1
|
Chen ZJ, Li XA, Brenner DJ, Hellebust TP, Hoskin P, Joiner MC, Kirisits C, Nath R, Rivard MJ, Thomadsen BR, Zaider M. AAPM Task Group Report 267: A joint AAPM GEC-ESTRO report on biophysical models and tools for the planning and evaluation of brachytherapy. Med Phys 2024; 51:3850-3923. [PMID: 38721942 DOI: 10.1002/mp.17062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 06/05/2024] Open
Abstract
Brachytherapy utilizes a multitude of radioactive sources and treatment techniques that often exhibit widely different spatial and temporal dose delivery patterns. Biophysical models, capable of modeling the key interacting effects of dose delivery patterns with the underlying cellular processes of the irradiated tissues, can be a potentially useful tool for elucidating the radiobiological effects of complex brachytherapy dose delivery patterns and for comparing their relative clinical effectiveness. While the biophysical models have been used largely in research settings by experts, it has also been used increasingly by clinical medical physicists over the last two decades. A good understanding of the potentials and limitations of the biophysical models and their intended use is critically important in the widespread use of these models. To facilitate meaningful and consistent use of biophysical models in brachytherapy, Task Group 267 (TG-267) was formed jointly with the American Association of Physics in Medicine (AAPM) and The Groupe Européen de Curiethérapie and the European Society for Radiotherapy & Oncology (GEC-ESTRO) to review the existing biophysical models, model parameters, and their use in selected brachytherapy modalities and to develop practice guidelines for clinical medical physicists regarding the selection, use, and interpretation of biophysical models. The report provides an overview of the clinical background and the rationale for the development of biophysical models in radiation oncology and, particularly, in brachytherapy; a summary of the results of literature review of the existing biophysical models that have been used in brachytherapy; a focused discussion of the applications of relevant biophysical models for five selected brachytherapy modalities; and the task group recommendations on the use, reporting, and implementation of biophysical models for brachytherapy treatment planning and evaluation. The report concludes with discussions on the challenges and opportunities in using biophysical models for brachytherapy and with an outlook for future developments.
Collapse
Affiliation(s)
- Zhe Jay Chen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York, New York, USA
| | - Taran P Hellebust
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Peter Hoskin
- Mount Vernon Cancer Center, Mount Vernon Hospital, Northwood, UK
- University of Manchester, Manchester, UK
| | - Michael C Joiner
- Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Christian Kirisits
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Ravinder Nath
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mark J Rivard
- Department of Radiation Oncology, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Bruce R Thomadsen
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Marco Zaider
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
2
|
Liu F, Brown DR, Munley MT. Optimal hypofractionated radiation therapy schemes for early-stage hepatocellular carcinoma. Radiother Oncol 2024; 194:110223. [PMID: 38467342 DOI: 10.1016/j.radonc.2024.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE Stereotactic body radiation therapy (SBRT) has been emerging as an efficacious and safe treatment modality for early-stage hepatocellular carcinoma (HCC), but optimal fractionation regimens are unknown. This study aims to analyze published clinical tumor control probability (TCP) data as a function of biologically effective dose (BED) and to determine radiobiological parameters and optimal fractionation schemes for SBRT and hypofractionated radiation therapy of early-stage HCC. MATERIAL AND METHODS Clinical 1- to 5-year TCP data of 4313 patients from 41 published papers were collected for hypofractionated radiation therapy at 2.5-4.5 Gy/fraction and SBRT of early-stage HCC. BED was calculated at isocenter using three representative radiobiological models developed per the Hypofractionated Treatment Effects in the Clinic (HyTEC) initiative. Radiobiological parameters were determined from a fit to the TCP data using the least χ2 method with one set of model parameters regardless of tumor stages or Child-Pugh scores A and B. RESULTS The fits to the clinical TCP data for SBRT of early-stage HCC found consistent α/β ratios of about 14 Gy for all three radiobiological models. TCP increases sharply with BED and reaches an asymptotic maximal plateau, which results in optimal fractionation schemes of least doses to achieve asymptotic maximal tumor control for SBRT and hypofractionated radiation therapy of early-stage HCC that are found to be model-independent. CONCLUSION From the fits to the clinical TCP data, we presented the first determination of radiobiological parameters and model-independent optimal fractionation regimens in 1-20 fractions to achieve maximal tumor control whenever safe for SBRT and hypofractionated radiation therapy of early-stage HCC. The determined optimal fractionation schemes agree well with clinical practice for SBRT of early-stage HCC. However, most existing hypofractionated radiation therapy schemes of 3-5 Gy/fraction are not optimal, higher doses are required to maximize tumor control, further validation of these findings is essential with clinical TCP data.
Collapse
Affiliation(s)
- Feng Liu
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA.
| | - Doris R Brown
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Michael T Munley
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
3
|
Yanagihara TK, Tepper JE, Moon AM, Barry A, Molla M, Seong J, Torres F, Apisarnthanarax S, Buckstein M, Cardenes H, Chang DT, Feng M, Guha C, Hallemeier CL, Hawkins MA, Hoyer M, Iwata H, Jabbour SK, Kachnic L, Kharofa J, Kim TH, Kirichenko A, Koay EJ, Makishima H, Mases J, Meyer JJ, Munoz-Schuffenegger P, Owen D, Park HC, Saez J, Sanford NN, Scorsetti M, Smith GL, Wo JY, Yoon SM, Lawrence TS, Reig M, Dawson LA. Defining Minimum Treatment Parameters of Ablative Radiation Therapy in Patients With Hepatocellular Carcinoma: An Expert Consensus. Pract Radiat Oncol 2024; 14:134-145. [PMID: 38244026 DOI: 10.1016/j.prro.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 01/22/2024]
Abstract
PURPOSE External beam radiation therapy (EBRT) is a highly effective treatment in select patients with hepatocellular carcinoma (HCC). However, the Barcelona Clinic Liver Cancer system does not recommend the use of EBRT in HCC due to a lack of sufficient evidence and intends to perform an individual patient level meta-analysis of ablative EBRT in this population. However, there are many types of EBRT described in the literature with no formal definition of what constitutes "ablative." Thus, we convened a group of international experts to provide consensus on the parameters that define ablative EBRT in HCC. METHODS AND MATERIALS Fundamental parameters related to dose, fractionation, radiobiology, target identification, and delivery technique were identified by a steering committee to generate 7 Key Criteria (KC) that would define ablative EBRT for HCC. Using a modified Delphi (mDelphi) method, experts in the use of EBRT in the treatment of HCC were surveyed. Respondents were given 30 days to respond in round 1 of the mDelphi and 14 days to respond in round 2. A threshold of ≥70% was used to define consensus for answers to each KC. RESULTS Of 40 invitations extended, 35 (88%) returned responses. In the first round, 3 of 7 KC reached consensus. In the second round, 100% returned responses and consensus was reached in 3 of the remaining 4 KC. The distribution of answers for one KC, which queried the a/b ratio of HCC, was such that consensus was not achieved. Based on this analysis, ablative EBRT for HCC was defined as a BED10 ≥80 Gy with daily imaging and multiphasic contrast used for target delineation. Treatment breaks (eg, for adaptive EBRT) are allowed, but the total treatment time should be ≤6 weeks. Equivalent dose when treating with protons should use a conversion factor of 1.1, but there is no single conversion factor for carbon ions. CONCLUSIONS Using a mDelphi method assessing expert opinion, we provide the first consensus definition of ablative EBRT for HCC. Empirical data are required to define the a/b of HCC.
Collapse
Affiliation(s)
- Ted K Yanagihara
- Ablative Radiotherapy Modified Delphi Steering Committee; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
| | - Joel E Tepper
- Ablative Radiotherapy Modified Delphi Steering Committee; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Andrew M Moon
- Ablative Radiotherapy Modified Delphi Steering Committee; Division of Gastroenterology and Hepatology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Aisling Barry
- Ablative Radiotherapy Modified Delphi Steering Committee; Department of Radiation Oncology, Cork University Hospital, Cork, Ireland
| | - Meritxell Molla
- Ablative Radiotherapy Modified Delphi Steering Committee; Radiation Oncology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Jinsil Seong
- Ablative Radiotherapy Modified Delphi Steering Committee; Department of Radiation Oncology, Yonsei University Medical College, Seoul, Republic of Korea
| | - Ferran Torres
- Ablative Radiotherapy Modified Delphi Steering Committee; Biostatistics Unit, Medical School, Universitat Auntònoma de Barcelona, Barcelona, Spain
| | | | - Michael Buckstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Higinia Cardenes
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Daniel T Chang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Mary Feng
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Hospital, New York, New York
| | | | - Maria A Hawkins
- Department of Radiation Oncology, University College London, London, England
| | - Morten Hoyer
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya, Japan
| | - Salma K Jabbour
- Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers Cancer Institute, New Brunswick, New Jersey
| | - Lisa Kachnic
- Department of Radiation Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Jordan Kharofa
- Department of Radiation Oncology, University of Cincinnati Cancer Center, Cincinnati, Ohio
| | - Tae Hyun Kim
- Department of Radiation Oncology, Proton Therapy Center, National Cancer Center, Seoul, Republic of Korea
| | - Alexander Kirichenko
- Department of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania
| | - Eugene J Koay
- Department of GI Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hirokazu Makishima
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Joel Mases
- Radiation Oncology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Jeffrey J Meyer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Dawn Owen
- Department of Radiation Oncology, Mayo College of Medicine, Rochester, Minnesota
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jordi Saez
- Radiation Oncology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Nina N Sanford
- Department of Radiation Oncology, University of Texas, Southwestern, Dallas, Texas
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Milan, Italy
| | - Grace L Smith
- Department of GI Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Sang Min Yoon
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Theodore S Lawrence
- Ablative Radiotherapy Modified Delphi Steering Committee; Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Maria Reig
- Ablative Radiotherapy Modified Delphi Steering Committee; Radiation Oncology Department, Hospital Clínic Barcelona, Barcelona, Spain; Liver Cancer Unit, Barcelona Clinic Liver Cancer Group, Barcelona University, Barcelona, Spain.
| | - Laura A Dawson
- Ablative Radiotherapy Modified Delphi Steering Committee; Department of Radiation Oncology, Radiation Medicine Program/University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Kang M, Shin Y, Kim Y, Ha S, Sung W. Modeling the Synergistic Impact of Yttrium 90 Radioembolization and Immune Checkpoint Inhibitors on Hepatocellular Carcinoma. Bioengineering (Basel) 2024; 11:106. [PMID: 38391592 PMCID: PMC10886259 DOI: 10.3390/bioengineering11020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
The impact of yttrium 90 radioembolization (Y90-RE) in combination with immune checkpoint inhibitors (ICIs) has recently gained attention. However, it is unclear how sequencing and dosage affect therapeutic efficacy. The purpose of this study was to develop a mathematical model to simulate the synergistic effects of Y90-RE and ICI combination therapy and find the optimal treatment sequences and dosages. We generated a hypothetical patient cohort and conducted simulations to apply different treatments to the same patient. The compartment of models is described with ordinary differential equations (ODEs), which represent targeted tumors, non-targeted tumors, and lymphocytes. We considered Y90-RE as a local treatment and ICIs as a systemic treatment. The model simulations show that Y90-RE and ICIs administered simultaneously yield greater benefits than subsequent sequential therapy. In addition, applying Y90-RE before ICIs has more benefits than applying ICIs before Y90-RE. Moreover, we also observed that the median PFS increased up to 31~36 months, and the DM rates at 3 years decreased up to 36~48% as the dosage of the two drugs increased (p < 0.05). The proposed model predicts a significant benefit of Y90-RE with ICIs from the results of the reduced irradiated tumor burden and the associated immune activation and suppression. Our model is expected to help optimize complex strategies and predict the efficacy of clinical trials for HCC patients.
