1
|
Yamamura T, Tamura K, Kobayashi D, Inaji M, Toyama Y, Wakimoto H, Kiyokawa J, Hara S, Tanaka Y, Nariai T, Shimizu K, Ishii K, Maehara T. Loss of methylthioadenosine phosphorylase immunoreactivity correlates with poor prognosis and elevated uptake of 11C-methionine in IDH-mutant astrocytoma. J Neurooncol 2024; 168:355-365. [PMID: 38557927 DOI: 10.1007/s11060-024-04661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE The proximate localization of MTAP, which encodes methylthioadenosine phosphorylase, and CDKN2A/B on Chromosome 9q21 has allowed the loss of MTAP expression as a surrogate for homozygous deletion of CDKN2A/B. This study aimed to determine whether MTAP status correlates with clinical outcomes and 11C-methionine uptake in astrocytomas with IDH mutations. METHODS We conducted immunohistochemistry for MTAP in 30 patients with astrocytoma, IDH-mutant who underwent 11C-methionine positron emission tomography scans prior to surgical resection. The tumor-to-normal (T/N) ratio of 11C-methionine uptake was calculated using the mean standardized uptake value (SUV) for tumor and normal brain tissues. Cox regression analysis was used for multivariate survival analysis. RESULTS Among IDH-mutant astrocytomas, 26.7% (8/30) exhibited the loss of cytoplasmic MTAP expression, whereas 73.3% (22/30) tumors retained MTAP expression. The median progression-free survival (PFS) was significantly shorter in patients with MTAP loss than those with MTAP retention (1.88 years vs. 6.80 years, p = 0.003). The median overall survival (OS) was also shorter in patients with MTAP loss than in MTAP-retaining counterparts (5.23 years vs. 10.69 years, p = 0.019). Multivariate analysis identified MTAP status (hazard ratio (HR), 0.081) and extent of resection (HR, 0.104) as independent prognostic factors for PFS. Astrocytomas lacking cytoplasmic MTAP expression showed a significantly higher median T/N ratio for 11C-methionine uptake than tumors retaining MTAP (2.12 vs. 1.65, p = 0.012). CONCLUSION Our study revealed that the loss of MTAP expression correlates with poor prognosis and an elevated T/N ratio of 11C-methionine uptake in astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Toshihiro Yamamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kaoru Tamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Daisuke Kobayashi
- Department of Human Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yuka Toyama
- Department of Human Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St, Boston, MA, 02114, USA
| | - Juri Kiyokawa
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Shoko Hara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yoji Tanaka
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Kazuhide Shimizu
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
2
|
Debreczeni-Máté Z, Törő I, Simon M, Gál K, Barabás M, Sipos D, Kovács A. Recurrence Patterns after Radiotherapy for Glioblastoma with [(11)C]methionine Positron Emission Tomography-Guided Irradiation for Target Volume Optimization. Diagnostics (Basel) 2024; 14:964. [PMID: 38732378 PMCID: PMC11083337 DOI: 10.3390/diagnostics14090964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
11C methionine (11C-MET) is increasingly being used in addition to contrast-enhanced MRI to plan for radiotherapy of patients with glioblastomas. This study aimed to assess the recurrence pattern quantitatively. Glioblastoma patients undergoing 11C-MET PET examination before primary radiotherapy from 2018 to 2023 were included in the analysis. A clinical target volume was manually created and fused with MRI-based gross tumor volumes and MET PET-based biological target volume. The recurrence was noted as an area of contrast enhancement on the first MRI scan, which showed progression. The recurrent tumor was identified on the radiological MR images in terms of recurrent tumor volume, and recurrences were classified as central, in-field, marginal, or ex-field tumors. We then compared the MET-PET-defined biological target volume with the MRI-defined recurrent tumor volume regarding spatial overlap (the Dice coefficient) and the Hausdorff distance. Most recurrences occurred locally within the primary tumor area (64.8%). The mean Hausdorff distance was 39.4 mm (SD 32.25), and the mean Dice coefficient was 0.30 (SD 0.22). In patients with glioblastoma, the analysis of the recurrence pattern has been mainly based on FET-PET. Our study confirms that the recurrence pattern after gross tumor volume-based treatment contoured by MET-PET is consistent with the FET-PET-based treatment described in the literature.
Collapse
Affiliation(s)
- Zsanett Debreczeni-Máté
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary; (Z.D.-M.)
| | - Imre Törő
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Mihaly Simon
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Kristof Gál
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Marton Barabás
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - David Sipos
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary; (Z.D.-M.)
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - Arpad Kovács
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary; (Z.D.-M.)
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| |
Collapse
|
3
|
Niitsu H, Fukumitsu N, Tanaka K, Mizumoto M, Nakai K, Matsuda M, Ishikawa E, Hatano K, Hashimoto T, Kamizawa S, Sakurai H. Methyl- 11C-L-methionine positron emission tomography for radiotherapy planning for recurrent malignant glioma. Ann Nucl Med 2024; 38:305-314. [PMID: 38356008 PMCID: PMC10954960 DOI: 10.1007/s12149-024-01901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVE To investigate differences in uptake regions between methyl-11C-L-methionine positron emission tomography (11C-MET PET) and gadolinium (Gd)-enhanced magnetic resonance imaging (MRI), and their impact on dose distribution, including changing of the threshold for tumor boundaries. METHODS Twenty consecutive patients with grade 3 or 4 glioma who had recurrence after postoperative radiotherapy (RT) between April 2016 and October 2017 were examined. The study was performed using simulation with the assumption that all patients received RT. The clinical target volume (CTV) was contoured using the Gd-enhanced region (CTV(Gd)), the tumor/normal tissue (T/N) ratios of 11C-MET PET of 1.3 and 2.0 (CTV (T/N 1.3), CTV (T/N 2.0)), and the PET-edge method (CTV(P-E)) for stereotactic RT planning. Differences among CTVs were evaluated. The brain dose at each CTV and the dose at each CTV defined by 11C-MET PET using MRI as the reference were evaluated. RESULTS The Jaccard index (JI) for concordance of CTV (Gd) with CTVs using 11C-MET PET was highest for CTV (T/N 2.0), with a value of 0.7. In a comparison of pixel values of MRI and PET, the correlation coefficient for cases with higher JI was significantly greater than that for lower JI cases (0.37 vs. 0.20, P = 0.007). D50% of the brain in RT planning using each CTV differed significantly (P = 0.03) and that using CTV (T/N 1.3) were higher than with use of CTV (Gd). V90% and V95% for each CTV differed in a simulation study for actual treatment using CTV (Gd) (P = 1.0 × 10-7 and 3.0 × 10-9, respectively) and those using CTV (T/N 1.3) and CTV (P-E) were lower than with CTV (Gd). CONCLUSIONS The region of 11C-MET accumulation is not necessarily consistent with and larger than the Gd-enhanced region. A change of the tumor boundary using 11C-MET PET can cause significant changes in doses to the brain and the CTV.
Collapse
Affiliation(s)
- Hikaru Niitsu
- Department of Radiation Oncology and Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan.
| | - Nobuyoshi Fukumitsu
- Department of Radiation Oncology, Kobe Proton Center, 1-6-8, Minatoshima-Minamimachi, Kobe, 650-0047, Japan
| | - Keiichi Tanaka
- Department of Radiation Oncology and Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Masashi Mizumoto
- Department of Radiation Oncology and Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Kei Nakai
- Department of Radiation Oncology and Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masahide Matsuda
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kentaro Hatano
- Department of Applied Molecular Imaging, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tsuyoshi Hashimoto
- Department of Radiology, AIC Imaging Center, 2-1-16 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
| | - Satoshi Kamizawa
- Department of Radiation Oncology and Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology and Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| |
Collapse
|
4
|
Nakayama N, Yamada T, Yano H, Takei H, Ohe N, Miwa K, Shinoda J, Iwama T. Prediction of nuclide accumulation spread based on the volume of enhancing magnetic resonance imaging lesion in glioblastoma patients. J Neurosurg Sci 2024; 68:164-173. [PMID: 34647709 DOI: 10.23736/s0390-5616.21.05353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND 11C-methionine-PET (MET) and Thallium-201 chloride-SPECT (TL) are useful for predictive proliferation ability and tumor invasion range identification in glioma patients, however they are not always possible in any hospital or country. Our study aimed to assess whether the range of MET and Tl accumulation could be predicted from the contrast-enhanced lesions in Gadolinium (Gd)-T1 weighted magnetic resonance image in glioblastoma multiforme (GBM) patients. METHODS In 25 cases, the MET-area, TL-area, O-area where MET and TL overlap, and all accumulation area (AA-area) were measured in the same axial cross section as the Gd enhanced maximum area (Gd-area). This tracing operation was repeated with all axial fusion slices, and each volume was also measured (Gd-V, MET-V, TL-V, O-V, AA-V). RESULTS The maximum accumulation distance of MET and TL beyond the Gd-area was limited to within 30 mm, 35 mm, respectively. Significant positive correlations were showed in all combinations with Gd-area: MET-area (r=0.851, P<0.0001), TL-area (r=0.955, P<0.0001), O-area (r=0.935, P<0.0001) and AA-area (r=0.893, P<0.0001), respectively. All combinations with Gd-V showed significant positive correlation: MET-V (r=0.867, P<0.0001), TL-V (r=0.952, P<0.0001), O-V (r=0.935, P<0.0001) and AA-V (r=0.897, P<0.0001), respectively. CONCLUSIONS Approximate tumor volume Gd-V can be calculated using the formula A * B * C / 2, where A, B, and C represent the dimensions of Gd-enhanced lesion in 3 axes perpendicular to each other. The nuclide accumulation predictive table created using the obtained linear approximation functions can be used to predict the average tumor invasion range from the Gd-V without preoperative nuclear examinations.
Collapse
Affiliation(s)
- Noriyuki Nakayama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan -
| | - Tetsuya Yamada
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirohito Yano
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo City, Gifu, Japan
| | - Hiroaki Takei
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo City, Gifu, Japan
| | - Naoyuki Ohe
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Miwa
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo City, Gifu, Japan
| | - Jun Shinoda
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo City, Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
5
|
Teske N, Tonn JC, Karschnia P. How to evaluate extent of resection in diffuse gliomas: from standards to new methods. Curr Opin Neurol 2023; 36:564-570. [PMID: 37865849 DOI: 10.1097/wco.0000000000001212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
PURPOSE OF REVIEW Maximal safe tumor resection represents the current standard of care for patients with newly diagnosed diffuse gliomas. Recent efforts have highlighted the prognostic value of extent of resection measured as residual tumor volume in patients with isocitrate dehydrogenase (IDH)-wildtype and -mutant gliomas. Accurate assessment of such information therefore appears essential in the context of clinical trials as well as patient management. RECENT FINDINGS Current recommendations for evaluation of extent of resection rest upon standardized postoperative MRI including contrast-enhanced T1-weighted sequences, T2-weighted/fluid-attenuated-inversion-recovery sequences, and diffusion-weighted imaging to differentiate postoperative tumor volumes from ischemia and nonspecific imaging findings. In this context, correct timing of postoperative imaging within the postoperative period is of utmost importance. Advanced MRI techniques including perfusion-weighted MRI and MR-spectroscopy may add further insight when evaluating residual tumor remnants. Positron emission tomography (PET) using amino acid tracers proves beneficial in identifying metabolically active tumor beyond anatomical findings on conventional MRI. SUMMARY Future efforts will have to refine recommendations on postoperative assessment of residual tumor burden in respect to differences between IDH-wildtype and -mutant gliomas, and incorporate the emerging role of advanced imaging modalities like amino acid PET.
