collapse
|