Collapse
Affiliation(s)
- Minah Kang
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yerim Shin
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yeseul Kim
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sangseok Ha
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Wonmo Sung
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
5
|
Kim Y, Choe BY, Suh TS, Sung W. A Mathematical Model for Predicting Patient Responses to Combined Radiotherapy with CTLA-4 Immune Checkpoint Inhibitors. Cells 2023; 12:cells12091305. [PMID: 37174706 PMCID: PMC10177154 DOI: 10.3390/cells12091305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The purpose of this study was to develop a cell-cell interaction model that could predict a tumor's response to radiotherapy (RT) combined with CTLA-4 immune checkpoint inhibition (ICI) in patients with hepatocellular carcinoma (HCC). The previously developed model was extended by adding a new term representing tremelimumab, an inhibitor of CTLA-4. The distribution of the new immune activation term was derived from the results of a clinical trial for tremelimumab monotherapy (NCT01008358). The proposed model successfully reproduced longitudinal tumor diameter changes in HCC patients treated with tremelimumab (complete response = 0%, partial response = 17.6%, stable disease = 58.8%, and progressive disease = 23.6%). For the non-irradiated tumor control group, adding ICI to RT increased the clinical benefit rate from 8% to 32%. The simulation predicts that it is beneficial to start CTLA-4 blockade before RT in terms of treatment sequences. We developed a mathematical model that can predict the response of patients to the combined CTLA-4 blockade with radiation therapy. We anticipate that the developed model will be helpful for designing clinical trials with the ultimate aim of maximizing the efficacy of ICI-RT combination therapy.
Collapse
Affiliation(s)
- Yongjin Kim
- Department of Biomedical Engineering and of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Bo-Young Choe
- Department of Biomedical Engineering and of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tae Suk Suh
- Department of Biomedical Engineering and of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Wonmo Sung
- Department of Biomedical Engineering and of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
6
|
Wu F, Chen B, Dong D, Rong W, Wang H, Wang L, Wang S, Jin J, Song Y, Liu Y, Fang H, Tang Y, Li N, Zhu X, Li Y, Wang W, Wu J. Phase 2 Evaluation of Neoadjuvant Intensity-Modulated Radiotherapy in Centrally Located Hepatocellular Carcinoma: A Nonrandomized Controlled Trial. JAMA Surg 2022; 157:1089-1096. [PMID: 36197682 PMCID: PMC9535533 DOI: 10.1001/jamasurg.2022.4702] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/16/2022] [Indexed: 01/11/2023]
Abstract
Importance Centrally located hepatocellular carcinoma (HCC) is a special type of HCC whose outcome is unsatisfactory when treated with surgery alone. No standard adjuvant or neoadjuvant treatment for this disease has been established that improves clinical outcomes. Objective To evaluate the effectiveness and safety of adding neoadjuvant intensity-modulated radiotherapy (IMRT) before surgery in patients with centrally located HCC. Design, Setting, and Participants This phase 2, single-center, single-group prospective nonrandomized controlled trial was conducted between December 16, 2014, and January 29, 2019, at the Cancer Institute and Hospital of the Chinese Academy of Medical Sciences in Beijing, China. The last follow-up was on July 30, 2021. Patients with centrally located HCC who underwent neoadjuvant IMRT and surgery were included in the analysis. Interventions Neoadjuvant IMRT followed by hepatectomy. Main Outcomes and Measures The primary end point was 5-year overall survival (OS). The secondary end points were tumor response to IMRT, 5-year disease-free survival (DFS), and treatment-related adverse events. Results Thirty-eight patients (mean [SD] age, 55.6 [9.3] years; 35 male [92.1%] individuals) completed the prescribed neoadjuvant IMRT without interruption. Radiographic tumor response to IMRT before surgery included partial response (16 [42.1%]) and stable disease (22 [57.9%]). Thirteen patients (34.2%) achieved major pathological response, of which 5 (13.2%) achieved pathologic complete response. With a median follow-up of 45.8 months, the median OS was not reached, and the OS rates were 94.6% at 1 year, 75.4% at 3 years, and 69.1% at 5 years. The median DFS was 45.8 months, and DFS rates were 70.3% at 1 year, 54.1% at 3 years, and 41.0% at 5 years. Radiotherapy-related grade 3 adverse events were observed in 3 patients (7.9%). Nineteen operative complications developed in 13 patients (34.2%), including grade I to II complications in 12 patients (31.6%) and grade IIIa complication in 1 patient (2.6%). No grade IIIb or higher operative complications were observed. Conclusions and Relevance Results of this trial suggest that neoadjuvant IMRT plus surgery is effective and well-tolerated in patients with centrally located HCC. These data may inform a future randomized clinical trial of this new treatment strategy. Trial Registration ClinicalTrials.gov Identifier: NCT02580929.
Collapse
Affiliation(s)
- Fan Wu
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Chen
- Department of Radiation Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dezuo Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongzhi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shulian Wang
- Department of Radiation Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongwen Song
- Department of Radiation Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueping Liu
- Department of Radiation Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Fang
- Department of Radiation Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Tang
- Department of Radiation Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Li
- Department of Radiation Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianggao Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yexiong Li
- Department of Radiation Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jianxiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Gholami YH, Willowson KP, Bailey DL. Towards personalised dosimetry in patients with liver malignancy treated with 90Y-SIRT using in vivo-driven radiobiological parameters. EJNMMI Phys 2022; 9:49. [PMID: 35907097 PMCID: PMC9339072 DOI: 10.1186/s40658-022-00479-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The prediction of response is one of the major challenges in radiation-based therapies. Although the selection of accurate linear-quadratic model parameters is essential for the estimation of radiation response and treatment outcome, there is a limited knowledge about these radiobiological parameters for liver tumours using radionuclide treatments. METHODS The "clinical radiobiological" parameters ([Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]) for twenty-five patients were derived using the generalised linear-quadratic model, the diagnostic ([18F] FDG PET/CT) and therapeutic ([90Y]-SIR-Spheres PET/CT) images to compute the biological effective dose and tumour control probability (TCP) for each patient. RESULTS It was estimated that the values for [Formula: see text] and [Formula: see text] parameters range in ≈ 0.001-1 Gy-1 and ≈ 1-49 Gy, respectively. We have demonstrated that the time factors, [Formula: see text], [Formula: see text] and [Formula: see text] are the key parameters when evaluating liver malignancy lesional response to [90Y]SIR-Spheres treatment. Patients with cholangiocarcinoma have been shown to have the longest average [Formula: see text] (≈ 236 ± 67 d), highest TCP (≈ 53 ± 17%) and total liver lesion glycolysis response ([Formula: see text] ≈ 64%), while patients with metastatic colorectal cancer tumours have the shortest average [Formula: see text] (≈ 129 ± 19 d), lowest TCP (≈ 28 ± 13%) and [Formula: see text] ≈ 8%, respectively. CONCLUSIONS Tumours with shorter [Formula: see text] have shown a shorter [Formula: see text] and thus poorer TCP and [Formula: see text]. Therefore, these results suggest for such tumours the [90Y]SIR-Spheres will be only effective at higher initial dose rate (e.g. > 50 Gy/day).
Collapse
Affiliation(s)
- Yaser H Gholami
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia. .,Sydney Vital Translational Cancer Research Centre, University of Sydney, Sydney, Australia. .,Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia.
| | - Kathy P Willowson
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Dale L Bailey
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia. .,Sydney Vital Translational Cancer Research Centre, University of Sydney, Sydney, Australia. .,Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia.
| |
Collapse
|
8
|
d'Abadie P, Walrand S, Hesse M, Borbath I, Lhommel R, Jamar F. TCP post-radioembolization and TCP post-EBRT in HCC are similar and can be predicted using the in vitro radiosensitivity. EJNMMI Res 2022; 12:40. [PMID: 35802307 PMCID: PMC9270555 DOI: 10.1186/s13550-022-00911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background Tumor equivalent uniform dose (EUD) is proposed as a predictor of patient outcome after liver radioembolization (RE) of hepatocellular carcinoma (HCC) and can be evaluated with 90Y-TOF-PET. The aim is to evaluate the correlation between PET-based tumors EUD and the clinical response evaluated with dual molecular tracer (11C-acetate and 18F-FDG) PET/CT post-RE. Methods 34 HCC tumors in 22 patients were prospectively evaluated. The metabolic response was characterized by the total lesion metabolism variation (ΔTLM) between baseline and follow-up. This response allowed to compute a tumor control probability (TCP) as a function of the tumor EUD. Results The absorbed dose response correlation was highly significant (R = 0.72, P < 0.001). With an absorbed dose threshold of 40 Gy, the metabolic response was strongly different in both groups (median response 35% versus 100%, P < 0.001). Post-RE TCP as a function of the EUD was very similar to that observed in external beam radiation therapy (EBRT), with TCP values equal to 0.5 and 0.95 for a EUD of 51 Gy and 100 Gy, respectively. The TCP was perfectly predicted by the Poisson model assuming an inter tumor radiosensitivity variation of 30% around the HCC cell in vitro value. Conclusions EUD-based 90Y TOF-PET/CT predicts the metabolic response post-RE in HCC assessed using dual molecular PET tracers and provides a similar TCP curve to that observed in EBRT. In vivo and in vitro HCC radiosensitivities are similar. Both TCPs show that a EUD of 100 Gy is needed to control HCC for the three devices (resin spheres, glass spheres, EBRT). Observed absorbed doses achieving this 100 Gy-EUD ranged from 190 to 1800 Gy! Supplementary Information The online version contains supplementary material available at 10.1186/s13550-022-00911-0.
Collapse
Affiliation(s)
- Philippe d'Abadie
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Institut Roi Albert II, 10, avenue Hippocrate, 1200, Brussels, Belgium.
| | - Stephan Walrand
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Institut Roi Albert II, 10, avenue Hippocrate, 1200, Brussels, Belgium
| | - Michel Hesse
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Institut Roi Albert II, 10, avenue Hippocrate, 1200, Brussels, Belgium
| | - Ivan Borbath
- Department of Medical Oncology, CIiniques Universitaires Saint Luc, Institut Roi Albert II, Brussels, Belgium
| | - Renaud Lhommel
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Institut Roi Albert II, 10, avenue Hippocrate, 1200, Brussels, Belgium
| | - François Jamar
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Institut Roi Albert II, 10, avenue Hippocrate, 1200, Brussels, Belgium
| |
Collapse
|
9
|
Radioembolization of Hepatocellular Carcinoma with 90Y Glass Microspheres: No Advantage of Voxel Dosimetry with Respect to Mean Dose in Dose-Response Analysis with Two Radiological Methods. Cancers (Basel) 2022; 14:cancers14040959. [PMID: 35205712 PMCID: PMC8869948 DOI: 10.3390/cancers14040959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary We confirmed that the non-uniformity of an intra-lesion dose distribution, which was introduced in calculations as voxel dosimetry, did not significantly improve the AUC values of the dose–response relationship with respect to the mean dose. This was probably derived from the strong correlations (all p < 0.0001) among all voxel-based dosimetric variables (minimum Spearman correlation coefficient: 0.67) caused by the limited spatial resolution of nuclear medicine images. Responses were assessed with mRECIST and with an experimental densitometric method with a response threshold optimized at 20% HU variation. Significant dose–response agreement was obtained only with the densitometric method and only with post-therapy 90Y-PET data. More unexpectedly, the injection of Theraspheres™ on day 8 from the reference date rather than on day 4 worsened the dose–response correlation and reduced the efficacy at high doses. This may be explained by the increased non-uniformity following the non-linear mega-clustering effect triggered by the higher number of microspheres/GBq injected on day 8. Abstract In this confirmatory study, we tested if a calculation that included the non-uniformity of dose deposition through a voxel-based dosimetric variable Ψ was able to improve the dose–response agreement with respect to the mean absorbed dose D. We performed dosimetry with 99mTc-MAA SPECT/CT and 90Y-PET/CT in 86 patients treated 8 instead of 4 days after the reference date with 2.8 times more 90Y glass microspheres/GBq than in our previous study. The lesion-by-lesion response was assessed with the mRECIST method and with an experimental densitometric criterion. A total of 106 lesions were studied. Considering Ψ as a prognostic response marker, having no Ψ provided a significantly higher AUC than D. The correlation, t-test, and AUC values were statistically significant only with the densitometric method and only with post-therapy dosimetry. In comparison with our previous study, the dose–response correlation and AUC values were poorer (maximum r = 0.43, R2 = 0.14, maximal AUC = 0.71), and the efficacy at a high dose did not reach 100%. The expected advantages of voxel dosimetry were nullified by the correlation between any Ψ and D due to the limited image spatial resolution. The lower AUC and efficacy may be explained by the mega-clustering effect triggered by the higher number of microspheres/GBq injected on day 8.