Collapse
Affiliation(s)
- Nico Teske
- Department of Neurosurgery, LMU University Hospital, LMU Munich
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, LMU Munich
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, LMU University Hospital, LMU Munich
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
| |
Collapse
|
6
|
Henssen D, Meijer F, Verburg FA, Smits M. Challenges and opportunities for advanced neuroimaging of glioblastoma. Br J Radiol 2023; 96:20211232. [PMID: 36062962 PMCID: PMC10997013 DOI: 10.1259/bjr.20211232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most aggressive of glial tumours in adults. On conventional magnetic resonance (MR) imaging, these tumours are observed as irregular enhancing lesions with areas of infiltrating tumour and cortical expansion. More advanced imaging techniques including diffusion-weighted MRI, perfusion-weighted MRI, MR spectroscopy and positron emission tomography (PET) imaging have found widespread application to diagnostic challenges in the setting of first diagnosis, treatment planning and follow-up. This review aims to educate readers with regard to the strengths and weaknesses of the clinical application of these imaging techniques. For example, this review shows that the (semi)quantitative analysis of the mentioned advanced imaging tools was found useful for assessing tumour aggressiveness and tumour extent, and aids in the differentiation of tumour progression from treatment-related effects. Although these techniques may aid in the diagnostic work-up and (post-)treatment phase of glioblastoma, so far no unequivocal imaging strategy is available. Furthermore, the use and further development of artificial intelligence (AI)-based tools could greatly enhance neuroradiological practice by automating labour-intensive tasks such as tumour measurements, and by providing additional diagnostic information such as prediction of tumour genotype. Nevertheless, due to the fact that advanced imaging and AI-diagnostics is not part of response assessment criteria, there is no harmonised guidance on their use, while at the same time the lack of standardisation severely hampers the definition of uniform guidelines.
Collapse
Affiliation(s)
- Dylan Henssen
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Frederick Meijer
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Frederik A. Verburg
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Marion Smits
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
A Systematic Review of Amino Acid PET Imaging in Adult-Type High-Grade Glioma Surgery: A Neurosurgeon's Perspective. Cancers (Basel) 2022; 15:cancers15010090. [PMID: 36612085 PMCID: PMC9817716 DOI: 10.3390/cancers15010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Amino acid PET imaging has been used for a few years in the clinical and surgical management of gliomas with satisfactory results in diagnosis and grading for surgical and radiotherapy planning and to differentiate recurrences. Biological tumor volume (BTV) provides more meaningful information than standard MR imaging alone and often exceeds the boundary of the contrast-enhanced nodule seen in MRI. Since a gross total resection reflects the resection of the contrast-enhanced nodule and the majority of recurrences are at a tumor's margins, an integration of PET imaging during resection could increase PFS and OS. A systematic review of the literature searching for "PET" [All fields] AND "glioma" [All fields] AND "resection" [All fields] was performed in order to investigate the diffusion of integration of PET imaging in surgical practice. Integration in a neuronavigation system and intraoperative use of PET imaging in the primary diagnosis of adult high-grade gliomas were among the criteria for article selection. Only one study has satisfied the inclusion criteria, and a few more (13) have declared to use multimodal imaging techniques with the integration of PET imaging to intentionally perform a biopsy of the PET uptake area. Despite few pieces of evidence, targeting a biologically active area in addition to other tools, which can help intraoperatively the neurosurgeon to increase the amount of resected tumor, has the potential to provide incremental and complementary information in the management of brain gliomas. Since supramaximal resection based on the extent of MRI FLAIR hyperintensity resulted in an advantage in terms of PFS and OS, PET-based biological tumor volume, avoiding new neurological deficits, deserves further investigation.
Collapse
|
8
|
A Head-to-Head Comparison of 18F-Fluorocholine PET/CT and Conventional MRI as Predictors of Outcome in IDH Wild-Type High-Grade Gliomas. J Clin Med 2022; 11:jcm11206065. [PMID: 36294385 PMCID: PMC9605635 DOI: 10.3390/jcm11206065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023] Open
Abstract
(1) Aim: To study the associations between imaging parameters derived from contrast-enhanced MRI (CE-MRI) and 18F-fluorocholine PET/CT and their performance as prognostic predictors in isocitrate dehydrogenase wild-type (IDH-wt) high-grade gliomas. (2) Methods: A prospective, multicenter study (FuMeGA: Functional and Metabolic Glioma Analysis) including patients with baseline CE-MRI and 18F-fluorocholine PET/CT and IDH wild-type high-grade gliomas. Clinical variables such as performance status, extent of surgery and adjuvant treatments (Stupp protocol vs others) were obtained and used to discriminate overall survival (OS) and progression-free survival (PFS) as end points. Multilesionality was assessed on the visual analysis of PET/CT and CE-MRI images. After tumor segmentation, standardized uptake value (SUV)-based variables for PET/CT and volume-based and geometrical variables for PET/CT and CE-MRI were calculated. The relationships among imaging techniques variables and their association with prognosis were evaluated using Pearson’s chi-square test and the t-test. Receiver operator characteristic, Kaplan−Meier and Cox regression were used for the survival analysis. (3) Results: 54 patients were assessed. The median PFS and OS were 5 and 11 months, respectively. Significant strong relationships between volume-dependent variables obtained from PET/CT and CE-MRI were found (r > 0.750, p < 0.05). For OS, significant associations were found with SUVmax, SUVpeak, SUVmean and sphericity (HR: 1.17, p = 0.035; HR: 1.24, p = 0.042; HR: 1.62, p = 0.040 and HR: 0.8, p = 0.022, respectively). Among clinical variables, only Stupp protocol and age showed significant associations with OS and PFS. No CE-MRI derived variables showed significant association with prognosis. In multivariate analysis, age (HR: 1.04, p = 0.002), Stupp protocol (HR: 2.81, p = 0.001), multilesionality (HR: 2.20, p = 0.013) and sphericity (HR: 0.79, p = 0.027) derived from PET/CT showed independent associations with OS. For PFS, only age (HR: 1.03, p = 0.021) and treatment protocol (HR: 2.20, p = 0.008) were significant predictors. (4) Conclusions: 18F-fluorocholine PET/CT metabolic and radiomic variables were robust prognostic predictors in patients with IDH-wt high-grade gliomas, outperforming CE-MRI derived variables.
Collapse
|
9
|
Waltenberger M, Furkel J, Röhrich M, Salome P, Debus C, Tawk B, Gahlawat AW, Kudak A, Dostal M, Wirkner U, Schwager C, Herold-Mende C, Combs SE, König L, Debus J, Haberkorn U, Abdollahi A, Knoll M. The impact of tumor metabolic activity assessed by 18F-FET amino acid PET imaging in particle radiotherapy of high-grade glioma patients. Front Oncol 2022; 12:901390. [PMID: 36203443 PMCID: PMC9531169 DOI: 10.3389/fonc.2022.901390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Selective uptake of (18)F-fluoro-ethyl-tyrosine (18F-FET) is used in high-grade glioma (HGG) to assess tumor metabolic activity via positron emission tomography (PET). We aim to investigate its value for target volume definition, as a prognosticator, and associations with whole-blood transcriptome liquid biopsy (WBT lbx) for which we recently reported feasibility to mirror tumor characteristics and response to particle irradiation in recurrent HGG (rHGG). Methods 18F-FET-PET data from n = 43 patients with primary glioblastoma (pGBM) and n = 33 patients with rHGG were assessed. pGBM patients were irradiated with photons and sequential proton/carbon boost, and rHGG patients were treated with carbon re-irradiation (CIR). WBT (Illumina HumanHT-12 Expression BeadChips) lbx was available for n = 9 patients from the rHGG cohort. PET isocontours (40%–70% SUVmax, 10% steps) and MRI-based treatment volumes (MRIvol) were compared using the conformity index (CI) (pGBM, n = 16; rHGG, n = 27). Associations with WBT lbx data were tested on gene expression level and inferred pathways activity scores (PROGENy) and from transcriptome estimated cell fractions (CIBERSORT, xCell). Results In pGBM, median SUVmax was higher in PET acquired pre-radiotherapy (4.1, range (R) 1.5–7.8; n = 20) vs. during radiotherapy (3.3, R 1.5–5.7, n = 23; p = 0.03) and in non-resected (4.7, R 2.9–7.9; n = 11) vs. resected tumors (3.3, R 1.5–7.8, n = 32; p = 0.01). In rHGG, a trend toward higher SUVmax values in grade IV tumors was observed (p = 0.13). Median MRIvol was 32.34 (R 8.75–108.77) cm3 in pGBM (n = 16) and 20.77 (R 0.63–128.44) cm3 in rHGG patients (n = 27). The highest median CI was observed for 40% (pGBM, 0.31) and 50% (rHGG, 0.43, all tumors) isodose, with 70% (40%) isodose in grade III (IV) rHGG tumors (median CI, 0.38 and 0.49). High SUVmax was linked to shorter survival in pGBM (>3.3, p = 0.001, OR 6.0 [2.1–17.4]) and rHGG (>2.8, p = 0.02, OR 4.1 [1.2–13.9]). SUVmax showed associations with inferred monocyte fractions, hypoxia, and TGFbeta pathway activity and links to immune checkpoint gene expression from WBT lbx. Conclusion The benefits of 18F-FET-PET imaging on gross tumor volume (GTV) definition for particle radiotherapy warrant further evaluation. SUVmax might assist in prognostic stratification of HGG patients for particle radiotherapy, highlights heterogeneity in rHGG, and is positively associated with unfavorable signatures in peripheral whole-blood transcriptomes.
Collapse
Affiliation(s)
- Maria Waltenberger
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Jennifer Furkel
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuel Röhrich
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Patrick Salome
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charlotte Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Bouchra Tawk
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aoife Ward Gahlawat
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Kudak
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
| | - Matthias Dostal
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
| | - Ute Wirkner
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Schwager
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Experimental Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum Munich, Munich, Germany
| | - Laila König
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Amir Abdollahi
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Knoll
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
- *Correspondence: Maximilian Knoll,
| |
Collapse
|
10
|
Nardone V, Desideri I, D’Ambrosio L, Morelli I, Visani L, Di Giorgio E, Guida C, Clemente A, Belfiore MP, Cioce F, Spadafora M, Vinciguerra C, Mansi L, Reginelli A, Cappabianca S. Nuclear medicine and radiotherapy in the clinical management of glioblastoma patients. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00495-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Introduction
The aim of the narrative review was to analyse the applications of nuclear medicine (NM) techniques such as PET/CT with different tracers in combination with radiotherapy for the clinical management of glioblastoma patients.
Materials and methods
Key references were derived from a PubMed query. Hand searching and clinicaltrials.gov were also used.
Results
This paper contains a narrative report and a critical discussion of NM approaches in combination with radiotherapy in glioma patients.
Conclusions
NM can provide the Radiation Oncologist several aids that can be useful in the clinical management of glioblastoma patients. At the same, these results need to be validated in prospective and multicenter trials.
Collapse
|
11
|
Gonçalves FG, Viaene AN, Vossough A. Advanced Magnetic Resonance Imaging in Pediatric Glioblastomas. Front Neurol 2021; 12:733323. [PMID: 34858308 PMCID: PMC8631300 DOI: 10.3389/fneur.2021.733323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
The shortly upcoming 5th edition of the World Health Organization Classification of Tumors of the Central Nervous System is bringing extensive changes in the terminology of diffuse high-grade gliomas (DHGGs). Previously "glioblastoma," as a descriptive entity, could have been applied to classify some tumors from the family of pediatric or adult DHGGs. However, now the term "glioblastoma" has been divested and is no longer applied to tumors in the family of pediatric types of DHGGs. As an entity, glioblastoma remains, however, in the family of adult types of diffuse gliomas under the insignia of "glioblastoma, IDH-wildtype." Of note, glioblastomas still can be detected in children when glioblastoma, IDH-wildtype is found in this population, despite being much more common in adults. Despite the separation from the family of pediatric types of DHGGs, what was previously labeled as "pediatric glioblastomas" still remains with novel labels and as new entities. As a result of advances in molecular biology, most of the previously called "pediatric glioblastomas" are now classified in one of the four family members of pediatric types of DHGGs. In this review, the term glioblastoma is still apocryphally employed mainly due to its historical relevance and the paucity of recent literature dealing with the recently described new entities. Therefore, "glioblastoma" is used here as an umbrella term in the attempt to encompass multiple entities such as astrocytoma, IDH-mutant (grade 4); glioblastoma, IDH-wildtype; diffuse hemispheric glioma, H3 G34-mutant; diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype; and high grade infant-type hemispheric glioma. Glioblastomas are highly aggressive neoplasms. They may arise anywhere in the developing central nervous system, including the spinal cord. Signs and symptoms are non-specific, typically of short duration, and usually derived from increased intracranial pressure or seizure. Localized symptoms may also occur. The standard of care of "pediatric glioblastomas" is not well-established, typically composed of surgery with maximal safe tumor resection. Subsequent chemoradiation is recommended if the patient is older than 3 years. If younger than 3 years, surgery is followed by chemotherapy. In general, "pediatric glioblastomas" also have a poor prognosis despite surgery and adjuvant therapy. Magnetic resonance imaging (MRI) is the imaging modality of choice for the evaluation of glioblastomas. In addition to the typical conventional MRI features, i.e., highly heterogeneous invasive masses with indistinct borders, mass effect on surrounding structures, and a variable degree of enhancement, the lesions may show restricted diffusion in the solid components, hemorrhage, and increased perfusion, reflecting increased vascularity and angiogenesis. In addition, magnetic resonance spectroscopy has proven helpful in pre- and postsurgical evaluation. Lastly, we will refer to new MRI techniques, which have already been applied in evaluating adult glioblastomas, with promising results, yet not widely utilized in children.
Collapse
Affiliation(s)
- Fabrício Guimarães Gonçalves
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Arastoo Vossough
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Connor M, Kim MM, Cao Y, Hattangadi-Gluth J. Precision Radiotherapy for Gliomas: Implementing Novel Imaging Biomarkers to Improve Outcomes With Patient-Specific Therapy. Cancer J 2021; 27:353-363. [PMID: 34570449 PMCID: PMC8480523 DOI: 10.1097/ppo.0000000000000546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Gliomas are the most common primary brain cancer, yet are extraordinarily challenging to treat because they can be aggressive and infiltrative, locally recurrent, and resistant to standard treatments. Furthermore, the treatments themselves, including radiation therapy, can affect patients' neurocognitive function and quality of life. Noninvasive imaging is the standard of care for primary brain tumors, including diagnosis, treatment planning, and monitoring for treatment response. This article explores the ways in which advanced imaging has and will continue to transform radiation treatment for patients with gliomas, with a focus on cognitive preservation and novel biomarkers, as well as precision radiotherapy and treatment adaptation. Advances in novel imaging techniques continue to push the field forward, to more precisely guided treatment planning, radiation dose escalation, measurement of therapeutic response, and understanding of radiation-associated injury.
Collapse
Affiliation(s)
- Michael Connor
- From the Department of Radiation Medicine and Applied Sciences, UC San Diego, Moores Cancer Center, La Jolla, CA
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Jona Hattangadi-Gluth
- From the Department of Radiation Medicine and Applied Sciences, UC San Diego, Moores Cancer Center, La Jolla, CA
| |
Collapse
|
13
|
Laack NN, Pafundi D, Anderson SK, Kaufmann T, Lowe V, Hunt C, Vogen D, Yan E, Sarkaria J, Brown P, Kizilbash S, Uhm J, Ruff M, Zakhary M, Zhang Y, Seaberg M, Wan Chan Tseung HS, Kabat B, Kemp B, Brinkmann D. Initial Results of a Phase 2 Trial of 18F-DOPA PET-Guided Dose-Escalated Radiation Therapy for Glioblastoma. Int J Radiat Oncol Biol Phys 2021; 110:1383-1395. [PMID: 33771703 DOI: 10.1016/j.ijrobp.2021.03.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/21/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Our previous work demonstrated that 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-DOPA) positron emission tomography (PET) is sensitive and specific for identifying regions of high density and biologically aggressive glioblastoma. The purpose of this prospective phase 2 study was to determine the safety and efficacy of biologic-guided, dose-escalated radiation therapy (DERT) using 18F-DOPA PET in patients with glioblastoma. METHODS AND MATERIALS Patients with newly diagnosed, histologically confirmed glioblastoma aged ≥18 years without contraindications to 18F-DOPA were eligible. Target volumes included 51, 60, and 76 Gy in 30 fractions with a simultaneous integrated boost, and concurrent and adjuvant temozolomide for 6 months. 18F-DOPA PET imaging was used to guide DERT. The study was designed to detect a true progression-free survival (PFS) at 6 months (PFS6) rate ≥72.5% in O6-methylguanine methyltransferase (MGMT) unmethylated patients (DE-Un), with an overall significance level (alpha) of 0.20 and a power of 80%. Kaplan-Meier analysis was performed for PFS and overall survival (OS). Historical controls (HCs) included 139 patients (82 unmethylated) treated on prospective clinical trials or with standard RT at our institution. Toxicities were evaluated with Common Terminology Criteria for Adverse Events v4.0. RESULTS Between January 2014 and December 2018, 75 evaluable patients were enrolled (39 DE-Un, 24 methylated [DE-Mth], and 12 indeterminate). PFS6 for DE-Un was 79.5% (95% confidence interval, 63.1%-90.1%). Median PFS was longer for DE-Un patients compared with historical controls (8.7 months vs 6.6 months; P = .017). OS was similarly longer, but the difference was not significant (16.0 vs 13.5 months; P = .13). OS was significantly improved for DE-Mth patients compared with HC-Mth (35.5 vs 23.3 months; P = .049) despite nonsignificant improvement in PFS (10.7 vs 9.0 months; P = .26). Grade 3 central nervous system necrosis occurred in 13% of patients, but treatment with bevacizumab improved symptoms in all cases. CONCLUSIONS 18F-DOPA PET-guided DERT appears to be safe, and it significantly improves PFS in MGMT unmethylated glioblastoma. OS is significantly improved in MGMT methylated patients. Further investigation of 18F-DOPA PET biologic guided DERT for glioblastoma is warranted.
Collapse
Affiliation(s)
| | - Deanna Pafundi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | | | | | - Val Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | - Diane Vogen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth Yan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Jann Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Paul Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Sani Kizilbash
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Joon Uhm
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Michael Ruff
- Deptartment of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Mark Zakhary
- Department of Radiation Oncology, University of Maryland, Baltimore, Maryland
| | - Yan Zhang
- Department of Research, Mayo Clinic, Jacksonville, Florida
| | | | | | - Brian Kabat
- Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Bradley Kemp
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Debra Brinkmann
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
14
|
Galldiks N, Niyazi M, Grosu AL, Kocher M, Langen KJ, Law I, Minniti G, Kim MM, Tsien C, Dhermain F, Soffietti R, Mehta MP, Weller M, Tonn JC. Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients - a report of the PET/RANO group. Neuro Oncol 2021; 23:881-893. [PMID: 33538838 DOI: 10.1093/neuonc/noab013] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The management of patients with glioma usually requires multimodality treatment including surgery, radiotherapy, and systemic therapy. Accurate neuroimaging plays a central role for radiotherapy planning and follow-up after radiotherapy completion. In order to maximize the radiation dose to the tumor and to minimize toxic effects on the surrounding brain parenchyma, reliable identification of tumor extent and target volume delineation is crucial. The use of positron emission tomography (PET) for radiotherapy planning and monitoring in gliomas has gained considerable interest over the last several years, but Class I data are not yet available. Furthermore, PET has been used after radiotherapy for response assessment and to distinguish tumor progression from pseudoprogression or radiation necrosis. Here, the Response Assessment in Neuro-Oncology (RANO) working group provides a summary of the literature and recommendations for the use of PET imaging for radiotherapy of patients with glioma based on published studies, constituting levels 1-3 evidence according to the Oxford Centre for Evidence-based Medicine.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3,-4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Cologne and Aachen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-3,-4), Research Center Juelich, Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3,-4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Cologne and Aachen, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Copenhagen, Denmark
| | - Giuseppe Minniti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christina Tsien
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Frederic Dhermain
- Department of Radiation Therapy, Institut de Cancerologie Gustave Roussy, Villejuif, France
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jörg-Christian Tonn
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
15
|
Pessina F, Navarria P, Clerici E, Bellu L, Franzini A, Milani D, Simonelli M, Persico P, Politi LS, Casarotti A, Fernandes B, Olei S, Sollini M, Chiti A, Scorsetti M. Role of 11C Methionine Positron Emission Tomography (11CMETPET) for Surgery and Radiation Therapy Planning in Newly Diagnosed Glioblastoma Patients Enrolled into a Phase II Clinical Study. J Clin Med 2021; 10:jcm10112313. [PMID: 34070698 PMCID: PMC8198980 DOI: 10.3390/jcm10112313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: We investigated the role of [11C]-methionine PET in a cohort of newly diagnosed glioblastoma multiforme (GBM) patients to evaluate whether it could modify the extent of surgical resection and improve radiation therapy volume delineation. (2) Methods: Newly diagnosed GBM patients, ages 18-70, with a Karnofsky performance scale (KPS) ≥ 70 with available MRI and [11C]-methionine PET were included. Patients were treated with different amounts of surgical resection followed by radio-chemotherapy. The role of [11C]-methionine PET in surgical and RT planning was analyzed. A threshold of SUVmax was searched. (3) Results: From August 2013 to April 2016, 93 patients were treated and included in this analysis. Residual tumor volume was detected in 63 cases on MRI and in 78 on [11C]-methionine PET, including 15 receiving gross total resection. The location of uptake was mainly observed in FLAIR abnormalities. [11C]-methionine uptake changed RT volume in 11% of patients. The presence of [11C]-methionine uptake in patients receiving GTR proved to influence survival (p = 0.029). The threshold of the SUVmax conditioning outcome was five. (4) Conclusions: [11C]-methionine PET allowed to detect areas at higher risk of recurrence located in FLAIR abnormalities in patients affected by GBM. A challenging issue is represented by integrating morphological and functional imaging to better define the extent of surgical resection to perform.
Collapse
Affiliation(s)
- Federico Pessina
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (F.P.); (A.F.); (D.M.); (A.C.); (S.O.); (M.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (L.S.P.); (A.C.)
| | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (E.C.); (L.B.)
- Correspondence: ; Tel.: +390-282-247-458
| | - Elena Clerici
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (E.C.); (L.B.)
| | - Luisa Bellu
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (E.C.); (L.B.)
| | - Andrea Franzini
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (F.P.); (A.F.); (D.M.); (A.C.); (S.O.); (M.S.)
| | - Davide Milani
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (F.P.); (A.F.); (D.M.); (A.C.); (S.O.); (M.S.)
| | - Matteo Simonelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (L.S.P.); (A.C.)
- Oncology and Hematology Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Pasquale Persico
- Oncology and Hematology Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Letterio S. Politi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (L.S.P.); (A.C.)
- Neuroradiology Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Alessandra Casarotti
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (F.P.); (A.F.); (D.M.); (A.C.); (S.O.); (M.S.)
| | - Bethania Fernandes
- Pathology Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Simone Olei
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (F.P.); (A.F.); (D.M.); (A.C.); (S.O.); (M.S.)
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (L.S.P.); (A.C.)
- Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (L.S.P.); (A.C.)
- Pathology Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Marta Scorsetti
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (F.P.); (A.F.); (D.M.); (A.C.); (S.O.); (M.S.)
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (E.C.); (L.B.)
| |
Collapse
|
16
|
Early Monitoring Response to Therapy in Patients with Brain Lesions Using the Cumulative SUV Histogram. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11072999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gamma Knife treatment is an alternative to traditional brain surgery and whole-brain radiation therapy for treating cancers that are inaccessible via conventional treatments. To assess the effectiveness of Gamma Knife treatments, functional imaging can play a crucial role. The aim of this study is to evaluate new prognostic indices to perform an early assessment of treatment response to therapy using positron emission tomography imaging. The parameters currently used in nuclear medicine assessments can be affected by statistical fluctuation errors and/or cannot provide information on tumor extension and heterogeneity. To overcome these limitations, the Cumulative standardized uptake value (SUV) Histogram (CSH) and Area Under the Curve (AUC) indices were evaluated to obtain additional information on treatment response. For this purpose, the absolute level of [11C]-Methionine (MET) uptake was measured and its heterogeneity distribution within lesions was evaluated by calculating the CSH and AUC indices. CSH and AUC parameters show good agreement with patient outcomes after Gamma Knife treatments. Furthermore, no relevant correlations were found between CSH and AUC indices and those usually used in the nuclear medicine environment. CSH and AUC indices could be a useful tool for assessing patient responses to therapy.
Collapse
|
17
|
Castellano A, Bailo M, Cicone F, Carideo L, Quartuccio N, Mortini P, Falini A, Cascini GL, Minniti G. Advanced Imaging Techniques for Radiotherapy Planning of Gliomas. Cancers (Basel) 2021; 13:cancers13051063. [PMID: 33802292 PMCID: PMC7959155 DOI: 10.3390/cancers13051063] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
The accuracy of target delineation in radiation treatment (RT) planning of cerebral gliomas is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Conventional magnetic resonance imaging (MRI), including contrast-enhanced T1-weighted and fluid-attenuated inversion recovery (FLAIR) sequences, represents the current standard imaging modality for target volume delineation of gliomas. However, conventional sequences have limited capability to discriminate treatment-related changes from viable tumors, owing to the low specificity of increased blood-brain barrier permeability and peritumoral edema. Advanced physiology-based MRI techniques, such as MR spectroscopy, diffusion MRI and perfusion MRI, have been developed for the biological characterization of gliomas and may circumvent these limitations, providing additional metabolic, structural, and hemodynamic information for treatment planning and monitoring. Radionuclide imaging techniques, such as positron emission tomography (PET) with amino acid radiopharmaceuticals, are also increasingly used in the workup of primary brain tumors, and their integration in RT planning is being evaluated in specialized centers. This review focuses on the basic principles and clinical results of advanced MRI and PET imaging techniques that have promise as a complement to RT planning of gliomas.