Collapse
|
10
|
Hesse M, d'Abadie P, Lhommel R, Jamar F, Walrand S. Yttrium-90 TOF-PET-Based EUD Predicts Response Post Liver Radioembolizations Using Recommended Manufacturer FDG Reconstruction Parameters. Front Oncol 2021; 11:592529. [PMID: 34676157 PMCID: PMC8523947 DOI: 10.3389/fonc.2021.592529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Explaining why 90Y TOF-PET based equivalent uniform dose (EUD) using recommended manufacturer FDG reconstruction parameters has been shown to predict response. Methods The hot rods insert of a Jaszczak deluxe phantom was partially filled with a 2.65 GBq 90Y - 300ml DTPA water solution resulting in a 100 Gy mean absorbed dose in the 6 sectors. A two bed 20min/position acquisition was performed on a 550ps- and on a 320ps- TOF-PET/CT and reconstructed with recommended manufacturer FDG reconstruction parameters, without and with additional filtering. The whole procedure was repeated on both PET after adding 300ml of water (50Gy setup). The phantom was acquired again after decay by a factor of 10 (5Gy setup), but with 200min per bed position. For comparison, the phantom was also acquired with 18F activity corresponding to a clinical FDG whole body acquisition. Results The 100Gy-setup provided a hot rod sectors image almost as good as the 18F phantom. However, despite acquisition time compensation, the 5Gy-setup provides much lower quality imaging. TOF-PET based sectors EUDs for the three large rod sectors agreed with the actual EUDs computed with a radiosensitivity of 0.021Gy-1 well in the range observed in external beam radiotherapy (EBRT), i.e. 0.01-0.04Gy-1. This agreement explains the reunification of the dose-response relationships of the glass and resin spheres in HCC using the TOF-PET based EUD. Additional filtering reduced the EUDs agreement quality. Conclusions Recommended manufacturer FDG reconstruction parameters are suitable in TOF-PET post 90Y liver radioembolization for accurate tumour EUD computation. The present results rule out the use of low specific activity phantom studies to optimize reconstruction parameters.
Collapse
Affiliation(s)
- Michel Hesse
- Nuclear Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Philipe d'Abadie
- Nuclear Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Renaud Lhommel
- Nuclear Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Francois Jamar
- Nuclear Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Stephan Walrand
- Nuclear Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
11
|
Assessment of radiation sensitivity of unresectable intrahepatic cholangiocarcinoma in a series of patients submitted to radioembolization with yttrium-90 resin microspheres. Sci Rep 2021; 11:19745. [PMID: 34611210 PMCID: PMC8492793 DOI: 10.1038/s41598-021-99219-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
Radioembolization is a valuable therapeutic option in patients with unresectable intrahepatic cholangiocarcinoma. The essential implementation of the absorbed dose calculation methods should take into account also the specific tumor radiosensitivity, expressed by the α parameter. Purpose of this study was to retrospectively calculate it in a series of patients with unresectable intrahepatic cholangiocarcinoma submitted to radioembolization. Twenty-one therapeutic procedures in 15 patients were analysed. Tumor absorbed doses were calculated processing the post-therapeutic 90Y-PET/CT images and the pre-treatment contrast-enhanced CT scans. Tumor absorbed dose and pre- and post-treatment tumor volumes were used to calculate α and α3D parameters (dividing targeted liver in n voxels of the same volume with specific voxel absorbed dose). A tumor volume reduction was observed after treatment. The median of tumor average absorbed dose was 93 Gy (95% CI 81–119) and its correlation with the residual tumor mass was statistically significant. The median of α and α3D parameters was 0.005 Gy−1 (95% CI 0.004–0.008) and 0.007 Gy−1 (95% CI 0.005–0.015), respectively. Multivariate analysis showed tumor volume and tumor absorbed dose as significant predictors of the time to tumor progression. The knowledge of radiobiological parameters gives the possibility to decide the administered activity in order to improve the outcome of the treatment.
Collapse
|
12
|
Lee P, Loo BW, Biswas T, Ding GX, El Naqa IM, Jackson A, Kong FM, LaCouture T, Miften M, Solberg T, Tome WA, Tai A, Yorke E, Li XA. Local Control After Stereotactic Body Radiation Therapy for Stage I Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2021; 110:160-171. [PMID: 30954520 PMCID: PMC9446070 DOI: 10.1016/j.ijrobp.2019.03.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/06/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Numerous dose and fractionation schedules have been used to treat medically inoperable stage I non-small cell lung cancer (NSCLC) with stereotactic body radiation therapy (SBRT) or stereotactic ablative radiation therapy. We evaluated published experiences with SBRT to determine local control (LC) rates as a function of SBRT dose. METHODS AND MATERIALS One hundred sixty published articles reporting LC rates after SBRT for stage I NSCLC were identified. Quality of the series was assessed by evaluating the number of patients in the study, homogeneity of the dose regimen, length of follow-up time, and reporting of LC. Clinical data including 1, 2, 3, and 5-year tumor control probabilities for stages T1, T2, and combined T1 and T2 as a function of the biological effective dose were fitted to the linear quadratic, universal survival curve, and regrowth models. RESULTS Forty-six studies met inclusion criteria. As measured by the goodness of fit χ2/ndf, with ndf as the number of degrees of freedom, none of the models were ideal fits for the data. Of the 3 models, the regrowth model provides the best fit to the clinical data. For the regrowth model, the fitting yielded an α-to-β ratio of approximately 25 Gy for T1 tumors, 19 Gy for T2 tumors, and 21 Gy for T1 and T2 combined. To achieve the maximal LC rate, the predicted physical dose schemes when prescribed at the periphery of the planning target volume are 43 ± 1 Gy in 3 fractions, 47 ± 1 Gy in 4 fractions, and 50 ± 1 Gy in 5 fractions for combined T1 and T2 tumors. CONCLUSIONS Early-stage NSCLC is radioresponsive when treated with SBRT or stereotactic ablative radiation therapy. A steep dose-response relationship exists with high rates of durable LC when physical doses of 43-50 Gy are delivered in 3 to 5 fractions.
Collapse
Affiliation(s)
- Percy Lee
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Tithi Biswas
- Department of Radiation Oncology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Issam M El Naqa
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Andrew Jackson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Feng-Ming Kong
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Tamara LaCouture
- Department of Radiation Oncology, Jefferson Health New Jersey, Sewell, New Jersey
| | - Moyed Miften
- Department of Radiation Oncology, Colorado University School of Medicine, Aurora, Colorado
| | - Timothy Solberg
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, California
| | - Wolfgang A Tome
- Department of Radiation Oncology, Albert Einstein College of Medicine, New York, New York
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ellen Yorke
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
13
|
Abbott E, Young RS, Hale C, Mitchell K, Falzone N, Vallis KA, Kennedy A. Stereotactic Inverse Dose Planning After Yttrium-90 Selective Internal Radiation Therapy in Hepatocellular Cancer. Adv Radiat Oncol 2021; 6:100617. [PMID: 33912733 PMCID: PMC8071732 DOI: 10.1016/j.adro.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Selective internal radiation therapy (SIRT) is administered to treat tumors of the liver and is generally well tolerated. Although widely adopted for its therapeutic benefits, SIRT is rarely combined with external beam radiation therapy (EBRT) owing to the complexity of the dosimetry resulting from the combination of treatments with distinct radiobiological effects. The purpose of this study was to establish a dosimetric framework for combining SIRT and EBRT using clinical experience derived from representative patients with hepatocellular carcinoma (HCC) who received both therapies. METHODS AND MATERIALS Treatments from 10 patients with HCC given EBRT either before or after SIRT were analyzed. The dosimetry framework used here considered differences in the radiobiological effects and fractionation schemes of SIRT versus EBRT, making use of the concepts of biological effective dose (BED) and equivalent dose (EQD). Absorbed dose from SIRT was calculated, converted to BED, and summed with BED from EBRT dose plans. Two of these patients were used in a virtual planning exercise to investigate the feasibility of combining stereotactic body radiation therapy and SIRT. RESULTS The combination of EBRT and SIRT in 10 patients with HCC showed no major toxicity. No Child-Pugh scores went above 8 and albumin-bilirubin scores from only 1 patient worsened to grade 3 (> -1.39) from treatment through 3-months follow-up. A framework with radiobiological modeling was developed to manage the combined treatments in terms of their sum BED. The exploratory SIRT plus SABR inverse dose plans for 2 patients, incorporating radiobiologically informed 90Y SIRT dosimetry, achieved dose distributions comparable to SBRT alone. CONCLUSIONS Treatment with both EBRT and SIRT can be given safely to patients with HCC. The BED and EQD concepts should be used in combined dosimetry to account for the differing radiobiological effects of EBRT and SIRT. Inverse dose planning of EBRT after SIRT could provide improved dose distributions and flexibility to the clinical workflow. Further research into combination therapy is needed through prospective trials.
Collapse
Affiliation(s)
- Elliot Abbott
- Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, Oxford, United Kingdom
| | | | - Caroline Hale
- Sarah Cannon Research Institute, Nashville, Tennessee
| | | | - Nadia Falzone
- Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, Oxford, United Kingdom
| | - Katherine A. Vallis
- Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, Oxford, United Kingdom
| | | |
Collapse
|
14
|
Ten Eikelder SCM, Ferjančič P, Ajdari A, Bortfeld T, den Hertog D, Jeraj R. Optimal treatment plan adaptation using mid-treatment imaging biomarkers. Phys Med Biol 2020; 65:245011. [PMID: 33053518 DOI: 10.1088/1361-6560/abc130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies on personalized radiotherapy (RT) have mostly focused on baseline patient stratification, adapting the treatment plan according to mid-treatment anatomical changes, or dose boosting to selected tumor subregions using mid-treatment radiological findings. However, the question of how to find the optimal adapted plan has not been properly tackled. Moreover, the effect of information uncertainty on the resulting adaptation has not been explored. In this paper, we present a framework to optimally adapt radiation therapy treatments to early radiation treatment response estimates derived from pre- and mid-treatment imaging data while considering the information uncertainty. The framework is based on the optimal stopping in radiation therapy (OSRT) framework. Biological response is quantified using tumor control probability (TCP) and normal tissue complication probability (NTCP) models, and these are directly optimized for in the adaptation step. Two adaptation strategies are discussed: (1) uniform dose adaptation and (2) continuous dose adaptation. In the first strategy, the original fluence-map is simply scaled upwards or downwards, depending on whether dose escalation or de-escalation is deemed appropriate based on the mid-treatment response observed from the radiological images. In the second strategy, a full NTCP-TCP-based fluence map re-optimization is performed to achieve the optimal adapted plans. We retrospectively tested the performance of these strategies on 14 canine head and neck cases treated with tomotherapy, using as response biomarker the change in the 3'-deoxy-3'[(18)F]-fluorothymidine (FLT)-PET signals between the pre- and mid-treatment images, and accounting for information uncertainty. Using a 10% uncertainty level, the two adaptation strategies both yield a noteworthy average improvement in guaranteed (worst-case) TCP.