Collapse
Affiliation(s)
- Antonella Castellano
- Neuroradiology Unit, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
| | - Michele Bailo
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (M.B.); (P.M.)
| | - Francesco Cicone
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, and Nuclear Medicine Unit, University Hospital “Mater Domini”, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-0-961-369-4155
| | - Luciano Carideo
- National Cancer Institute, G. Pascale Foundation, 80131 Naples, Italy;
| | - Natale Quartuccio
- A.R.N.A.S. Ospedale Civico Di Cristina Benfratelli, 90144 Palermo, Italy;
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (M.B.); (P.M.)
| | - Andrea Falini
- Neuroradiology Unit, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
| | - Giuseppe Lucio Cascini
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, and Nuclear Medicine Unit, University Hospital “Mater Domini”, 88100 Catanzaro, Italy;
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| |
Collapse
|
18
|
Carles M, Popp I, Starke MM, Mix M, Urbach H, Schimek-Jasch T, Eckert F, Niyazi M, Baltas D, Grosu AL. FET-PET radiomics in recurrent glioblastoma: prognostic value for outcome after re-irradiation? Radiat Oncol 2021; 16:46. [PMID: 33658069 PMCID: PMC7931514 DOI: 10.1186/s13014-020-01744-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose The value of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-positron emission tomography (PET)-radiomics in the outcome assessment of patients with recurrent glioblastoma (rGBM) has not been evaluated until now.
The aim of this study was to evaluate whether a prognostic model based on FET-PET radiomics features (RF) is feasible and can identify rGBM patients that would most benefit from re-irradiation.
Methods We prospectively recruited rGBM patients who underwent FET-PET before re-irradiation (GLIAA-Pilot trial, DRKS00000633). Tumor volume was delineated using a semi-automatic method with a threshold of 1.8 times the standardized-uptake-value of the background. 135 FET-RF (histogram parameters, shape and texture features) were extracted. The analysis involved the characterization of tumor and non-tumor tissue with FET-RF and the evaluation of the prognostic value of FET-RF for time-to-progression (TTP), overall survival (OS) and recurrence location (RL). Results Thirty-two rGBM patients constituted our cohort. FET-RF discriminated significantly between tumor and non-tumor. The texture feature Small-Zone-Low-Gray-Level-Emphasis (SZLGE) showed the best performance for the prediction of TTP (p = 0.001, satisfying Bonferroni-multiple-test significance level). Additionally, two radiomics signatures could predict TTP (TTP-radiomics-signature, p = 0.001) and OS (OS-radiomics-signature, p = 0.038). SZLGE and the TTP-radiomics-signature additionally predicted RL. Specifically, high values for TTP-radiomics-signature and for SZLGE indicated not only earlier progression, but also a RL within the initial FET-PET active volume. Conclusion Our findings suggest that FET-PET radiomics could contribute to the prognostic assessment and selection of rGBM-patients benefiting from re-irradiation. Trial registration DRKS00000633. Registered on 8th of December in 2010. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00000633.
Collapse
Affiliation(s)
- Montserrat Carles
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, University of Freiburg, Robert-Koch Str. 3, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Heidelberg, Germany. .,Biomedical Imaging Research Group (GIBI230-PREBI), Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), La Fe Health Research Institute, Valencia, Spain.
| | - Ilinca Popp
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Heidelberg, Germany.,Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Maximilian Starke
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Mix
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Heidelberg, Germany.,Department of Nuclear Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tanja Schimek-Jasch
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Cerman Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, Munich, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, University of Freiburg, Robert-Koch Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Heidelberg, Germany
| | - Anca L Grosu
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Heidelberg, Germany.,Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Kamson D, Tsien C. Novel Magnetic Resonance Imaging and Positron Emission Tomography in the RT Planning and Assessment of Response of Malignant Gliomas. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Abstract
The major applications for molecular imaging with PET in clinical practice concern cancer imaging. Undoubtedly, 18F-FDG represents the backbone of nuclear oncology as it remains so far the most widely employed positron emitter compound. The acquired knowledge on cancer features, however, allowed the recognition in the last decades of multiple metabolic or pathogenic pathways within the cancer cells, which stimulated the development of novel radiopharmaceuticals. An endless list of PET tracers, substantially covering all hallmarks of cancer, has entered clinical routine or is being investigated in diagnostic trials. Some of them guard significant clinical applications, whereas others mostly bear a huge potential. This chapter summarizes a selected list of non-FDG PET tracers, described based on their introduction into and impact on clinical practice.
Collapse
|
21
|
García Vicente AM, Pena Pardo FJ, Lozano Setien E, Sandoval Valencia H, Villena Martín M. FuMeGA Criteria for Visual Assessment of Postoperative 18F-Fluorocholine PET in Patients With Glioma. Clin Nucl Med 2020; 45:448-450. [PMID: 32349093 DOI: 10.1097/rlu.0000000000003034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Postoperative assessment is crucial in the imaging follow-up and prognosis in patients with glioma. Whereas grade of resection is defined attending to the gadolinium enhancement in early postoperative MRI, no metabolical criteria exist for postoperative PET interpretation. Based on our prospective and multicenter FuMeGA (Functional and Metabolic Glioma Analysis) ongoing study, we propose criteria for the visual interpretation of F-fluorocholine PET scans in patients undergoing brain tumor resection. The different imaging characteristics between MRI and PET may explain the discordances regarding to the postresection status with both techniques.
Collapse
Affiliation(s)
- Ana María García Vicente
- From the Nuclear Medicine Department, Hospital General Universitario de Ciudad Real, Ciudad Real
| | | | | | | | - Maikal Villena Martín
- Neurosurgery Department, Hospital General Universitario de Albacete, Albacete, Spain
| |
Collapse
|
22
|
Stefano A, Comelli A, Bravatà V, Barone S, Daskalovski I, Savoca G, Sabini MG, Ippolito M, Russo G. A preliminary PET radiomics study of brain metastases using a fully automatic segmentation method. BMC Bioinformatics 2020; 21:325. [PMID: 32938360 PMCID: PMC7493376 DOI: 10.1186/s12859-020-03647-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Background Positron Emission Tomography (PET) is increasingly utilized in radiomics studies for treatment evaluation purposes. Nevertheless, lesion volume identification in PET images is a critical and still challenging step in the process of radiomics, due to the low spatial resolution and high noise level of PET images. Currently, the biological target volume (BTV) is manually contoured by nuclear physicians, with a time expensive and operator-dependent procedure. This study aims to obtain BTVs from cerebral metastases in patients who underwent L-[11C]methionine (11C-MET) PET, using a fully automatic procedure and to use these BTVs to extract radiomics features to stratify between patients who respond to treatment or not. For these purposes, 31 brain metastases, for predictive evaluation, and 25 ones, for follow-up evaluation after treatment, were delineated using the proposed method. Successively, 11C-MET PET studies and related volumetric segmentations were used to extract 108 features to investigate the potential application of radiomics analysis in patients with brain metastases. A novel statistical system has been implemented for feature reduction and selection, while discriminant analysis was used as a method for feature classification. Results For predictive evaluation, 3 features (asphericity, low-intensity run emphasis, and complexity) were able to discriminate between responder and non-responder patients, after feature reduction and selection. Best performance in patient discrimination was obtained using the combination of the three selected features (sensitivity 81.23%, specificity 73.97%, and accuracy 78.27%) compared to the use of all features. Secondly, for follow-up evaluation, 8 features (SUVmean, SULpeak, SUVmin, SULpeak prod-surface-area, SUVmean prod-sphericity, surface mean SUV 3, SULpeak prod-sphericity, and second angular moment) were selected with optimal performance in discriminant analysis classification (sensitivity 86.28%, specificity 87.75%, and accuracy 86.57%) outperforming the use of all features. Conclusions The proposed system is able i) to extract 108 features for each automatically segmented lesion and ii) to select a sub-panel of 11C-MET PET features (3 and 8 in the case of predictive and follow-up evaluation), with valuable association with patient outcome. We believe that our model can be useful to improve treatment response and prognosis evaluation, potentially allowing the personalization of cancer treatment plans.
Collapse
Affiliation(s)
- Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | - Albert Comelli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy.,Ri.MED Foundation, Palermo, Italy
| | - Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy.
| | | | - Igor Daskalovski
- Department of Physics and Astronomy, University of Catania, Catania, Italy
| | - Gaetano Savoca
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | | | - Massimo Ippolito
- Nuclear Medicine Department, Cannizzaro Hospital, Catania, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy.,Medical Physics Unit, Cannizzaro Hospital, Catania, Italy
| |
Collapse
|
23
|
Lakomy R, Kazda T, Selingerova I, Poprach A, Pospisil P, Belanova R, Fadrus P, Smrcka M, Vybihal V, Jancalek R, Kiss I, Muckova K, Hendrych M, Knight A, Sana J, Slampa P, Slaby O. Pre-Radiotherapy Progression after Surgery of Newly Diagnosed Glioblastoma: Corroboration of New Prognostic Variable. Diagnostics (Basel) 2020; 10:E676. [PMID: 32899528 PMCID: PMC7555958 DOI: 10.3390/diagnostics10090676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The aim of this retrospective study is to assess the incidence, localization, and potential predictors of rapid early progression (REP) prior to initiation of radiotherapy in newly diagnosed glioblastoma patients and to compare survival outcomes in cohorts with or without REP in relation to the treatment. METHODS We assessed a consecutive cohort of 155 patients with histologically confirmed irradiated glioblastoma from 1/2014 to 12/2017. A total of 90 patients with preoperative, postoperative, and planning MRI were analyzed. RESULTS Median age 59 years, 59% men, and 39 patients (43%) underwent gross total tumor resection. The Stupp regimen was indicated to 64 patients (71%); 26 patients (29%) underwent radiotherapy alone. REP on planning MRI performed shortly prior to radiotherapy was found in 46 (51%) patients, most often within the surgical cavity wall, and the main predictor for REP was non-radical surgery (p < 0.001). The presence of REP was confirmed as a strong negative prognostic factor; median overall survival (OS) in patients with REP was 10.7 vs. 18.7 months and 2-year survival was 15.6% vs. 37.7% (hazard ratio HR 0.53 for those without REP; p = 0.007). Interestingly, the REP occurrence effect on survival outcome was significantly different in younger patients (≤ 50 years) and older patients (> 50 years) for OS (p = 0.047) and non-significantly for PFS (p = 0.341). In younger patients, REP was a stronger negative prognostic factor, probably due to more aggressive behavior. Patients with REP who were indicated for the Stupp regimen had longer OS compared to radiotherapy alone (median OS 16.0 vs 7.5; HR = 0.5, p = 0.022; 2-year survival 22.3% vs. 5.6%). The interval between surgery and the initiation of radiotherapy were not prognostic in either the entire cohort or in patients with REP. CONCLUSION Especially in the subgroup of patients without radical resection, one may recommend as early initiation of radiotherapy as possible. The phenomenon of REP should be recognized as an integral part of stratification factors in future prospective clinical trials enrolling patients before initiation of radiotherapy.
Collapse
Affiliation(s)
- Radek Lakomy
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (R.L.); (A.P.); (I.K.); (J.S.)
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (P.P.); (P.S.)
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Iveta Selingerova
- Research Center for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic;
| | - Alexandr Poprach
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (R.L.); (A.P.); (I.K.); (J.S.)
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Petr Pospisil
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (P.P.); (P.S.)
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Renata Belanova
- Department of Radiology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic;
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Pavel Fadrus
- Department of Neurosurgery, University Hospital Brno, and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (P.F.); (M.S.); (V.V.)
| | - Martin Smrcka
- Department of Neurosurgery, University Hospital Brno, and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (P.F.); (M.S.); (V.V.)
| | - Vaclav Vybihal
- Department of Neurosurgery, University Hospital Brno, and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (P.F.); (M.S.); (V.V.)
| | - Radim Jancalek
- Department of Neurosurgery, St. Anne’s University Hospital Brno, 656 91 Brno, Czech Republic;
- Department of Neurosurgery, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (R.L.); (A.P.); (I.K.); (J.S.)