Collapse
Affiliation(s)
- S C M Ten Eikelder
- Department of Econometrics and Operations Research, Tilburg University, Tilburg, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Split Common Coincidence Point Problem: A Formulation Applicable to (Bio)Physically-Based Inverse Planning Optimization. Symmetry (Basel) 2020. [DOI: 10.3390/sym12122086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inverse planning is a method of radiotherapy treatment planning where the care team begins with the desired dose distribution satisfying prescribed clinical objectives, and then determines the treatment parameters that will achieve it. The variety in symmetry, form, and characteristics of the objective functions describing clinical criteria requires a flexible optimization approach in order to obtain optimized treatment plans. Therefore, we introduce and discuss a nonlinear optimization formulation called the split common coincidence point problem (SCCPP). We show that the SCCPP is a suitable formulation for the inverse planning optimization problem with the flexibility of accommodating several biological and/or physical clinical objectives. Also, we propose an iterative algorithm for approximating the solution of the SCCPP, and using Bregman techniques, we establish that the proposed algorithm converges to a solution of the SCCPP and to an extremum of the inverse planning optimization problem. We end with a note on useful insights on implementing the algorithm in a clinical setting.
Collapse
|
16
|
Park S, Yoon WS, Jang MH, Rim CH. Clinical efficacy of external beam radiotherapy complementing incomplete transarterial chemoembolization for hepatocellular carcinoma. Int J Radiat Biol 2020; 96:1541-1549. [PMID: 32990486 DOI: 10.1080/09553002.2020.1830316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE External beam radiotherapy (EBRT) has been commonly applied as salvage or a combination locoregional modality after transarterial chemoembolization (TACE) for hepatocellular carcinomas (HCCs). This study reports oncologic outcomes and feasibility after application of the two modalities in our center. METHODS Forty consecutive patients who underwent EBRT due to incomplete responses of TACE were evaluated. Fourteen patients (35.0%) received stereotactic body radiotherapy (SBRT) and the remaining patients received conventionally fractionated radiotherapy (RT). A majority of patients who underwent SBRT received doses of 27 to 48 Gy in 3-4 fractions [median EQD2 (Equivalent dose in 2 Gy per fraction radiotherapy): 57.0 Gy]. Conventionally fractionated RT was performed with a median EQD2 of 47.8 Gy. RESULTS The median follow-up duration was 14.4 months (range: 2.6-83.0 months). A majority (77.5%) of patients were regarded as having Child-Pugh grade A. The median tumor size was 3.4 cm (range: 0.8-20.1 cm). Ten patients (25.0%) had thrombosis at a main portal branch. The 1- and 2-year overall survival (OS) and progression-free survival (PFS) rates were 82.2% and 42.1% and 55.8% and 32.1%, respectively. The local control rates were 89.1% and 89.1% at 1 and 2 years, respectively. The albumin level was a significant factor affecting OS (p = .002), and the BCLC stage significantly affected PFS (p = .001). Intrahepatic, out-of-field recurrence was the main cause of disease progression (60.0%), and distant metastasis developed in 12 patients (30.0%) during follow-up. Non-classic radiation-induced liver disease was seen in five (12.5%) patients, and two (5%) patients experienced grade ≥3 hepatic toxicities. CONCLUSIONS EBRT after incomplete TACE was feasible and yielded favorable oncologic outcomes. However, disease progression related to intrahepatic failure remained a hindrance.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Radiation Oncology, Korea University Ansan Hospital, Ansan, Gyeong-Gi Do, Republic of Korea
| | - Won Sup Yoon
- Department of Radiation Oncology, Korea University Ansan Hospital, Ansan, Gyeong-Gi Do, Republic of Korea
| | - Mi Hee Jang
- Department of Radiation Oncology, Korea University Ansan Hospital, Ansan, Gyeong-Gi Do, Republic of Korea
| | - Chai Hong Rim
- Department of Radiation Oncology, Korea University Ansan Hospital, Ansan, Gyeong-Gi Do, Republic of Korea
| |
Collapse
|
17
|
Sung W, Grassberger C, McNamara AL, Basler L, Ehrbar S, Tanadini-Lang S, Hong TS, Paganetti H. A tumor-immune interaction model for hepatocellular carcinoma based on measured lymphocyte counts in patients undergoing radiotherapy. Radiother Oncol 2020; 151:73-81. [PMID: 32679308 DOI: 10.1016/j.radonc.2020.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE The impact of radiation therapy on the immune system has recently gained attention particularly when delivered in combination with immunotherapy. However, it is unclear how different treatment fractionation regimens influence the interaction between the immune system and radiation. The goal of this work was to develop a mathematical model that quantifies both the immune stimulating as well as the immunosuppressive effects of radiotherapy and simulates the effects of different fractionation regimens based on patient data. METHODS AND MATERIALS The framework describes the temporal evolution of tumor cells, lymphocytes, and inactivated dying tumor cells releasing antigens during radiation therapy, specifically modeling how recruited lymphocytes inhibit tumor progression. The parameters of the model were partly taken from the literature and in part extracted from blood samples (circulating lymphocytes: CLs) collected from hepatocellular carcinoma patients undergoing radiotherapy and their outcomes. The dose volume histograms to circulating lymphocytes were calculated with a probability-based model. RESULTS Based on the fitted parameters, the model enabled a study into the depletion and recovery of CLs in patients as a function of fractionation regimen. Our results quantify the ability of short fractionation regimens to lead to shorter periods of lymphocyte depletion and predict faster recovery after the end of treatment. The model shows that treatment breaks between fractions can prolong the period of lymphocyte depletion and should be avoided. CONCLUSIONS This study introduces a mathematical model for tumor-immune interactions using clinically extracted radiotherapy patient data, which can be applied to design trials aimed at minimizing lymphocyte depleting effects in radiation therapy.
Collapse
Affiliation(s)
- Wonmo Sung
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, United States
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, United States
| | - Aimee Louise McNamara
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, United States
| | - Lucas Basler
- Department of Radiation Oncology, Paul Scherrer Institut, Villigen, Switzerland
| | - Stefanie Ehrbar
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | | | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, United States
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, United States.
| |
Collapse
|
18
|
Kasamatsu K, Matsuura T, Tanaka S, Takao S, Miyamoto N, Nam JM, Shirato H, Shimizu S, Umegaki K. The impact of dose delivery time on biological effectiveness in proton irradiation with various biological parameters. Med Phys 2020; 47:4644-4655. [PMID: 32652574 DOI: 10.1002/mp.14381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/31/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The purpose of this study is to evaluate the sublethal damage (SLD) repair effect in prolonged proton irradiation using the biophysical model with various cell-specific parameters of (α/β)x and T1/2 (repair half time). At present, most of the model-based studies on protons have focused on acute radiation, neglecting the reduction in biological effectiveness due to SLD repair during the delivery of radiation. Nevertheless, the dose-rate dependency of biological effectiveness may become more important as advanced treatment techniques, such as hypofractionation and respiratory gating, come into clinical practice, as these techniques sometimes require long treatment times. Also, while previous research using the biophysical model revealed a large repair effect with a high physical dose, the dependence of the repair effect on cell-specific parameters has not been evaluated systematically. METHODS Biological dose [relative biological effectiveness (RBE) × physical dose] calculation with repair included was carried out using the linear energy transfer (LET)-dependent linear-quadratic (LQ) model combined with the theory of dual radiation action (TDRA). First, we extended the dose protraction factor in the LQ model for the arbitrary number of different LET proton irradiations delivered sequentially with arbitrary time lags, referring to the TDRA. Using the LQ model, the decrease in biological dose due to SLD repair was systematically evaluated for spread-out Bragg peak (SOBP) irradiation in a water phantom with the possible ranges of both (α/β)x and repair parameters ((α/β)x = 1-15 Gy, T1/2 = 0-90 min). Then, to consider more realistic irradiation conditions, clinical cases of prostate, liver, and lung tumors were examined with the cell-specific parameters for each tumor obtained from the literature. Biological D99% and biological dose homogeneity coefficient (HC) were calculated for the clinical target volumes (CTVs), assuming dose-rate structures with a total irradiation time of 0-60 min. RESULTS The differences in the cell-specific parameters resulted in considerable variation in the repair effect. The biological dose reduction found at the center of the SOBP with 30 min of continuous irradiation varied from 1.13% to 14.4% with a T1/2 range of 1-90 min when (α/β)x is fixed as 10 Gy. It varied from 2.3% to 6.8% with an (α/β)x range of 1-15 Gy for a fixed value of T1/2 = 30 min. The decrease in biological D99% per 10 min was 2.6, 1.2, and 3.0% for the prostate, liver, and lung tumor cases, respectively. The value of the biological D99% reduction was neither in the order of (α/β)x nor prescribed dose, but both comparably contributed to the repair effect. The variation of HC was within the range of 0.5% for all cases; therefore, the dose distribution was not distorted. CONCLUSION The reduction in biological dose caused by the SLD repair largely depends on the cell-specific parameters in addition to the physical dose. The parameters should be considered carefully in the evaluation of the repair effect in prolonged proton irradiation.
Collapse
Affiliation(s)
- Koki Kasamatsu
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, 0608638, Japan
| | - Taeko Matsuura
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Sodai Tanaka
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Seishin Takao
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Naoki Miyamoto
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Jin-Min Nam
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 0608648, Japan
| | - Hiroki Shirato
- Department of Proton Beam Therapy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 0608648, Japan
| | - Shinichi Shimizu
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan.,Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 0608648, Japan
| | - Kikuo Umegaki
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| |
Collapse
|
19
|
Yuan D, Gao Z, Zhao J, Zhang H, Wang J. 125I seed implantation for hepatocellular carcinoma with portal vein tumor thrombus: A systematic review and meta-analysis. Brachytherapy 2019; 18:521-529. [PMID: 30954398 DOI: 10.1016/j.brachy.2019.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
|
20
|
Dewaraja YK, Devasia T, Kaza RK, Mikell JK, Owen D, Roberson PL, Schipper MJ. Prediction of Tumor Control in 90Y Radioembolization by Logit Models with PET/CT-Based Dose Metrics. J Nucl Med 2019; 61:104-111. [PMID: 31147404 DOI: 10.2967/jnumed.119.226472] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of this work was to develop models for tumor control probability (TCP) in radioembolization with 90Y PET/CT-derived radiobiologic dose metrics. Methods: Patients with primary liver cancer or liver metastases who underwent radioembolization with glass microspheres were imaged with 90Y PET/CT for voxel-level dosimetry to determine lesion absorbed dose (AD) metrics, biological effective dose (BED) metrics, equivalent uniform dose, and equivalent uniform BED for 28 treatments (89 lesions). The lesion dose-shrinkage correlation was assessed on the basis of RECIST and, when available, modified RECIST (mRECIST) at first follow-up. For a subset with mRECIST, logit regression TCP models were fit via maximum likelihood to relate lesion-level binary response to the dose metrics. As an exploratory analysis, the nontumoral liver dose-toxicity relationship was also evaluated. Results: Lesion dose-shrinkage analysis showed that there were no significant differences between model parameters for primary and metastatic subgroups and that correlation coefficients were superior with mRECIST. Therefore, subsequent TCP analysis was performed for the combined group using mRECIST only. The overall lesion-level mRECIST response rate was 57%. The AD and BED metrics yielding 50% TCP were 292 and 441 Gy, respectively. All dose metrics considered for TCP modeling, including mean AD, were significantly associated with the probability of response, with high areas under the curve (0.87-0.90, P < 0.0001) and high sensitivity (>0.75) and specificity (>0.83) calculated using a threshold corresponding to 50% TCP. Because nonuniform AD deposition by microspheres cannot be determined by PET at a microscopic scale, radiosensitivity values extracted here by fitting models to clinical response data were substantially lower than reported for in vitro cell cultures or for external-beam radiotherapy clinical studies. There was no correlation between nontumoral liver AD and toxicity measures. Conclusion: Despite the heterogeneous patient cohort, logistic regression TCP models showed a strong association between various dose metrics and the probability of response. The performance of mean AD was comparable to that of radiobiologic dose metrics that involve more complex calculations. These results demonstrate the importance of considering TCP in treatment planning for radioembolization.
Collapse
Affiliation(s)
- Yuni K Dewaraja
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Theresa Devasia
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan; and
| | - Ravi K Kaza
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Justin K Mikell
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Dawn Owen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Peter L Roberson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Matthew J Schipper
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
21
|
Frometa-Castillo T, Pyakuryal A, Piseaux-Aillon R. Simulator of radiation biological effects in tumor in order to determinate the tumor control probability. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.100217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
Xue J, Emami B, Grimm J, Kubicek GJ, Asbell SO, Lanciano R, Welsh JS, Peng L, Quon H, Laub W, Gui C, Spoleti N, Das IJ, Goldman HW, Redmond KJ, Kleinberg LR, Brady LW. Clinical evidence for dose tolerance of the central nervous system in hypofractionated radiotherapy. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s13566-018-0367-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Kappadath SC, Mikell J, Balagopal A, Baladandayuthapani V, Kaseb A, Mahvash A. Hepatocellular Carcinoma Tumor Dose Response After 90Y-radioembolization With Glass Microspheres Using 90Y-SPECT/CT-Based Voxel Dosimetry. Int J Radiat Oncol Biol Phys 2018; 102:451-461. [DOI: 10.1016/j.ijrobp.2018.05.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
|
24
|
Chen Y, Grassberger C, Li J, Hong TS, Paganetti H. Impact of potentially variable RBE in liver proton therapy. Phys Med Biol 2018; 63:195001. [PMID: 30183674 PMCID: PMC6207451 DOI: 10.1088/1361-6560/aadf24] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, the relative biological effectiveness (RBE) is assumed to be constant with a value of 1.1 in proton therapy. Although trends of RBE variations are well known, absolute values in patients are associated with considerable uncertainties. This study aims to evaluate the impact of a variable proton RBE in proton therapy liver trials using different fractionation schemes. Sixteen liver cancer cases were evaluated assuming two clinical schedules of 40 Gy/5 fractions and 58.05 Gy/15 fractions. The linear energy transfer (LET) and physical dose distribution in patients were simulated using Monte Carlo. The variable RBE distribution was calculated using a phenomenological model, considering the influence of the LET, fraction size and α/β value. Further, models to predict normal tissue complication probability (NTCP) and tumor control probability (TCP) were used to investigate potential RBE effects on outcome predictions. Applying the variable RBE model to the 5 and 15 fractions schedules results in an increase in mean fraction-size equivalent dose (FED) to the normal liver of 5.0% and 9.6% respectively. For patients with a mean FED to the normal liver larger than 29.8 Gy, this results in a non-negligible increase in the predicted NTCP of the normal liver averaging 11.6%, ranging from 2.7% to 25.6%. On the other hand, decrease in TCP was less than 5% for both fractionation regimens for all patients when assuming a variable RBE instead of constant. Consequently, the difference in TCP between the two fractionation schedules did not change significantly assuming a variable RBE while the impact on the NTCP difference was highly case specific. In addition, both the NTCP and TCP decrease with increasing α/β value for both fractionation schemes, with the decreases being more pronounced when using a variable RBE compared to using RBE = 1.1. Assuming a constant RBE of 1.1 most likely overestimates the therapeutic ratio in proton therapy for liver cancer, predominantly due to underestimation of the RBE-weighted dose to the normal liver. The impact of applying a variable RBE (as compared to RBE = 1.1) on the NTCP difference of the two fractionation regimens is case dependent. A variable RBE results in a slight increase in TCP difference. Variations in patient radiosensitivity increase when using a variable RBE.
Collapse
Affiliation(s)
- Yizheng Chen
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, United States of America. Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China. Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
van Leeuwen CM, Oei AL, Crezee J, Bel A, Franken NAP, Stalpers LJA, Kok HP. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol 2018. [PMID: 29769103 DOI: 10.1186/s13014a018-1040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Prediction of radiobiological response is a major challenge in radiotherapy. Of several radiobiological models, the linear-quadratic (LQ) model has been best validated by experimental and clinical data. Clinically, the LQ model is mainly used to estimate equivalent radiotherapy schedules (e.g. calculate the equivalent dose in 2 Gy fractions, EQD2), but increasingly also to predict tumour control probability (TCP) and normal tissue complication probability (NTCP) using logistic models. The selection of accurate LQ parameters α, β and α/β is pivotal for a reliable estimate of radiation response. The aim of this review is to provide an overview of published values for the LQ parameters of human tumours as a guideline for radiation oncologists and radiation researchers to select appropriate radiobiological parameter values for LQ modelling in clinical radiotherapy. METHODS AND MATERIALS We performed a systematic literature search and found sixty-four clinical studies reporting α, β and α/β for tumours. Tumour site, histology, stage, number of patients, type of LQ model, radiation type, TCP model, clinical endpoint and radiobiological parameter estimates were extracted. Next, we stratified by tumour site and by tumour histology. Study heterogeneity was expressed by the I2 statistic, i.e. the percentage of variance in reported values not explained by chance. RESULTS A large heterogeneity in LQ parameters was found within and between studies (I2 > 75%). For the same tumour site, differences in histology partially explain differences in the LQ parameters: epithelial tumours have higher α/β values than adenocarcinomas. For tumour sites with different histologies, such as in oesophageal cancer, the α/β estimates correlate well with histology. However, many other factors contribute to the study heterogeneity of LQ parameters, e.g. tumour stage, type of LQ model, TCP model and clinical endpoint (i.e. survival, tumour control and biochemical control). CONCLUSIONS The value of LQ parameters for tumours as published in clinical radiotherapy studies depends on many clinical and methodological factors. Therefore, for clinical use of the LQ model, LQ parameters for tumour should be selected carefully, based on tumour site, histology and the applied LQ model. To account for uncertainties in LQ parameter estimates, exploring a range of values is recommended.
Collapse
Affiliation(s)
- C M van Leeuwen
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - A L Oei
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J Crezee
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - A Bel
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - N A P Franken
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - L J A Stalpers
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - H P Kok
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands.
| |
Collapse
|
26
|
van Leeuwen CM, Oei AL, Crezee J, Bel A, Franken NAP, Stalpers LJA, Kok HP. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol 2018; 13:96. [PMID: 29769103 PMCID: PMC5956964 DOI: 10.1186/s13014-018-1040-z] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
Background Prediction of radiobiological response is a major challenge in radiotherapy. Of several radiobiological models, the linear-quadratic (LQ) model has been best validated by experimental and clinical data. Clinically, the LQ model is mainly used to estimate equivalent radiotherapy schedules (e.g. calculate the equivalent dose in 2 Gy fractions, EQD2), but increasingly also to predict tumour control probability (TCP) and normal tissue complication probability (NTCP) using logistic models. The selection of accurate LQ parameters α, β and α/β is pivotal for a reliable estimate of radiation response. The aim of this review is to provide an overview of published values for the LQ parameters of human tumours as a guideline for radiation oncologists and radiation researchers to select appropriate radiobiological parameter values for LQ modelling in clinical radiotherapy. Methods and materials We performed a systematic literature search and found sixty-four clinical studies reporting α, β and α/β for tumours. Tumour site, histology, stage, number of patients, type of LQ model, radiation type, TCP model, clinical endpoint and radiobiological parameter estimates were extracted. Next, we stratified by tumour site and by tumour histology. Study heterogeneity was expressed by the I2 statistic, i.e. the percentage of variance in reported values not explained by chance. Results A large heterogeneity in LQ parameters was found within and between studies (I2 > 75%). For the same tumour site, differences in histology partially explain differences in the LQ parameters: epithelial tumours have higher α/β values than adenocarcinomas. For tumour sites with different histologies, such as in oesophageal cancer, the α/β estimates correlate well with histology. However, many other factors contribute to the study heterogeneity of LQ parameters, e.g. tumour stage, type of LQ model, TCP model and clinical endpoint (i.e. survival, tumour control and biochemical control). Conclusions The value of LQ parameters for tumours as published in clinical radiotherapy studies depends on many clinical and methodological factors. Therefore, for clinical use of the LQ model, LQ parameters for tumour should be selected carefully, based on tumour site, histology and the applied LQ model. To account for uncertainties in LQ parameter estimates, exploring a range of values is recommended. Electronic supplementary material The online version of this article (10.1186/s13014-018-1040-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C M van Leeuwen
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - A L Oei
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J Crezee
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - A Bel
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - N A P Franken
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - L J A Stalpers
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - H P Kok
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands.
| |
Collapse
|
27
|
Debbi K, Janoray G, Scher N, Deutsch É, Mornex F. [Doses to organs at risk in conformational and stereotactic body radiation therapy: Liver]. Cancer Radiother 2017; 21:604-612. [PMID: 28893525 DOI: 10.1016/j.canrad.2017.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 12/25/2022]
Abstract
The liver is an essential organ that ensures many vital functions such as metabolism of bilirubin, glucose, lipids, synthesis of coagulation factors, destruction of many toxins, etc. The hepatic parenchyma can be irradiated during the management of digestive tumors, right basithoracic, esophagus, abdomen in toto or TBI. In addition, radiotherapy of the hepatic area, which is mainly stereotactic, now occupies a central place in the management of primary or secondary hepatic tumors. Irradiation of the whole liver, or part of it, may be complicated by radiation-induced hepatitis. It is therefore necessary to respect strict dosimetric constraints both in stereotactic and in conformational irradiation in order to limit the undesired irradiation of the hepatic parenchyma which may vary according to the treatment techniques, the basic hepatic function or the lesion size. The liver is an organ with a parallel architecture, so the average tolerable dose in the whole liver should be considered rather than the maximum tolerable dose at one point. The purpose of this article is to propose a development of dose recommendations during conformation or stereotactic radiotherapy of the liver.
Collapse
Affiliation(s)
- K Debbi
- Clinique d'oncologie radiothérapie, centre Henry-S.-Kaplan, CHRU de Tours, 2, boulevard Tonnellé, 37044 Tours, France.
| | - G Janoray
- Clinique d'oncologie radiothérapie, centre Henry-S.-Kaplan, CHRU de Tours, 2, boulevard Tonnellé, 37044 Tours, France
| | - N Scher
- Clinique d'oncologie radiothérapie, centre Henry-S.-Kaplan, CHRU de Tours, 2, boulevard Tonnellé, 37044 Tours, France
| | - É Deutsch
- Département de radiothérapie, institut de cancérologie Gustave-Roussy, 114, rue Édouard-Vaillant, 94805 Villejuif cedex, France
| | - F Mornex
- Département de radiothérapie oncologie, centre hospitalier Lyon-Sud, 165, chemin du Grand-Revoyet, 69310 Pierre-Bénite, France; EMR 3738, université Claude-Bernard-Lyon-1, 69373 Lyon cedex 08, France
| |
Collapse
|
28
|
Exploration of Superior Modality: Safety and Efficacy of Hypofractioned Image-Guided Intensity Modulated Radiation Therapy in Patients with Unresectable but Confined Intrahepatic Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2017; 2017:6267981. [PMID: 29098144 PMCID: PMC5643031 DOI: 10.1155/2017/6267981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/10/2017] [Accepted: 09/17/2017] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To evaluate the efficacy and safety of hypofractioned image-guided intensity modulated radiation therapy (IG-IMRT) for unresectable but confined intrahepatic hepatocellular carcinoma in comparison with conventional 3-dimensional conformal radiotherapy (3D-CRT). METHODS Ninety patients with unresectable but confined intrahepatic hepatocellular carcinoma without distant metastasis and tumor thrombosis received external beam radiation therapy. Of these patients, 45 received IG-IMRT and 45 received 3D-CRT. The IG-IMRT design delivered a median total hypofractionated dose of 54 Gy (2.2-5.5 Gy/fx), and 3D-CRT delivered a median total dose of 54 Gy with a conventional fraction (2.0 Gy/fx). The clinical response, overall survival, and side effects were analyzed. RESULTS The IG-IMRT group showed significantly higher 1-year survival (93.3 versus 77.8%) and 2-year survival (73.3 versus 51.1%) and longer median survival (44.7 versus 24.0 months) than the 3D-CRT group. Multivariate analysis indicated that the patients with intrahepatic tumors smaller than 8 cm, prior TACE before RT, and IG-IMRT would have a survival benefit. There were no significant differences in the rates of side effects between the two groups. CONCLUSION Hypofractioned IG-IMRT could improve the therapeutic response and confer a potential survival of patients with unresectable but confined intrahepatic hepatocellular carcinoma compared to 3D-CRT with acceptable toxicity.