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Katarina Muckova
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Michal Hendrych
- First Department of Pathology, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic;
| | - Andrea Knight
- Department of Pathological Physiology, Faculty of Medicine, Gamma Delta T Cell Laboratory, Masaryk University, 625 00 Brno, Czech Republic;
| | - Jiri Sana
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (R.L.); (A.P.); (I.K.); (J.S.)
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Pavel Slampa
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (P.P.); (P.S.)
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
24
|
Kudulaiti N, Qiu T, Lu J, Zhang H, Zhang Z, Guan Y, Zhuang D, Wu J. Combination of Magnetic Resonance Spectroscopy and ¹¹C-Methionine Positron Emission Tomography for the Accurate Diagnosis of Non-Enhancing Supratentorial Glioma. Korean J Radiol 2020; 20:967-975. [PMID: 31132822 PMCID: PMC6536785 DOI: 10.3348/kjr.2018.0690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/28/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate whether the combination of magnetic resonance spectroscopy (MRS) and ¹¹C-methionine positron emission tomography (¹¹C-MET PET) could increase accurate diagnostic sensitivity for non-enhancing supratentorial gliomas. MATERIALS AND METHODS Between February 2012 and December 2017, 109 patients with non-enhanced supratentorial lesions on contrast-enhanced MRI were enrolled. Each patient underwent MRS and ¹¹C-MET PET before treatment. A lesion was considered to be a glioma when either the MRS or ¹¹C-MET PET results reached the diagnostic threshold. The radiological diagnosis was compared with the pathological diagnosis or medical diagnostic criteria. RESULTS The sensitivity and specificity were 60.0% and 50.0% for MRS and 75.8% and 50.0% for ¹¹C-MET PET, respectively. Upon combining the two modalities, the sensitivity and specificity of the imaging-based diagnosis prior to surgery reached 89.5% and 42.9%, respectively. Statistically significant differences in the sensitivities were observed between the combined and individual approaches (MRS alone, 89.5% vs. 60.0%, p < 0.001; ¹¹C-MET PET alone, 89.5% vs. 75.8%, p = 0.001). However, no significant differences in specificity were observed between the combined and individual modalities. CONCLUSION The combination of MRS and ¹¹C-MET PET findings significantly increases accurate diagnostic sensitivity for non-enhancing supratentorial gliomas without significantly lowering the specificity. This finding suggests the potential of the combined MRS and ¹¹C-MET PET approach in clinical applications.
Collapse
Affiliation(s)
- Nijiati Kudulaiti
- Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianming Qiu
- Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junfeng Lu
- Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huiwei Zhang
- PET Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengwei Zhang
- PET Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongxiao Zhuang
- Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jinsong Wu
- Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Menon H, Guo C, Verma V, Simone CB. The Role of Positron Emission Tomography Imaging in Radiotherapy Target Delineation. PET Clin 2020; 15:45-53. [PMID: 31735301 DOI: 10.1016/j.cpet.2019.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Positron emission tomography (PET) is an advanced functional imaging modality in oncology care for the diagnosis, staging, prognostication, and surveillance of numerous malignancies. PET can also offer considerable advantages for target volume delineation as part of radiation treatment planning. In this review, data and clinical practice from 6 general oncology disease sites are assessed to descriptively evaluate the role of PET in target volume delineation. Also highlighted are several specific and practical utilities for PET imaging in radiation treatment planning. Publication of several ongoing prospective trials in the future may further expand the utility of PET for target delineation and patient care.
Collapse
Affiliation(s)
- Hari Menon
- University of Arizona College of Medicine, 475 N 5th St, Phoenix, AZ 85004, USA
| | - Chunxiao Guo
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, 320 E North Ave, Pittsburgh, PA 15212, USA
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, 225 East 126th Street, New York, NY 10035, USA.
| |
Collapse
|
26
|
Inoue A, Ohnishi T, Kohno S, Ohue S, Nishikawa M, Suehiro S, Matsumoto S, Ozaki S, Fukushima M, Kurata M, Kitazawa R, Shigekawa S, Watanabe H, Kunieda T. Met-PET uptake index for total tumor resection: identification of 11C-methionine uptake index as a goal for total tumor resection including infiltrating tumor cells in glioblastoma. Neurosurg Rev 2020; 44:587-597. [PMID: 32060762 DOI: 10.1007/s10143-020-01258-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Glioblastoma multiforme (GBM) is largely due to glioma stem cells (GSCs) that escape from total resection of gadolinium (Gd)-enhanced tumor on MRI. The aim of this study is to identify the imaging requirements for maximum resection of GBM with infiltrating GSCs. We investigated the relationship of tumor imaging volume between MRI and 11C-methionine (Met)-PET and also the relationship between Met uptake index and tumor activity. In ten patients, tumor-to-contralateral normal brain tissue ratio (TNR) was calculated to evaluate metabolic activity of Met uptake areas which were divided into five subareas by the degrees of TNR. In each GBM, tumor tissue was obtained from subareas showing the positive Met uptake. Immunohistochemistry was performed to examine the tumor proliferative activity and existence of GSCs. In all patients, the volume of Met uptake area at TNR ≦ 1.4 was larger than that of the Gd-enhanced area. The Met uptake area at TNR 1.4 beyond the Gd-enhanced tumor was much wider in high invasiveness-type GBMs than in those of low invasiveness type, and survival was much shorter in the former than the latter types. Immunohistochemistry revealed the existence of GSCs in the area showing Met uptake at TNR 1.4 and no Gd enhancement. Areas at TNR > 1.4 included active tumor cells with relatively high Ki-67 labeling index. In addition, it was demonstrated that GSCs could exist beyond the border of Gd-enhanced tumor. Therefore, to obtain maximum resection of GBMs, including infiltrating GSCs, aggressive surgical excision that includes the Met-positive area at TNR 1.4 should be considered.
Collapse
Affiliation(s)
- Akihiro Inoue
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Takanori Ohnishi
- Department of Neurosurgery, Washoukai Sadamoto Hospital, 1-6-1 Takehara, Matsuyama, Ehime, 790-0052, Japan
| | - Shohei Kohno
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shiro Ohue
- Department of Neurosurgery, Ehime Prefectural Central Hospital, 83 Kasuga-machi, Matsuyama, Ehime, 790-0024, Japan
| | - Masahiro Nishikawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Satoshi Suehiro
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shirabe Matsumoto
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Saya Ozaki
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mana Fukushima
- Division of Diagnostic Pathology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mie Kurata
- Department of Analytical Pathology, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Seiji Shigekawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hideaki Watanabe
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
27
|
Song S, Cheng Y, Ma J, Wang L, Dong C, Wei Y, Xu G, An Y, Qi Z, Lin Q, Lu J. Simultaneous FET-PET and contrast-enhanced MRI based on hybrid PET/MR improves delineation of tumor spatial biodistribution in gliomas: a biopsy validation study. Eur J Nucl Med Mol Imaging 2020; 47:1458-1467. [PMID: 31919633 PMCID: PMC7188715 DOI: 10.1007/s00259-019-04656-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
Purpose Glioma treatment planning requires precise tumor delineation, which is typically performed with contrast-enhanced (CE) MRI. However, CE MRI fails to reflect the entire extent of glioma. O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) PET may detect tumor volumes missed by CE MRI. We investigated the clinical value of simultaneous FET-PET and CE MRI in delineating tumor extent before treatment planning. Guided stereotactic biopsy was used to validate the findings. Methods Conventional MRI and 18F-FET PET were performed simultaneously on a hybrid PET/MR in 33 patients with histopathologically confirmed glioma. Tumor volumes were quantified using a tumor-to-brain ratio ≥ 1.6 (VPET) and a visual threshold (VCE). We visually assessed abnormal areas on FLAIR images and calculated Dice’s coefficient (DSC), overlap volume (OV), discrepancy-PET, and discrepancy-CE. Additionally, several stereotactic biopsy samples were taken from “matched” or “mismatched” FET-PET and CE MRI regions. Results Among 31 patients (93.94%), FET-PET delineated significantly larger tumor volumes than CE MRI (77.84 ± 51.74 cm3 vs. 34.59 ± 27.07 cm3, P < 0.05). Of the 21 biopsy samples obtained from regions with increased FET uptake, all were histopathologically confirmed as glioma tissue or tumor infiltration, whereas only 13 showed enhancement on CE MRI. Among all patients, the spatial similarity between VPET and VCE was low (average DSC 0.56 ± 0.22), while the overlap was high (average OV 0.95 ± 0.08). The discrepancy-CE and discrepancy-PET were lower than 10% in 28 and 0 patients, respectively. Eleven patients showed VPET partially beyond abnormal signal areas on FLAIR images. Conclusion The metabolically active biodistribution of gliomas delineated with FET-PET significantly exceeds tumor volume on CE MRI, and histopathology confirms these findings. Our preliminary results indicate that combining the anatomic and molecular information obtained from conventional MRI and FET-PET would reveal a more accurate glioma extent, which is critical for individualized treatment planning. Electronic supplementary material The online version of this article (10.1007/s00259-019-04656-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuangshuang Song
- Department of Radiology, Xuanwu Hospital, Capital medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Ye Cheng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Ma
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Leiming Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | - Yukui Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Geng Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yang An
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhigang Qi
- Department of Radiology, Xuanwu Hospital, Capital medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Qingtang Lin
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital medical University, Beijing, China. .,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China. .,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Fleischmann DF, Unterrainer M, Schön R, Corradini S, Maihöfer C, Bartenstein P, Belka C, Albert NL, Niyazi M. Margin reduction in radiotherapy for glioblastoma through 18F-fluoroethyltyrosine PET? - A recurrence pattern analysis. Radiother Oncol 2020; 145:49-55. [PMID: 31923709 DOI: 10.1016/j.radonc.2019.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND PURPOSE 18F-fluoroethyltyrosine (18F-FET) PET is increasingly used in radiation treatment planning for the primary treatment of glioblastoma (GBM) patients additionally to contrast-enhanced MRI. To answer the question, whether a margin reduction in the primary treatment setting could be achieved through 18F-FET PET imaging, a recurrence pattern analysis was performed. PATIENTS AND METHODS GBM patients undergoing 18F-FET PET examination before primary radiochemotherapy from 05/2009 to 11/2014 were included into the recurrence pattern analysis. Biological tumour volumes were semi-automatically created and fused with MR-based gross tumour volumes (MRGTVs). The pattern of recurrence was examined for MRGTVs and for PET-MRGTVs. The minimal margin including all recurrent tumour sites was assessed by gradual expansion of the PET-MRGTVs and MRGTVs until inclusion of all contrast-enhancing areas at recurrence. RESULTS 36 GBM patients were included to the analysis. The minimal margin including all contrast enhancing tumour at recurrence was significantly smaller for the PET-MRGTVs compared to the MRGTVs (median 12.5 mm vs. 16.5 mm; p < 0.001, Wilcoxon-Test). PET-MRGTVs with 15 mm CTV margins were significantly smaller than MRGTVs with 20 mm CTV margins (median volume 255.92 vs. 258.35 cm3; p = 0.020, Wilcoxon-Test; excluding 3 cases with large non-contrast enhancing tumours). The pattern of recurrence of PET-MRGTVs with 15 mm CTV margins was comparable to MRGTVs with 20 mm CTV margins (32 vs. 30 central, 2 vs. 4 in-field, 2 vs. 2 ex-field and no marginal recurrences). CONCLUSION Target volume delineation of GBM patients can be improved through 18F-FET PET imaging prior to primary radiation treatment, since vital tumour can be detected more accurately. Furthermore, the results suggest that CTV margins could be reduced through 18F-FET PET imaging prior to primary RT of GBM.
Collapse
Affiliation(s)
- Daniel F Fleischmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Germany.
| | - Rudolph Schön
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany.
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany.
| | - Cornelius Maihöfer
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany.
| | - Peter Bartenstein
- German Cancer Consortium (DKTK), Partner Site Munich, Germany; Department of Nuclear Medicine, University Hospital, LMU Munich, Germany.
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany.
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Germany.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany.
| |
Collapse
|
29
|
Fennell JT, Gkika E, Grosu AL. Molecular Imaging in Photon Radiotherapy. Recent Results Cancer Res 2020; 216:845-863. [PMID: 32594409 DOI: 10.1007/978-3-030-42618-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, more than ever before, the treatment of cancer patients requires an interdisciplinary approach more than ever. Radiation therapy (RT) has become an indispensable pillar of cancer treatment early on, offering a local, curative treatment option and symptom control in palliative cases.