Collapse
|
29
|
Liu F, Tai A, Lee P, Biswas T, Ding GX, El Naqa I, Grimm J, Jackson A, Kong FMS, LaCouture T, Loo B, Miften M, Solberg T, Li XA. Tumor control probability modeling for stereotactic body radiation therapy of early-stage lung cancer using multiple bio-physical models. Radiother Oncol 2016; 122:286-294. [PMID: 27871671 DOI: 10.1016/j.radonc.2016.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/13/2016] [Accepted: 11/04/2016] [Indexed: 12/25/2022]
Abstract
This work is to analyze pooled clinical data using different radiobiological models and to understand the relationship between biologically effective dose (BED) and tumor control probability (TCP) for stereotactic body radiotherapy (SBRT) of early-stage non-small cell lung cancer (NSCLC). The clinical data of 1-, 2-, 3-, and 5-year actuarial or Kaplan-Meier TCP from 46 selected studies were collected for SBRT of NSCLC in the literature. The TCP data were separated for Stage T1 and T2 tumors if possible, otherwise collected for combined stages. BED was calculated at isocenters using six radiobiological models. For each model, the independent model parameters were determined from a fit to the TCP data using the least chi-square (χ2) method with either one set of parameters regardless of tumor stages or two sets for T1 and T2 tumors separately. The fits to the clinic data yield consistent results of large α/β ratios of about 20Gy for all models investigated. The regrowth model that accounts for the tumor repopulation and heterogeneity leads to a better fit to the data, compared to other 5 models where the fits were indistinguishable between the models. The models based on the fitting parameters predict that the T2 tumors require about additional 1Gy physical dose at isocenters per fraction (⩽5 fractions) to achieve the optimal TCP when compared to the T1 tumors. In conclusion, this systematic analysis of a large set of published clinical data using different radiobiological models shows that local TCP for SBRT of early-stage NSCLC has strong dependence on BED with large α/β ratios of about 20Gy. The six models predict that a BED (calculated with α/β of 20) of 90Gy is sufficient to achieve TCP⩾95%. Among the models considered, the regrowth model leads to a better fit to the clinical data.
Collapse
Affiliation(s)
- Feng Liu
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, United States
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, United States
| | - Percy Lee
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, United States
| | - Tithi Biswas
- Department of Radiation Oncology, University Hospitals at Case Western Reserve University, Cleveland, United States
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, United States
| | - Isaam El Naqa
- Department of Radiation Oncology, McGill University, Montreal, Canada
| | - Jimm Grimm
- Holy Redeemer Hospital, Philadelphia, United States
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Feng-Ming Spring Kong
- Department of Radiation Oncology, GRU Cancer Center and Medical School of Georgia, Augusta, United States
| | - Tamara LaCouture
- Department of Radiation Oncology, Cooper University Hospital, Camden, United States
| | - Billy Loo
- Department of Radiation Oncology, Stanford Cancer Center, Stanford, United States
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado at Denver, Aurora, United States
| | - Timothy Solberg
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, United States
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, United States.
| |
Collapse
|
30
|
Woods K, Nguyen D, Tran A, Yu VY, Cao M, Niu T, Lee P, Sheng K. Viability of Non-Coplanar VMAT for Liver SBRT as Compared to Coplanar VMAT and Beam Orientation Optimized 4π IMRT. Adv Radiat Oncol 2016; 1:67-75. [PMID: 27104216 PMCID: PMC4834900 DOI: 10.1016/j.adro.2015.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose The 4π static noncoplanar radiation therapy delivery technique has demonstrated better normal tissue sparing and dose conformity than the clinically used volumetric modulated arc therapy (VMAT). It is unclear whether this is a fundamental limitation of VMAT delivery or the coplanar nature of its typical clinical plans. The dosimetry and the limits of normal tissue toxicity constrained dose escalation of coplanar VMAT, noncoplanar VMAT and 4π radiation therapy are quantified in this study. Methods and materials Clinical stereotactic body radiation therapy plans for 20 liver patients receiving 30 to 60 Gy using coplanar VMAT (cVMAT) were replanned using 3 to 4 partial noncoplanar arcs (nVMAT) and 4π with 20 intensity modulated noncoplanar fields. The conformity number, homogeneity index, 50% dose spillage volume, normal liver volume receiving >15 Gy, dose to organs at risk (OARs), and tumor control probability were compared for all 3 treatment plans. The maximum tolerable dose yielding a normal liver normal tissue control probability <1%, 5%, and 10% was calculated with the Lyman-Kutcher-Burman model for each plan as well as the resulting survival fractions at 1, 2, 3, and 4 years. Results Compared with cVMAT, the nVMAT and 4π plans reduced liver volume receiving >15 Gy by an average of 5 cm3 and 80 cm3, respectively. 4π reduced the 50% dose spillage volume by ∼23% compared with both VMAT plans, and either significantly decreased or maintained OAR doses. The 4π maximum tolerable doses and survival fractions were significantly higher than both cVMAT and nVMAT (P < .05) for all normal liver normal tissue control probability limits used in this study. Conclusions The 4π technique provides significantly better OAR sparing than both cVMAT and nVMAT and enables more clinically relevant dose escalation for tumor local control. Therefore, despite the current accessibility of nVMAT, it is not a viable alternative to 4π for liver SBRT.
Collapse
Affiliation(s)
- Kaley Woods
- Department of Radiation Oncology, University of California, Los Angeles
| | - Dan Nguyen
- Department of Radiation Oncology, University of California, Los Angeles
| | - Angelia Tran
- Department of Radiation Oncology, University of California, Los Angeles
| | - Victoria Y Yu
- Department of Radiation Oncology, University of California, Los Angeles
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles
| | - Tianye Niu
- Translational Medicine Institute, Zhejiang University
| | - Percy Lee
- Department of Radiation Oncology, University of California, Los Angeles
| | - Ke Sheng
- Department of Radiation Oncology, University of California, Los Angeles
| |
Collapse
|
31
|
Asbell SO, Grimm J, Xue J, Chew MS, LaCouture TA. Introduction and Clinical Overview of the DVH Risk Map. Semin Radiat Oncol 2015; 26:89-96. [PMID: 27000504 DOI: 10.1016/j.semradonc.2015.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Radiation oncologists need reliable estimates of risk for various fractionation schemes for all critical anatomical structures throughout the body, in a clinically convenient format. Reliable estimation theory can become fairly complex, however, and estimates of risk continue to evolve as the literature matures. To navigate through this efficiently, a dose-volume histogram (DVH) Risk Map was created, which provides a comparison of radiation tolerance limits as a function of dose, fractionation, volume, and risk level. The graphical portion of the DVH Risk Map helps clinicians to easily visualize the trends, whereas the tabular portion provides quantitative precision for clinical implementation. The DVH Risk Map for rib tolerance from stereotactic ablative body radiotherapy (SABR) and stereotactic body radiation therapy (SBRT) is used as an example in this overview; the 5% and 50% risk levels for 1-5 fractions for 5 different volumes are given. Other articles throughout this issue of Seminars in Radiation Oncology present analysis of new clinical datasets including the DVH Risk Maps for other anatomical structures throughout the body.
Collapse
Affiliation(s)
- Sucha O Asbell
- Department of Radiation Oncology, MD Anderson at Cooper University Hospital, Camden, NJ
| | - Jimm Grimm
- Holy Redeemer Hospital, Bott Cancer Center, Meadowbrook, PA.
| | - Jinyu Xue
- Department of Radiation Oncology, MD Anderson at Cooper University Hospital, Camden, NJ
| | | | - Tamara A LaCouture
- Department of Radiation Oncology, MD Anderson at Cooper University Hospital, Camden, NJ
| |
Collapse
|
32
|
Rashid A, Karam SD, Rashid B, Kim JH, Pang D, Jean W, Grimm J, Collins SP. Multisession Radiosurgery for Hearing Preservation. Semin Radiat Oncol 2015; 26:105-11. [PMID: 27000506 DOI: 10.1016/j.semradonc.2015.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Clinically relevant dose-tolerance limits with reliable estimates of risk in 1-5 fractions for cochlea are still unknown. Timmerman׳s limits from the October 2008 issue of Seminars in Radiation Oncology have served as the basis for clinical practice, augmented by updated constraints in TG-101 and QUANTEC, but the corresponding estimates of risk have not yet been well-reported. A total of 37 acoustic neuroma CyberKnife cases from Medstar Georgetown University Hospital treated in 3 or 5 fractions were combined with single-fraction Gamma Knife data from the 69 cases in Timmer 2009 to form an aggregate dataset of 106 cochlea cases treated in 1-5 fractions. Probit dose-response modeling was performed in the DVH Evaluator software to estimate normal tissue complication probability. QUANTEC recommends keeping single-fraction maximum dose to the cochlea less than 14Gy to maintain less than 25% risk of serviceable hearing loss, and our 17.9% risk estimate for 14Gy in 1 fraction is within their predicted range. In 5 fractions, our estimate of the Timmerman 27.5Gy maximum cochlea dose limit was 17.4%. For cases in which lower risk is required, the Timmerman 12Gy in 1 fraction and the TG-101 limit of 25Gy in 5 fractions had an estimated risk level of 11.8% and 13.8%, respectively. High-risk and low-risk dose tolerance with risk estimates in 1-5 fractions are all presented.
Collapse
Affiliation(s)
- Abdul Rashid
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, DC.
| | - Sana D Karam
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, DC
| | - Beenish Rashid
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, DC
| | - Jeffrey H Kim
- Department of Otolaryngology-Head and Neck Surgery, MedStar Georgetown University Hospital, Washington, DC
| | - Dalong Pang
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, DC
| | - Walter Jean
- Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC
| | - Jimm Grimm
- Bott Cancer Center, Holy Redeemer Hospital, Meadowbrook, PA
| | - Sean P Collins
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, DC
| |
Collapse
|
33
|
Synthesis of novel galactose functionalized gold nanoparticles and its radiosensitizing mechanism. J Nanobiotechnology 2015; 13:67. [PMID: 26452535 PMCID: PMC4600275 DOI: 10.1186/s12951-015-0129-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/25/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Biocompatible gold nanoparticles (GNPs) are potentially practical and efficient agents in cancer radiotherapy applications. In this study, we demonstrated that GNPs can significantly modulate irradiation response of hepatocellular carcinoma cells in vitro and investigated the underlying mechanisms. We co-grafted galactose (GAL) targeting hepatocyte specific asialoglycoprotein receptor and Polyethylene Glycol (PEG) onto GNPs surfaces to increase GNPs targeting specificity and stability. RESULTS This novel GAL-PEG-GNPs and bare GNPs show similar appearance and cytotoxicity profiles, while more GAL-PEG-GNPs can be effectively uptaken and could enhance cancer cell killing. CONCLUSION GAL-PEG-GNPs have better radiosensitization to HepG2. The sensitization mechanism of GAL-PEG-GNPs is related to the apoptotic gene process activated by generation of a large amount of free radicals induced by GNPs.
Collapse
|
34
|
Bethge A, Schumacher U, Wedemann G. Simulation of metastatic progression using a computer model including chemotherapy and radiation therapy. J Biomed Inform 2015; 57:74-87. [DOI: 10.1016/j.jbi.2015.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 07/01/2015] [Accepted: 07/12/2015] [Indexed: 11/15/2022]
|
35
|
Chiesa C, Mira M, Maccauro M, Spreafico C, Romito R, Morosi C, Camerini T, Carrara M, Pellizzari S, Negri A, Aliberti G, Sposito C, Bhoori S, Facciorusso A, Civelli E, Lanocita R, Padovano B, Migliorisi M, De Nile MC, Seregni E, Marchianò A, Crippa F, Mazzaferro V. Radioembolization of hepatocarcinoma with (90)Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology. Eur J Nucl Med Mol Imaging 2015; 42:1718-1738. [PMID: 26112387 DOI: 10.1007/s00259-015-3068-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/09/2015] [Indexed: 12/30/2022]
Abstract
PURPOSE The aim of this study was to optimize the dosimetric approach and to review the absorbed doses delivered, taking into account radiobiology, in order to identify the optimal methodology for an individualized treatment planning strategy based on (99m)Tc-macroaggregated albumin (MAA) single photon emission computed tomography (SPECT) images. METHODS We performed retrospective dosimetry of the standard TheraSphere® treatment on 52 intermediate (n = 17) and advanced (i.e. portal vein thrombosis, n = 35) hepatocarcinoma patients with tumour burden < 50% and without obstruction of the main portal vein trunk. Response was monitored with the densitometric radiological criterion (European Association for the Study of the Liver) and treatment-related liver decompensation was defined ad hoc with a time cut-off of 6 months. Adverse events clearly attributable to disease progression or other causes were not attributed to treatment. Voxel dosimetry was performed with the local deposition method on (99m)Tc-MAA SPECT images. The reconstruction protocol was optimized. Concordance of (99m)Tc-MAA and (90)Y bremsstrahlung microsphere biodistributions was studied in 35 sequential patients. Two segmentation methods were used, based on SPECT alone (home-made code) or on coregistered SPECT/CT images (IMALYTICS™ by Philips). STRATOS™ absorbed dose calculation was validated for (90)Y with a single time point. Radiobiology was used introducing other dosimetric variables besides the mean absorbed dose D: equivalent uniform dose (EUD), biologically effective dose averaged over voxel values (BEDave) and equivalent uniform biologically effective dose (EUBED). Two sets of radiobiological parameters, the first derived from microsphere irradiation and the second from external beam radiotherapy (EBRT), were used. A total of 16 possible methodologies were compared. Tumour control probability (TCP) and normal tissue complication probability (NTCP) were derived. The area under the curve (AUC) of the receiver-operating characteristic (ROC) curve was used as a figure of merit to identify the methodology which gave the best separation in terms of dosimetry between responding and non-responding lesions and liver decompensated vs non-decompensated liver treatment. RESULTS MAA and (90)Y biodistributions were not different (71% of cases), different in 23% and uncertain in 6%. Response correlated with absorbed dose (Spearman's r from 0.48 to 0.69). Responding vs non-responding lesion absorbed doses were well separated, regardless of the methodology adopted (p = 0.0001, AUC from 0.75 to 0.87). EUBED gave significantly better separation with respect to mean dose (AUC = 0.87 vs 0.80, z = 2.07). Segmentation on SPECT gave better separation than on SPECT/CT. TCP(50%) was at 250 Gy for small lesion volumes (<10 cc) and higher than 1,000 Gy for large lesions (>10 cc). Apparent radiosensitivity values from TCP were around 0.003/Gy, a factor of 3-5 lower than in EBRT, as found by other authors. The dose-rate effect was negligible: a purely linear model can be applied. Toxicity incidence was significantly larger for Child B7 patients (89 vs 14%, p < 0.0001), who were therefore excluded from dose-toxicity analysis. Child A toxic vs non-toxic treatments were significantly separated in terms of dose averaged on whole non-tumoural parenchyma (including non-irradiated regions) with AUC from 0.73 to 0.94. TD50 was ≈ 100 Gy. No methodology was superior to parenchyma mean dose, which therefore can be used for planning, with a limit of TD15 ≈ 75 Gy. CONCLUSION A dosimetric treatment planning criterion for Child A patients without complete obstruction of the portal vein was developed.
Collapse
Affiliation(s)
- C Chiesa
- Nuclear Medicine Division, Foundation IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, 20133, Milan, Italy.
| | - M Mira
- Postgraduate Health Physics School, University of Milan, Milan, Italy
| | - M Maccauro
- Nuclear Medicine Division, Foundation IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - C Spreafico
- Radiology 2, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - R Romito
- Surgery 1, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - C Morosi
- Radiology 2, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - T Camerini
- Scientific Direction, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - M Carrara
- Health Physics, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - S Pellizzari
- Engineering Faculty, University La Sapienza, Rome, Italy
| | - A Negri
- Postgraduate Health Physics School, University of Milan, Milan, Italy
| | - G Aliberti
- Nuclear Medicine Division, Foundation IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - C Sposito
- Surgery 1, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - S Bhoori
- Surgery 1, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - A Facciorusso
- Surgery 1, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - E Civelli
- Radiology 2, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - R Lanocita
- Radiology 2, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - B Padovano
- Nuclear Medicine Division, Foundation IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - M Migliorisi
- Nuclear Medicine Division, Foundation IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, 20133, Milan, Italy
- Clinical Engineering, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - M C De Nile
- Physics Faculty, University of Pavia, Pavia, Lombardy, Italy
| | - E Seregni
- Nuclear Medicine Division, Foundation IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - A Marchianò
- Radiology 2, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - F Crippa
- Nuclear Medicine Division, Foundation IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - V Mazzaferro
- Surgery 1, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| |
Collapse
|
36
|
Högberg J, Rizell M, Hultborn R, Svensson J, Henrikson O, Mölne J, Gjertsson P, Bernhardt P. Heterogeneity of microsphere distribution in resected liver and tumour tissue following selective intrahepatic radiotherapy. EJNMMI Res 2014; 4:48. [PMID: 26116112 PMCID: PMC4452632 DOI: 10.1186/s13550-014-0048-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/03/2014] [Indexed: 12/22/2022] Open
Abstract
Background Selective arterial radioembolisation of liver tumours has increased, because of encouraging efficacy reports; however, therapeutic parameters used in external beam therapy are not applicable for understanding and predicting potential toxicity and efficacy, necessitating further studies of the physical and biological characteristics of radioembolisation. The aim was to characterise heterogeneity in the distribution of microspheres on a therapeutically relevant geometric scale considering the range of yttrium-90 (90Y) β-particles. Methods Two patients with intrahepatic cholangiocarcinoma, marginally resectable, were treated by selective arterial embolisation with 90Y resin microspheres (SIRTEX®), followed 9 days post-infusion by resection, including macroscopic tumour tissue and surrounding normal liver parenchyma. Formalin-fixed, sectioned resected tissues were exposed to autoradiographic films, or tissue biopsies of various dimensions were punched out for activity measurements and microscopy. Results Autoradiography and activity measurements revealed a higher activity in tumour tissue compared to normal liver parenchyma. Heterogeneity in activity distribution was evident in both normal liver and tumour tissue. Activity measurements were analysed in relation to the sample mass (5 to 422 mg), and heterogeneities were detected by statistical means; the larger the tissue biopsies, the smaller was the coefficient of variation. The skewness of the activity distributions increased with decreasing biopsy mass. Conclusions The tissue activity distributions in normal tissue were heterogeneous on a relevant geometric scale considering the range of the ionising electrons. Given the similar and repetitive structure of the liver parenchyma, this finding could partly explain the tolerance of a relatively high mean absorbed dose to the liver parenchyma from β-particles.
Collapse
Affiliation(s)
- Jonas Högberg
- Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, SE-41346, Gothenburg, Sweden,
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Jacob J, Nguyen F, Deutsch E, Mornex F. [Stereotactic body radiation therapy in the management of liver tumours]. Cancer Radiother 2014; 18:486-94. [PMID: 25195113 DOI: 10.1016/j.canrad.2014.07.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022]
Abstract
Stereotactic radiotherapy is a high-precision technique based on the administration of high doses to a limited target volume. This treatment constitutes a therapeutic progress in the management of many tumours, especially hepatic ones. If surgery remains the standard local therapy, stereotactic radiotherapy is first dedicated to inoperable patients or unresectable tumours. Patients with moderately altered general status, preserved liver function and tumour lesions limited in number as in size are eligible to this technique. Results in terms of local control are satisfying, regarding primary tumours (notably hepatocellular carcinomas) as metastases stemming from various origins. If treatment protocols and follow-up modalities are not standardized to this day, iconographic acquisition using four-dimensional computed tomography, target volumes delineation based on morphological and/or metabolic data, and image-guided radiotherapy contribute to an oncologic efficacy and an improved sparing of the functional liver. The purpose of this literature review is to report the results of the main works having assessed stereotactic radiotherapy in the management of primary and secondary liver tumours. Technical particularities of this radiation modality will also be described.
Collapse
Affiliation(s)
- J Jacob
- Service d'oncologie-radiothérapie, hôpital d'instruction des armées du Val-de-Grâce, 74, boulevard de Port-Royal, 75230 Paris cedex 05, France.
| | - F Nguyen
- Département de radiothérapie, institut de cancérologie Gustave-Roussy, 114, rue Édouard-Vaillant, 94805 Villejuif cedex, France
| | - E Deutsch
- Département de radiothérapie, institut de cancérologie Gustave-Roussy, 114, rue Édouard-Vaillant, 94805 Villejuif cedex, France
| | - F Mornex
- Service de radiothérapie-oncologie, centre hospitalier Lyon-Sud, 165, chemin du Grand-Revoyet, 69310 Pierre-Bénite, France; EMR 3738, université Claude-Bernard Lyon 1, 69373 Lyon cedex 08, France
| |
Collapse
|
38
|
Cremonesi M, Chiesa C, Strigari L, Ferrari M, Botta F, Guerriero F, De Cicco C, Bonomo G, Orsi F, Bodei L, Di Dia A, Grana CM, Orecchia R. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol 2014; 4:210. [PMID: 25191640 PMCID: PMC4137387 DOI: 10.3389/fonc.2014.00210] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/23/2014] [Indexed: 12/18/2022] Open
Abstract
Radioembolization (RE) of liver cancer with 90Y-microspheres has been applied in the last two decades with notable responses and acceptable toxicity. Two types of microspheres are available, glass and resin, the main difference being the activity/sphere. Generally, administered activities are established by empirical methods and differ for the two types. Treatment planning based on dosimetry is a prerogative of few centers, but has notably gained interest, with evidence of predictive power of dosimetry on toxicity, lesion response, and overall survival (OS). Radiobiological correlations between absorbed doses and toxicity to organs at risk, and tumor response, have been obtained in many clinical studies. Dosimetry methods have evolved from the macroscopic approach at the organ level to voxel analysis, providing absorbed dose spatial distributions and dose–volume histograms (DVH). The well-known effects of the external beam radiation therapy (EBRT), such as the volume effect, underlying disease influence, cumulative damage in parallel organs, and different tolerability of re-treatment, have been observed also in RE, identifying in EBRT a foremost reference to compare with. The radiobiological models – normal tissue complication probability and tumor control probability – and/or the style (DVH concepts) used in EBRT are introduced in RE. Moreover, attention has been paid to the intrinsic different activity distribution of resin and glass spheres at the microscopic scale, with dosimetric and radiobiological consequences. Dedicated studies and mathematical models have developed this issue and explain some clinical evidences, e.g., the shift of dose to higher toxicity thresholds using glass as compared to resin spheres. This paper offers a comprehensive review of the literature incident to dosimetry and radiobiological issues in RE, with the aim to summarize the results and to identify the most useful methods and information that should accompany future studies.
Collapse
Affiliation(s)
| | | | - Lidia Strigari
- Istituto Nazionale dei Tumori Regina Elena , Rome , Italy
| | | | | | | | | | | | - Franco Orsi
- Istituto Europeo di Oncologia , Milan , Italy
| | - Lisa Bodei
- Istituto Europeo di Oncologia , Milan , Italy
| | | | | | | |
Collapse
|
39
|
Cremonesi M, Ferrari M, Botta F, Guerriero F, Garibaldi C, Bodei L, De Cicco C, Grana CM, Pedroli G, Orecchia R. Planning combined treatments of external beam radiation therapy and molecular radiotherapy. Cancer Biother Radiopharm 2014; 29:227-37. [PMID: 25006794 DOI: 10.1089/cbr.2014.1607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Molecular radiotherapy (MRT) with radiolabeled molecules has being constantly evolving, leading to notable results in cancer treatment. In some cases, the absorbed doses delivered to tumors by MRT are sufficient to obtain complete responses; in other cases, instead, to be effective, MRT needs to be combined with other therapeutic approaches. Recently, several studies proposed the combination of MRT with external beam radiation therapy (EBRT). Some describe the theoretical basis within radiobiological models, others report the results of clinical phase I-II studies aimed to assess the feasibility and tolerability. The latter includes the treatment of various tumors, such as meningiomas, paragangliomas, non-Hodgkin's lymphomas, bone, brain, hepatic, and breast lesions. The underlying principle of combined MRT and EBRT is the possibility of exploiting the full potential of each modality, given the different organs at risk. Target tissues can indeed receive a higher irradiation, while respecting the threshold limits of more than one critical tissue. Nevertheless, clinical trials are empirical and optimization is still a theoretical issue. This article describes the state of the art of combined MRT and EBRT regarding the rationale and the results of clinical studies, with special focus on the possibility of treatment improvement.