Collapse
Affiliation(s)
| | - Eleni Gkika
- Department of Radiation Oncology, University of Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
30
|
Ozaki T, Kinoshita M, Arita H, Kagawa N, Fujimoto Y, Kanemura Y, Sakai M, Watanabe Y, Nakanishi K, Shimosegawa E, Hatazawa J, Kishima H. Validation of magnetic resonance imaging-based automatic high-grade glioma segmentation accuracy via 11C-methionine positron emission tomography. Oncol Lett 2019; 18:4074-4081. [PMID: 31516607 PMCID: PMC6732988 DOI: 10.3892/ol.2019.10734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/28/2019] [Indexed: 11/06/2022] Open
Abstract
Brain Tumor Image Analysis (BraTumIA) is a fully automated segmentation tool dedicated to detecting brain tumors imaged by magnetic resonance imaging (MRI). BraTumIA has recently been applied to several clinical investigations; however, the validity of this novel method has not yet been fully examined. The present study was conducted to validate the quality of tumor segmentation with BraTumIA in comparison with results from 11C-methionine positron emission tomography (MET-PET). A total of 45 consecutive newly diagnosed high-grade gliomas imaged by MRI and MET-PET were analyzed. Automatic tumor segmentation was conducted by BraTumIA and the resulting segmentation images were registered to MET-PET. Three-dimensional conformal association between these two modalities was calculated, considering MET-PET as the gold standard. High underestimation and overestimation errors were observed in tumor segmentation calculated by BraTumIA compared with MET-PET. Furthermore, when the tumor/normal ratio threshold was set at 1.3 from MET-PET, the BraTumIA false-positive fraction was ~0.4 and the false-negative fraction was 0.9. By tightening this threshold to 2.0, the BraTumIA false-positive fraction was 0.6 and the false-negative fraction was 0.6. Following comparison of segmentation performance with BraTumIA with regard to glioblastoma (GBM) and World Health Organization (WHO) grade III glioma, GBM exhibited better segmentation compared with WHO grade III glioma. Although BraTumIA may be able to detect enhanced tumors, non-enhancing tumors and necrosis, the spatial concordance rate with MET-PET was relatively low. Careful interpretation is therefore required when using this technique.
Collapse
Affiliation(s)
- Tomohiko Ozaki
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka 5418567, Japan
| | - Manabu Kinoshita
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka 5418567, Japan
| | - Hideyuki Arita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan
| | - Yasunori Fujimoto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka 5400006, Japan.,Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Osaka 5400006, Japan
| | - Mio Sakai
- Department of Radiology, Osaka International Cancer Institute, Osaka 5418567, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan
| | - Katsuyuki Nakanishi
- Department of Radiology, Osaka International Cancer Institute, Osaka 5418567, Japan
| | - Eku Shimosegawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan
| |
Collapse
|
31
|
Metabolic Tumor Volume Response Assessment Using (11)C-Methionine Positron Emission Tomography Identifies Glioblastoma Tumor Subregions That Predict Progression Better Than Baseline or Anatomic Magnetic Resonance Imaging Alone. Adv Radiat Oncol 2019; 5:53-61. [PMID: 32051890 PMCID: PMC7004943 DOI: 10.1016/j.adro.2019.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 02/08/2023] Open
Abstract
Purpose To evaluate whether response assessment of newly diagnosed glioblastoma at 3 months using 11C-methionine-positron emission tomography (MET-PET) is better associated with patient outcome compared with baseline MET-PET or anatomic magnetic resonance imaging alone. Methods and Materials Patients included were participants in a phase I/II trial of dose-escalated chemoradiation based on anatomic magnetic resonance imaging. Automated segmentation of metabolic tumor volume (MTV) was performed at a threshold of 1.5 times mean cerebellar uptake. Progression-free (PFS) and overall survival were estimated with the Kaplan-Meier method and compared with log-rank tests. Multivariate analysis for PFS and overall survival was performed using Cox proportional hazards, and spatial overlap between imaging and recurrence volumes were analyzed. Results Among 37 patients, 15 had gross total resection, of whom 10 (67%) had residual MTV, 16 subtotal resection, and 6 biopsy alone. Median radiation therapy dose was 75 Gy (range, 66-81). Median baseline T1 Gd-enhanced tumor volume (GTV-Gd) was 38.0 cm3 (range, 8.0-81.5). Median pre-CRT MTV was 4.9 cm3 (range, 0-43.8). Among 25 patients with 3-month MET-PET, MTV was only 2.4 cm3 (range, 0.004-18.0) in patients with uptake. Patients with MTV = 0 cm3 at 3 months had superior PFS (18.2 vs 10.1 months, P = .03). On multivariate analysis, larger 3-month MTV (hazard ratio [HR] 2.4, 95% confidence interval [CI], 1.4-4.3, P = .03), persistent MET-PET subvolume (overlap of pre-CRT and 3 month MTV; HR 2.0, 95% CI, 1.2-3.4, P = .06), and increase in MTV (HR 1.8, 95% CI, 1.1-3.1, P = .09) were the only imaging factors significant for worse PFS. GTV-Gd at recurrence encompassed 97% of the persistent MET-PET subvolume (interquartile range 72%-100%), versus 71% (interquartile range 39%-93%) of baseline MTV, 54% of baseline GTV-Gd (18%-87%), and 78% of 3-month MTV (47%-95%). Conclusions The majority of patients with apparent gross total resection of glioblastoma have measurable postoperative MTV. Total and persisting MTV 3 months post-CRT were significant predictors of PFS, and persistent MET-PET subvolume was the strongest predictor for localizing tumor recurrence.
Collapse
|
32
|
Alongi P, Laudicella R, Desideri I, Chiaravalloti A, Borghetti P, Quartuccio N, Fiore M, Evangelista L, Marino L, Caobelli F, Tuscano C, Mapelli P, Lancellotta V, Annunziata S, Ricci M, Ciurlia E, Fiorentino A. Positron emission tomography with computed tomography imaging (PET/CT) for the radiotherapy planning definition of the biological target volume: PART 1. Crit Rev Oncol Hematol 2019; 140:74-79. [PMID: 30795884 DOI: 10.1016/j.critrevonc.2019.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
AIM Functional and molecular imaging, including positron emission tomography with computed tomography imaging (PET/CT) is increasing for radiotherapy (RT) definition of the target volume. This expert review summarizes existing data of functional imaging modalities and RT management, in terms of target volume delineation, for the following anatomical districts: brain (for primary and secondary tumors), head/neck and lung. MATERIALS AND METHODS A collection of available published data was made, by PubMed a search. Only original articles were carefully and critically revised. RESULTS For primary and secondary brain tumors, amino acid PET radiotracers could be useful to identify microscopic residual areas and to differ between recurrence and treatment-related alterations in case of re-irradiation. As for head and neck neoplasms may benefit from precise PET/CT-based target delineation, due to the major capability to identify high-risk RT areas. In primary and secondary lung cancer, PET/CT could be useful both to delimit a tumor and collapsed lungs and as a predictive parameter of treatment response. CONCLUSION Taken together, molecular and functional imaging approaches offer a major step to individualize radiotherapeutic care going forward. Nevertheless, several uncertainties remain on the standard method to properly assess the target volume definition including PET information for primary and secondary brain tumors.
Collapse
Affiliation(s)
- Pierpaolo Alongi
- Department of Radiological Sciences, Nuclear Medicine Service, Fondazione Istituto G. Giglio, Cefalu. Italy
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morphofunctional Imaging, University of Messina. Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Italy
| | - Agostino Chiaravalloti
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Paolo Borghetti
- Radiation Oncology Department University and Spedali Civili, Brescia, Italy
| | | | - Michele Fiore
- Radiation Oncology, Campus Bio-Medico University, Rome, Italy
| | - Laura Evangelista
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Lorenza Marino
- Radiotherapy Oncology Department, REM, Viagrande, Catania, Italy
| | - Federico Caobelli
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Carmelo Tuscano
- Radiotherapy Oncology Department, Azienda Ospedaliera Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Paola Mapelli
- Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Salvatore Annunziata
- Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, Roma, Italy
| | - Maria Ricci
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Elisa Ciurlia
- Radiotherapy Oncology Department, Vito Fazzi Hospital, Lecce, Italy
| | - Alba Fiorentino
- Radiotherapy Oncology Department, General Regional Hospital "F. Miulli", Strada Prov. 127 Km 4, 70021, Acquaviva delle Fonti, Bari, Italy.
| |
Collapse
|
33
|
Abstract
Delineating the gross tumor volume (GTV) is a core task within radiation treatment planning. GTVs must be precisely defined irrespective of the region involved, but even more so in a sensitive area such as the brain. As precision medicine cannot exist without precision imaging, the current article aims to discuss the various imaging modalities employed in the radiation treatment planning of brain tumors.Gliomas, meningiomas, and paragangliomas are some of the most challenging tumors and the advancement in diagnostic imaging can significantly contribute to their delineation. For gliomas, irradiation based on multiparametric magnetic resonance imaging (MRI) and amino-acid positron emission tomography (PET)/computed tomography (CT) may have a higher sensitivity and specificity, which could lead to a better sparing of organs at risk and help distinguish between tumor, edema, and radiogenic alterations. Meningiomas and paragangliomas are often associated with a good prognosis. Therefore, GTV delineation according to MRI and somatostatin receptor ligand-PET/CT plays an essential role in sparing sensitive structures and maintaining a good quality of life for these patients.The combination of multiparametric MRI and PET/CT (possibly in the form of PET/MRI) presently appears to be the optimal approach for target volume delineation. The comparative efficacy of these imaging modalities has to be further evaluated in prospective trials.
Collapse
|
34
|
Yang Y, He MZ, Li T, Yang X. MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis. Neurosurg Rev 2019; 42:185-195. [PMID: 28918564 PMCID: PMC6503074 DOI: 10.1007/s10143-017-0906-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022]
Abstract
Based on studies focusing on positron emission tomography (PET)-computed tomography (CT) combined with magnetic resonance imaging (MRI) in the diagnosis of glioma, we conducted a systematic review and meta-analysis evaluating the pros and cons and the accuracy of different examinations. PubMed and Cochrane Library were searched. The search was conducted until April 2017. Two reviewers independently conducted the literature search according to the criteria set initially. Based on the exclusion criteria, 15 articles are included in this study. Of all studies that used MRI examination, there are five involving 18F-fluorodeoxyglucose-PET, five involving 11C-methionine-PET, five involving 18F-fluoro-ethyl-tyrosine-PET, and three involving 18F-fluorothymidine-PET. Due to the limitations such as lack of data, small sample size, and unrepresentative studies, we use a non-quantitative methodology. MRI examination can provide the anatomy information of glioma more clearly. PET-CT examinations based on tumor metabolism using different tracers have more advantages in determining the degree of glioma malignancy and boundaries. However, information provided by PET-CT of different tracers is not the same. With respect to the novel hybrid MRI/PET examination equipment proposed in recent years, the combination of MRI and PET-CT can definitively improve the diagnostic accuracy of glioma.
Collapse
Affiliation(s)
- Yihan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Mike Z He
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
35
|
Hoffman RM. Is the Hoffman Effect for Methionine Overuse Analogous to the Warburg Effect for Glucose Overuse in Cancer? Methods Mol Biol 2019; 1866:273-278. [PMID: 30725423 DOI: 10.1007/978-1-4939-8796-2_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The general cancer-specific metabolic defect of methionine (MET) dependence is due to MET overuse for aberrant transmethylation reactions. The excess use of MET for aberrant transmethylation reactions apparently diverts methyl groups from DNA. The resulting global DNA hypomethylation is also a general phenomenon in cancer and leads to unstable genomes and aneuploid karyotypes. The excessive and aberrant use of MET in cancer is readily observed in [11C]-MET-PET imaging, where high uptake of [11C]-MET results in a very strong and selective tumor signal compared to normal tissue background for brain cancer and possibly other cancers. [11C]-MET is superior to [18C]-fluorodeoxyglucose (FDG) for PET imaging, suggesting that MET overuse in cancer ("Hoffman effect") is greater than glucose overuse in cancer ("Warburg effect").
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.
- Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
36
|
Yan JL, Li C, Boonzaier NR, Fountain DM, Larkin TJ, Matys T, van der Hoorn A, Price SJ. Multimodal MRI characteristics of the glioblastoma infiltration beyond contrast enhancement. Ther Adv Neurol Disord 2019; 12:1756286419844664. [PMID: 31205490 PMCID: PMC6535707 DOI: 10.1177/1756286419844664] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
Our inability to identify the invasive margin of glioblastomas hampers attempts to achieve local control. Diffusion tensor imaging (DTI) has been implemented clinically to delineate the margin of the tumor infiltration, its derived anisotropic (q) values can extend beyond the contrast-enhanced area and correlates closely with the tumor. However, its correlation with tumor infiltration shown on multivoxel proton magnetic resonance spectroscopy1 (MRS) and perfusion magnetic resonance imaging (MRI) should be investigated. In this study, we aimed to show tissue characteristics of the q-defined peritumoral invasion on MRS and perfusion MRI. Patients with a primary glioblastoma were included (n = 51). Four regions of interest were analyzed; the contrast-enhanced lesion, peritumoral abnormal q region, peritumoral normal q region, and contralateral normal-appearing white matter. MRS, including choline (Cho)/creatinine (Cr), Cho/N-acetyl-aspartate (NAA) and NAA/Cr ratios, and the relative cerebral blood volume (rCBV) were analyzed. Our results showed an increase in the Cho/NAA (p = 0.0346) and Cho/Cr (p = 0.0219) ratios in the peritumoral abnormal q region, suggestive of tumor invasion. The rCBV was marginally elevated (p = 0.0798). Furthermore, the size of the abnormal q regions was correlated with survival; patients with larger abnormal q regions showed better progression-free survival (median 287 versus 53 days, p = 0.001) and overall survival (median 464 versus 274 days, p = 0.006) than those with smaller peritumoral abnormal q regions of interest. These results support how the DTI q abnormal area identifies tumor activity beyond the contrast-enhanced area, especially correlating with MRS.
Collapse
Affiliation(s)
- Jiun-Lin Yan
- Department of Neurosurgery, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chao Li
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery and Wolfson Brain Imaging Center, Department of Clinical Neuroscience, University of Cambridge, Addenbrooke's Hospital, Box 167, CB2 0QQ, Cambridge, UK
| | - Natalie R Boonzaier
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery and Wolfson Brain Imaging Center, Department of Clinical Neuroscience, University of Cambridge, Addenbrooke's Hospital, Box 167, CB2 0QQ, Cambridge, UK
| | - Daniel M Fountain
- School of Clinical Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Timothy J Larkin
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery and Wolfson Brain Imaging Center, Department of Clinical Neuroscience, University of Cambridge, Addenbrooke's Hospital, Box 167, CB2 0QQ, Cambridge, UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Stephen J Price
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery and Wolfson Brain Imaging Center, Department of Clinical Neuroscience, University of Cambridge, Addenbrooke's Hospital, Box 167, CB2 0QQ, Cambridge, UK
| |
Collapse
|
37
|
Donche S, Verhoeven J, Descamps B, Bolcaen J, Deblaere K, Boterberg T, Van den Broecke C, Vanhove C, Goethals I. The Path Toward PET-Guided Radiation Therapy for Glioblastoma in Laboratory Animals: A Mini Review. Front Med (Lausanne) 2019; 6:5. [PMID: 30761302 PMCID: PMC6361864 DOI: 10.3389/fmed.2019.00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most aggressive and malignant primary brain tumor in adults. Despite the current state-of-the-art treatment, which consists of maximal surgical resection followed by radiation therapy, concomitant, and adjuvant chemotherapy, progression remains rapid due to aggressive tumor characteristics. Several new therapeutic targets have been investigated using chemotherapeutics and targeted molecular drugs, however, the intrinsic resistance to induced cell death of brain cells impede the effectiveness of systemic therapies. Also, the unique immune environment of the central nervous system imposes challenges for immune-based therapeutics. Therefore, it is important to consider other approaches to treat these tumors. There is a well-known dose-response relationship for glioblastoma with increased survival with increasing doses, but this effect seems to cap around 60 Gy, due to increased toxicity to the normal brain. Currently, radiation treatment planning of glioblastoma patients relies on CT and MRI that does not visualize the heterogeneous nature of the tumor, and consequently, a homogenous dose is delivered to the entire tumor. Metabolic imaging, such as positron-emission tomography, allows to visualize the heterogeneous tumor environment. Using these metabolic imaging techniques, an approach called dose painting can be used to deliver a higher dose to the tumor regions with high malignancy and/or radiation resistance. Preclinical studies are required for evaluating the benefits of novel radiation treatment strategies, such as PET-based dose painting. The aim of this review is to give a brief overview of promising PET tracers that can be evaluated in laboratory animals to bridge the gap between PET-based dose painting in glioblastoma patients.
Collapse
Affiliation(s)
- Sam Donche
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Jeroen Verhoeven
- Department of Pharmaceutical Analysis, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Julie Bolcaen
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Karel Deblaere
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Tom Boterberg
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
| | | | - Christian Vanhove
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
38
|
Abstract
Methionine (MET) dependence is a cancer-specific metabolic abnormality that is due to MET overuse for aberrant transmethylation reactions. [11C]-MET is very useful for positron-emission tomography (PET) due to MET overuse in malignant tumors. Many benefits of MET-PET have been demonstrated. MET-PET can differentiate recurrent glioma and necrosis. [11C]-MET-PET can also predict prognosis in gliomas better than [18F]-FDG PET. [11C]-MET-PET is better than MRI for predicting survival in low-grade glioma (LGG). MET-PET has greater specificity for detecting residual tumor after surgery than MRI.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA. .,Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
39
|
Press RH, Zhong J, Gurbani SS, Weinberg BD, Eaton BR, Shim H, Shu HKG. The Role of Standard and Advanced Imaging for the Management of Brain Malignancies From a Radiation Oncology Standpoint. Neurosurgery 2018; 85:165-179. [DOI: 10.1093/neuros/nyy461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/30/2018] [Indexed: 01/20/2023] Open
Abstract
Abstract
Radiation therapy (RT) plays a critical role in the overall management of many central nervous system (CNS) tumors. Advances in RT treatment planning, with techniques such as intensity modulated radiation therapy, volumetric modulated arc therapy, and stereotactic radiosurgery, now allow the delivery of highly conformal dose with great precision. These techniques rely on high-resolution 3-dimensional anatomical imaging modalities such as computed tomography or magnetic resonance imaging (MRI) scans to accurately and reliably define CNS targets and normal tissue avoidance structures. The integration of cross-sectional imaging into radiation oncology has directly translated into improvements in the therapeutic window of RT, and the union between radiation oncology and imaging is only expected to grow stronger. In addition, advanced imaging modalities including diffusion, perfusion, and spectroscopic MRIs as well as positron emission tomography (PET) scans with novel tracers are being utilized to provide additional insight into tumor biology and behavior beyond anatomy. Together, these standard and advanced imaging modalities hold significant potential to improve future RT delivery and response assessment. In this review, we will discuss the current utilization of standard/advanced imaging for CNS tumors from a radiation oncology perspective as well as the implications of novel MRI and PET modalities currently under investigation.
Collapse
Affiliation(s)
- Robert H Press
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Jim Zhong
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Saumya S Gurbani
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Brent D Weinberg
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Bree R Eaton
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Hyunsuk Shim
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Hui-Kuo G Shu
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| |
Collapse
|
40
|
Lohmann P, Stavrinou P, Lipke K, Bauer EK, Ceccon G, Werner JM, Neumaier B, Fink GR, Shah NJ, Langen KJ, Galldiks N. FET PET reveals considerable spatial differences in tumour burden compared to conventional MRI in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 2018; 46:591-602. [PMID: 30327856 DOI: 10.1007/s00259-018-4188-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/03/2018] [Indexed: 01/02/2023]
Abstract
PURPOSE Areas of contrast enhancement (CE) on MRI are usually the target for resection or radiotherapy target volume definition in glioblastomas. However, the solid tumour mass may extend beyond areas of CE. Amino acid PET can detect parts of the tumour that show no CE. We systematically investigated tumour volumes delineated by amino acid PET and MRI in patients with newly diagnosed, untreated glioblastoma. METHODS Preoperatively, 50 patients with neuropathologically confirmed glioblastoma underwent O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET, and fluid-attenuated inversion recovery (FLAIR) and contrast-enhanced MRI. Areas of CE were manually segmented. FET PET tumour volumes were segmented using a tumour-to-brain ratio of ≥1.6. The percentage overlap volumes, and Dice and Jaccard spatial similarity coefficients (DSC, JSC) were calculated. FLAIR images were evaluated visually. RESULTS In 43 patients (86%), the FET tumour volume was significantly larger than the CE volume (21.5 ± 14.3 mL vs. 9.4 ± 11.3 mL; P < 0.001). Forty patients (80%) showed both increased uptake of FET and CE. In these 40 patients, the spatial similarity between FET uptake and CE was low (mean DSC 0.39 ± 0.21, mean JSC 0.26 ± 0.16). Ten patients (20%) showed no CE, and one of these patients showed no FET uptake. In five patients (10%), increased FET uptake was present outside areas of FLAIR hyperintensity. CONCLUSION Our results show that the metabolically active tumour volume delineated by FET PET is significantly larger than tumour volume delineated by CE. Furthermore, the results strongly suggest that the information derived from both imaging modalities should be integrated into the management of patients with newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany.
| | | | - Katharina Lipke
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany
| | - Elena K Bauer
- Department of Neurology, University of Cologne, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, University of Cologne, Cologne, Germany
| | | | - Bernd Neumaier
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany.,Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany.,Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Cologne, Germany
| |
Collapse
|
41
|
Diffusion-weighted MRI and ADC versus FET-PET and GdT1w-MRI for gross tumor volume (GTV) delineation in re-irradiation of recurrent glioblastoma. Radiother Oncol 2018; 130:121-131. [PMID: 30219612 DOI: 10.1016/j.radonc.2018.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/18/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE GTV definition for re-irradiation treatment planning in recurrent glioblastoma (rGBM) is usually based on contrast-enhanced MRI (GdT1w-MRI) and, for an increased specificity, on amino acid PET. Diffusion-weighted (DWI) MRI and ADC maps can reveal regions of high cellularity as surrogate for active tumor. The objective of this study was to compare the localization and quality of diffusion restriction foci (GTV-ADClow) with FET-PET (GTV-PET) and GdT1w-MRI (GTV-GdT1w-MRI). MATERIAL AND METHODS We prospectively evaluated 41 patients, who received a fractionated stereotactic re-irradiation for rGBM. GTV-PET was generated automatically (tumor-to-background ratio 1.7-1.8) and manually customized. GTV-ADClow was manually defined based on DWI data (3D diffusion gradients, b = 0, 1000 s/mm2) and parametric ADC maps. The localization of recurrence was correlated with initial GdT1w-MRI and PET data. RESULTS In 30/41 patients, DWI-MRI showed areas with restricted diffusion (mean ADC-value 0.74 ± 0.22 mm2/s). 66% of GTVs-ADClow were located outside the GdT1w-MRI volume and 76% outside increased FET uptake regions. Furthermore, GTVs-ADClow were only partially included in the high dose volume and received in mean 82% of the reference dose. An adjusted volume including GdT1w-MRI, PET-positive and restricted diffusion areas would imply a GTV increase of 48%. GTV-PET and GdT1w-MRI correlated better with the localization of re-recurrence in comparison to GTV-ADClow. CONCLUSION Unexpectedly, GTV-ADClow overlapped only partially with FET-PET and GdT1w-MRI in rGBM. Moreover, GTV-ADClow correlated poorly with later rGBM-recurrences. Seeing as a restricted diffusion is known to correlate with hypercellularity, this imaging discrepancy could only be further explained in histopathological studies.