Collapse
Affiliation(s)
- Marta Cremonesi
- Department of Medical Imaging and Radiation Sciences, Istituto Europeo di Oncologia , Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Carabe A, España S, Grassberger C, Paganetti H. Clinical consequences of relative biological effectiveness variations in proton radiotherapy of the prostate, brain and liver. Phys Med Biol 2013; 58:2103-17. [DOI: 10.1088/0031-9155/58/7/2103] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Moraru IC, Tai A, Erickson B, Li XA. Radiation dose responses for chemoradiation therapy of pancreatic cancer: an analysis of compiled clinical data using biophysical models. Pract Radiat Oncol 2013; 4:13-9. [PMID: 24621418 DOI: 10.1016/j.prro.2013.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/04/2012] [Accepted: 01/15/2013] [Indexed: 12/13/2022]
Abstract
PURPOSE We analyzed recent clinical data obtained from chemoradiation of unresectable, locally advanced pancreatic cancer (LAPC) in order to examine possible benefits from radiation therapy dose escalation. METHODS AND MATERIALS A modified linear quadratic model was used to fit clinical tumor response and survival data of chemoradiation treatments for LAPC reported from 20 institutions. Biophysical radiosensitivity parameters were extracted from the fits. RESULTS Examination of the clinical data demonstrated an enhancement in tumor response with higher irradiation dose, an important clinical result for palliation and quality of life. Little indication of improvement in 1-year survival with increased radiation dose was observed. Possible dose escalation schemes are proposed based on calculations of the biologically effective dose required for a 50% tumor response rate. CONCLUSIONS Based on the evaluation of tumor response data, the escalation of radiation dose presents potential clinical benefits which when combined with normal tissue complication analyses may result in improved treatment outcome for locally advanced pancreatic cancer patients.
Collapse
Affiliation(s)
- Ion C Moraru
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Beth Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
42
|
Böhlen TT, Brons S, Dosanjh M, Ferrari A, Fossati P, Haberer T, Patera V, Mairani A. Investigating the robustness of ion beam therapy treatment plans to uncertainties in biological treatment parameters. Phys Med Biol 2012; 57:7983-8004. [DOI: 10.1088/0031-9155/57/23/7983] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Mapping of RBE-Weighted Doses Between HIMAC– and LEM–Based Treatment Planning Systems for Carbon Ion Therapy. Int J Radiat Oncol Biol Phys 2012; 84:854-60. [DOI: 10.1016/j.ijrobp.2012.01.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 11/23/2022]
|
44
|
Grün R, Friedrich T, Elsässer T, Krämer M, Zink K, Karger CP, Durante M, Engenhart-Cabillic R, Scholz M. Impact of enhancements in the local effect model (LEM) on the predicted RBE-weighted target dose distribution in carbon ion therapy. Phys Med Biol 2012; 57:7261-74. [PMID: 23075883 DOI: 10.1088/0031-9155/57/22/7261] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biological optimization for treatment planning in carbon ion therapy is currently based on the first version of the local effect model (LEM I). Further developments implemented in the latest version (LEM IV) allowed to predict more accurately the Relative Biological Effectiveness (RBE) in-vitro. The main goal of this study is to compare the LEM IV against LEM I under treatment-like conditions for idealized target geometries. Therefore, physical dose distributions resulting from the biological optimization with LEM I were used to recalculate the RBE-weighted dose distribution based on LEM IV. Input parameters representing the clinical endpoints late toxicity in the central nervous system and the tumor control for chordoma were chosen to investigate the impact of changes on the predicted isoeffective dose levels. The recalculated RBE-weighted dose distributions show an increase within the target region, and the mean RBE-weighted dose values are dependent on the geometry and decrease with increasing target dimension. The differences between predictions of LEM IV and LEM I are less than 10% for typical tumor volumes treated in the pilot project at GSI. Median RBE-weighted doses predicted by LEM IV in the target region are consistent with clinically observed dose-response behavior as demonstrated by comparison to the 5-year local control curve for skull base chordoma.
Collapse
Affiliation(s)
- R Grün
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chen MF, Hsieh CC, Chen WC, Lai CH. Role of interleukin-6 in the radiation response of liver tumors. Int J Radiat Oncol Biol Phys 2012; 84:e621-30. [PMID: 22975618 DOI: 10.1016/j.ijrobp.2012.07.2360] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE To investigate the role of interleukin (IL)-6 in biological sequelae and tumor regrowth after irradiation for hepatic malignancy, which are critical for the clinical radiation response of liver tumors. METHODS AND MATERIALS The Hepa 1-6 murine hepatocellular cancer cell line was used to examine the radiation response by clonogenic assays and tumor growth delay in vivo. After irradiation in a single dose of 6 Gy in vitro or 15 Gy in vivo, biological changes including cell death and tumor regrowth were examined by experimental manipulation of IL-6 signaling. The effects of blocking IL-6 were assessed by cells preincubated in the presence of IL-6-neutralizing antibody for 24 hours or stably transfected with IL-6-silencing vectors. The correlations among tumor responses, IL-6 levels, and myeloid-derived suppressor cells (MDSC) recruitment were examined using animal experiments. RESULTS Interleukin-6 expression was positively linked to irradiation and radiation resistance, as demonstrated by in vitro and in vivo experiments. Interleukin-6-silencing vectors induced more tumor inhibition and DNA damage after irradiation. When subjects were irradiated with a sublethal dose, the regrowth of irradiated tumors significantly correlated with IL-6 levels and MDSC recruitment in vivo. Furthermore, blocking of IL-6 could overcome irradiation-induced MDSC recruitment and tumor regrowth after treatment. CONCLUSION These data demonstrate that IL-6 is important in determining the radiation response of liver tumor cells. Irradiation-induced IL-6 and the subsequent recruitment of MDSC could be responsible for tumor regrowth. Therefore, treatment with concurrent IL-6 inhibition could be a potential therapeutic strategy for increasing the radiation response of tumors.
Collapse
Affiliation(s)
- Miao-Fen Chen
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chiayi, Taiwan.
| | | | | | | |
Collapse
|
46
|
Qi XS, White J, Li XA. Is α/β for breast cancer really low? Radiother Oncol 2011; 100:282-8. [PMID: 21367477 DOI: 10.1016/j.radonc.2011.01.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/04/2011] [Accepted: 01/10/2011] [Indexed: 12/30/2022]
Abstract
PURPOSE Low α/β ratio for breast cancer has drawn a growing interest for exploring hypofractionation for breast irradiation. This work is to confirm the low α/β ratio based on large randomized clinical trials of breast irradiation. METHODS AND MATERIALS A model based on the generalized linear-quadratic (LQ) model and Poisson statistical model was developed to calculate disease-free survival with consideration of clonogen proliferation during the course of radiation treatment and exponential behavior of survival rate with follow-up time. Outcome data from a series of randomized clinical trials of early-stage breast radiotherapy were fitted to estimate the model parameters. Other clinical outcomes, including treatments with surgery alone or radiotherapy alone were used to validate the model and the estimated parameters. Hypofractionation regimens were proposed based on the newly estimated LQ parameters. RESULTS Plausible population averaged radiobiologic parameters for breast cancer (95% confidence level) are α/β=2.88 (0.75-5.01) Gy; α=0.08±0.02Gy(-1); potential doubling time T(d)=14.4±7.8day. The analysis of the radiation-alone data suggested an α/β ratio of 3.89±6.25Gy, verifying the low α/β ratio based on the post-lumpectomy irradiation data. The hypofractionation regimens that are equivalent to the conventional regimen of 2.0Gy×25 in 5weeks include 2.26Gy×20, 3.34Gy×10, 4.93Gy×5 or 3.39Gy×10 (BID). CONCLUSIONS The analysis of the available clinical data from multiple institutions support that breast cancer has a low ratio of α/β, encouraging hypofractionated radiotherapy regimens for breast cancer.
Collapse
Affiliation(s)
- X Sharon Qi
- Department of Radiation Oncology, University of Colorado Denver, Aurora, CO, USA.
| | | | | |
Collapse
|
47
|
Hennequin C, Quero L, Rivera S. Radiosensibilité des cancers du foie. Cancer Radiother 2011; 15:39-42. [DOI: 10.1016/j.canrad.2010.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 12/18/2022]
|
48
|
Suit H, DeLaney T, Goldberg S, Paganetti H, Clasie B, Gerweck L, Niemierko A, Hall E, Flanz J, Hallman J, Trofimov A. Proton vs carbon ion beams in the definitive radiation treatment of cancer patients. Radiother Oncol 2010; 95:3-22. [DOI: 10.1016/j.radonc.2010.01.015] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 01/22/2010] [Accepted: 01/23/2010] [Indexed: 02/03/2023]
|
49
|
Wigg AJ, Palumbo K, Wigg DR. Radiotherapy for hepatocellular carcinoma: systematic review of radiobiology and modeling projections indicate reconsideration of its use. J Gastroenterol Hepatol 2010; 25:664-71. [PMID: 20074152 DOI: 10.1111/j.1440-1746.2009.06126.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS External beam radiotherapy currently has a limited role in the treatment of hepatocellular carcinoma (HCC). The purpose of this article was to review available radiobiological data on HCC and normal liver and incorporate these data into radiobiological models that may be used to explain and improve treatment. METHODS Volume doubling times of HCC were described and used to demonstrate growth of HCC with time, assuming both exponential and logistic growth. Radiosensitivity of HCC was described and used to demonstrate the probability of uncomplicated tumor control as tumor size increases. The relationship between tolerance of liver to irradiation and volume irradiated was examined. RESULTS The median volume doubling time for untreated HCC was 130 days. HCC have a long period of subclinical growth. Radiosensitivity of HCC lies within the range of other tumors commonly treated with radiotherapy. When treating small volumes of normal liver, relatively high doses may be used with low risk of late radiation damage. There is a high probability of sterilizing subclinical disease and small HCC with tolerable radiation doses. CONCLUSION New radiobiological data, modeling, emerging clinical data and the advantages offered by standard external beam radiotherapy techniques suggest the need for reconsidering the use of radiotherapy and for new trials.
Collapse
Affiliation(s)
- Alan J Wigg
- Hepatology and Liver Transplant Medicine Unit, Flinders Medical Centre, Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
50
|
Pan CC, Kavanagh BD, Dawson LA, Li XA, Das SK, Miften M, Ten Haken RK. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys 2010; 76:S94-100. [PMID: 20171524 DOI: 10.1016/j.ijrobp.2009.06.092] [Citation(s) in RCA: 501] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 05/29/2009] [Accepted: 06/23/2009] [Indexed: 12/22/2022]
Abstract
The liver is a critically important organ that has numerous functions including the production of bile, metabolism of ingested nutrients, elimination of many waste products, glycogen storage, and plasma protein synthesis. The liver is often incidentally irradiated during radiation therapy (RT) for tumors in the upper- abdomen, right lower lung, distal esophagus, or during whole abdomen or whole body RT. This article describes the endpoints, time-course, and dose-volume effect of radiation on the liver.
Collapse
Affiliation(s)
- Charlie C Pan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109-5010, USA.
| | | | | | | | | | | | | |
Collapse
|