Collapse
|
42
|
Tinkle CL, Duncan EC, Doubrovin M, Han Y, Li Y, Kim H, Broniscer A, Snyder SE, Merchant TE, Shulkin BL. Evaluation of 11C-Methionine PET and Anatomic MRI Associations in Diffuse Intrinsic Pontine Glioma. J Nucl Med 2018; 60:312-319. [PMID: 30072503 DOI: 10.2967/jnumed.118.212514] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/13/2018] [Indexed: 11/16/2022] Open
Abstract
The role of metabolic imaging in the diagnosis, treatment, and response assessment of diffuse intrinsic pontine glioma (DIPG) is poorly defined. We investigated the uptake of 11C-methionine in pediatric patients with newly diagnosed DIPG and evaluated the associations of 11C-methionine PET metrics with conventional MRI indices and survival outcomes. Methods: Twenty-two patients with newly diagnosed DIPG were prospectively enrolled on an institutional review board-approved investigational study of 11C-methionine PET. All patients underwent baseline 11C-methionine PET/CT, and initial treatment-response scans after chemotherapy or radiation therapy were obtained for 17 patients. Typical and atypical DIPGs were assessed clinically and radiographically and defined by multidisciplinary consensus. Three-dimensional regions of interest, reviewed by consensus between a nuclear medicine physician and a radiation oncologist, were delineated after coregistration of PET and MR images. Associations of 11C-methionine uptake intensity and uniformity with survival, along with associations between 11C-methionine uptake and conventional MRI tumor indices over time, were evaluated. 11C-methionine PET voxel values within regions of interest were assessed as threshold values across proportions of the study population, and 11C-methionine uptake at baseline was assessed relative to MRI-defined tumor progression. Results: 11C-methionine uptake above that of uninvolved brain tissue was observed in 18 of 22 baseline scans (82%) and 15 of 17 initial response scans (88%). 11C-methionine avidity within MRI-defined tumor was limited in extent, with 11 of 18 positive baseline 11C-methionine PET scans (61%) showing less than 25% 11C-methionine-avid tumor. The increase in total tumor volume with 11C-methionine PET was relatively limited (17.2%; interquartile range, 6.53%-38.90%), as was the extent of 11C-methionine uptake beyond the MRI-defined tumor (2.2%; interquartile range, 0.55%-10.88%). Although baseline 11C-methionine PET intensity and uniformity metrics did not correlate with survival outcomes, initial 11C-methionine avidity overlapped with recurrent tumor in 100% of cases. A clinical diagnosis of atypical DIPG was associated with borderline significantly prolonged progression-free survival (P = 0.07), yet 11C-methionine PET indices at diagnosis did not differ significantly between atypical and typical DIPGs. Conclusion: Most newly diagnosed DIPGs are successfully visualized by 11C-methionine PET. Baseline 11C-methionine uptake delineates regions at increased risk for recurrence, yet intensity and uniformity metrics did not correlate with treatment outcomes in children with DIPG in this study.
Collapse
Affiliation(s)
- Christopher L Tinkle
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Mikhail Doubrovin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yuanyuan Han
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Hyun Kim
- Department of Radiation Oncology, Washington University, St. Louis, Missouri; and
| | - Alberto Broniscer
- Department of Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Scott E Snyder
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Barry L Shulkin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
43
|
Use of PET and Other Functional Imaging to Guide Target Delineation in Radiation Oncology. Semin Radiat Oncol 2018; 28:171-177. [DOI: 10.1016/j.semradonc.2018.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Wang Y, Rapalino O, Heidari P, Loeffler J, Shih HA, Oh K, Mahmood U. C11 Methionine PET (MET-PET) Imaging of Glioblastoma for Detecting Postoperative Residual Disease and Response to Chemoradiation Therapy. Int J Radiat Oncol Biol Phys 2018; 102:1024-1028. [PMID: 29913253 DOI: 10.1016/j.ijrobp.2018.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
PURPOSE Response criteria of glioblastoma after chemoradiation do not account for metabolic changes that occur after treatment. The purpose of this study is to evaluate the utility of positron emission tomography (PET) imaging with C11 methionine (MET) (MET-PET) for detecting changes that occur after chemoradiation therapy and the value of molecular biomarkers for predicting the magnitude of metabolic response. METHODS AND MATERIALS Patients with newly diagnosed glioblastoma undergoing standard chemoradiation treatment were enrolled in this prospective imaging study, with MET-PET scan performed within 3 days after surgical resection and again at 4 weeks after completion of chemoradiation. Near contemporaneous contrast-enhanced magnetic resonance imaging was performed within 2 weeks of each MET-PET scan. MET-PET imaging was analyzed for maximum standardized uptake value (SUV), SUVmean, and SUVvolume on a multimodality workstation. RESULTS A total of 18 patients underwent baseline postoperative MET-PET imaging, 14 of whom underwent postchemoradiation MET-PET imaging. Among those who showed residual MET-avid disease on immediate postoperative MET-PET scans and underwent postchemoradiation MET-PET imaging (n = 10), mean ΔSUVmax was -40% (range -100% to 0%), mean ΔSUVmean was -35% (range -100% to 0%), and mean ΔSUV volume was -64% (range -100% to 0%). The Δtumor/brain reference was -40% (range -100% to 0%) using SUVmax and -35% (range -100% to 0%) using SUVmean. In contrast, none of the T2-weighted images on contrast-enhanced magnetic resonance imaging showed a >25% reduction in abnormal T2/fluid-attenuated inversion recovery signal on visual assessment. ΔSUVmax, ΔSUVmean, and ΔSUVvolume correlated with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status (P = .01), but not with epidermal growth factor receptor or c-MET amplification status. All patients were IDH-1 wildtype. CONCLUSIONS MET-PET scanning shows a significant decrease in metabolic signal at 1 month after chemoradiation compared with the immediate postoperative period, even when T2/fluid-attenuated inversion recovery changed little. MGMT promoter methylation status further predicts differential metabolic responses. MET-PET may be a useful tool for delineation of radiation targets and assessment of response.
Collapse
Affiliation(s)
- Yingbing Wang
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts.
| | - Otto Rapalino
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Pedram Heidari
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jay Loeffler
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin Oh
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
45
|
Tanaka H, Yamaguchi T, Hachiya K, Miwa K, Shinoda J, Hayashi M, Ogawa S, Nishibori H, Goshima S, Matsuo M. 11C-methionine positron emission tomography for target delineation of recurrent glioblastoma in re-irradiation planning. Rep Pract Oncol Radiother 2018; 23:215-219. [DOI: 10.1016/j.rpor.2018.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/18/2017] [Accepted: 04/08/2018] [Indexed: 11/30/2022] Open
|
46
|
Gkika E, Oehlke O, Bunea H, Wiedenmann N, Adebahr S, Nestle U, Zamboglou C, Kirste S, Fennell J, Brunner T, Gainey M, Baltas D, Langer M, Urbach H, Bock M, Meyer PT, Grosu AL. Biological imaging for individualized therapy in radiation oncology: part II medical and clinical aspects. Future Oncol 2018. [DOI: 10.2217/fon-2017-0465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Positron emission tomography and multiparametric MRI provide crucial information concerning tumor extent and normal tissue anatomy. Moreover, they are able to visualize biological characteristics of the tumor, which can be considered in the radiation treatment planning and monitoring. In this review we discuss the impact of biological imaging positron emission tomography and multiparametric MRI for radiation oncology, based on the data of the literature and on the experience of our own institution in this field.
Collapse
Affiliation(s)
- Eleni Gkika
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Oliver Oehlke
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Hatice Bunea
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Nicole Wiedenmann
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Sonja Adebahr
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Simon Kirste
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Jamina Fennell
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Thomas Brunner
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Mark Gainey
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Dimos Baltas
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Mathias Langer
- Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
| | - Michael Bock
- Department of Radiology – Medical Physics, Department of Radiology, Faculty of Medicine, Medical Center, University of Freiburg, D-79106, Germany
| | - Philipp T Meyer
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
- Department of Nuclear Medicine, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| |
Collapse
|
47
|
Schinkelshoek M, Lopci E, Clerici E, Alongi F, Mancosu P, Rodari M, Navarria P, van der Hiel B, Scorsetti M, Chiti A. Impact of 11C-methionine positron emission tomography/computed tomography on radiation therapy planning and prognosis in patients with primary brain tumors. TUMORI JOURNAL 2018. [DOI: 10.1177/1778.19268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Egesta Lopci
- Nuclear Medicine Department, Humanitas Research Hospital, Rozzano (MI), Italy
| | - Elena Clerici
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Rozzano (MI), Italy
| | - Filippo Alongi
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Rozzano (MI), Italy
| | - Pietro Mancosu
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Rozzano (MI), Italy
| | - Marcello Rodari
- Nuclear Medicine Department, Humanitas Research Hospital, Rozzano (MI), Italy
| | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Rozzano (MI), Italy
| | - Bernies van der Hiel
- Nuclear Medicine Department, the Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital (NKI-AVL), Amsterdam, the Netherlands
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Rozzano (MI), Italy
| | - Arturo Chiti
- Nuclear Medicine Department, Humanitas Research Hospital, Rozzano (MI), Italy
| |
Collapse
|
48
|
Zanotti-Fregonara P, Pascual B, Rizzo G, Yu M, Pal N, Beers D, Carter R, Appel SH, Atassi N, Masdeu JC. Head-to-Head Comparison of 11C-PBR28 and 18F-GE180 for Quantification of the Translocator Protein in the Human Brain. J Nucl Med 2018; 59:1260-1266. [DOI: 10.2967/jnumed.117.203109] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/06/2017] [Indexed: 01/29/2023] Open
|
49
|
Mann J, Ramakrishna R, Magge R, Wernicke AG. Advances in Radiotherapy for Glioblastoma. Front Neurol 2018; 8:748. [PMID: 29379468 PMCID: PMC5775505 DOI: 10.3389/fneur.2017.00748] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/27/2017] [Indexed: 11/13/2022] Open
Abstract
External beam radiotherapy (RT) has long played a crucial role in the treatment of glioblastoma. Over the past several decades, significant advances in RT treatment and image-guidance technology have led to enormous improvements in the ability to optimize definitive and salvage treatments. This review highlights several of the latest developments and controversies related to RT, including the treatment of elderly patients, who continue to be a fragile and vulnerable population; potential salvage options for recurrent disease including reirradiation with chemotherapy; the latest imaging techniques allowing for more accurate and precise delineation of treatment volumes to maximize the therapeutic ratio of conformal RT; the ongoing preclinical and clinical data regarding the combination of immunotherapy with RT; and the increasing evidence of cancer stem-cell niches in the subventricular zone which may provide a potential target for local therapies. Finally, continued development on many fronts have allowed for modestly improved outcomes while at the same time limiting toxicity.
Collapse
Affiliation(s)
- Justin Mann
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, United States
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - A Gabriella Wernicke
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
50
|
Youland RS, Pafundi DH, Brinkmann DH, Lowe VJ, Morris JM, Kemp BJ, Hunt CH, Giannini C, Parney IF, Laack NN. Prospective trial evaluating the sensitivity and specificity of 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-DOPA) PET and MRI in patients with recurrent gliomas. J Neurooncol 2018; 137:583-591. [PMID: 29330751 DOI: 10.1007/s11060-018-2750-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
Abstract
Treatment-related changes can be difficult to differentiate from progressive glioma using MRI with contrast (CE). The purpose of this study is to compare the sensitivity and specificity of 18F-DOPA-PET and MRI in patients with recurrent glioma. Thirteen patients with MRI findings suspicious for recurrent glioma were prospectively enrolled and underwent 18F-DOPA-PET and MRI for neurosurgical planning. Stereotactic biopsies were obtained from regions of concordant and discordant PET and MRI CE, all within regions of T2/FLAIR signal hyperintensity. The sensitivity and specificity of 18F-DOPA-PET and CE were calculated based on histopathologic analysis. Receiver operating characteristic curve analysis revealed optimal tumor to normal (T/N) and SUVmax thresholds. In the 37 specimens obtained, 51% exhibited MRI contrast enhancement (M+) and 78% demonstrated 18F-DOPA-PET avidity (P+). Imaging characteristics included M-P- in 16%, M-P+ in 32%, M+P+ in 46% and M+P- in 5%. Histopathologic review of biopsies revealed grade II components in 16%, grade III in 43%, grade IV in 30% and no tumor in 11%. MRI CE sensitivity for recurrent tumor was 52% and specificity was 50%. PET sensitivity for tumor was 82% and specificity was 50%. A T/N threshold > 2.0 altered sensitivity to 76% and specificity to 100% and SUVmax > 1.36 improved sensitivity and specificity to 94 and 75%, respectively. 18F-DOPA-PET can provide increased sensitivity and specificity compared with MRI CE for visualizing the spatial distribution of recurrent gliomas. Future studies will incorporate 18F-DOPA-PET into re-irradiation target volume delineation for RT planning.
Collapse
Affiliation(s)
- Ryan S Youland
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Deanna H Pafundi
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Debra H Brinkmann
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Val J Lowe
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jonathan M Morris
- Division of Neuroradiology, Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Bradley J Kemp
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Christopher H Hunt
- Division of Neuroradiology, Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Caterina Giannini
- Department of Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ian F Parney
- Department of Neurosurgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Nadia N Laack
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|