1
|
Wittmann A, Bartels A, Alkotub B, Bauer L, Kafshgari MH, Multhoff G. Chronic inflammatory effects of in vivo irradiation of the murine heart on endothelial cells mimic mechanisms involved in atherosclerosis. Strahlenther Onkol 2023; 199:1214-1224. [PMID: 37658922 PMCID: PMC10673733 DOI: 10.1007/s00066-023-02130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/16/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE Radiotherapy is a major pillar in the treatment of solid tumors including breast cancer. However, epidemiological studies have revealed an increase in cardiac diseases approximately a decade after exposure of the thorax to ionizing irradiation, which might be related to vascular inflammation. Therefore, chronic inflammatory effects were examined in primary heart and lung endothelial cells (ECs) of mice after local heart irradiation. METHODS Long-lasting effects on primary ECs of the heart and lung were studied 20-50 weeks after local irradiation of the heart of mice (8 and 16 Gy) in vivo by multiparameter flow cytometry using antibodies directed against cell surface markers related to proliferation, stemness, lipid metabolism, and inflammation, and compared to those induced by occlusion of the left anterior descending coronary artery. RESULTS In vivo irradiation of the complete heart caused long-lasting persistent upregulation of inflammatory (HCAM, ICAM‑1, VCAM-1), proliferation (CD105), and lipid (CD36) markers on primary heart ECs and an upregulation of ICAM‑1 and VCAM‑1 on primary ECs of the partially irradiated lung lobe. An artificially induced heart infarction induces similar effects with respect to inflammatory markers, albeit in a shorter time period. CONCLUSION The long-lasting upregulation of prominent inflammatory markers on primary heart and lung ECs suggests that local heart irradiation induces chronic inflammation in the microvasculature of the heart and partially irradiated lung that leads to cardiac injury which might be related to altered lipid metabolism in the heart.
Collapse
Affiliation(s)
- Andrea Wittmann
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine Radiation Immuno-Oncology Group, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaningerstr. 22, 81675, Munich, Germany
| | - Anna Bartels
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
| | - Bayan Alkotub
- Institute of Biological Medical Imaging, Helmholtz-Zentrum München (HMGU), Neuherberg, Munich, Germany
| | - Lisa Bauer
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine Radiation Immuno-Oncology Group, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaningerstr. 22, 81675, Munich, Germany
| | - Morteza Hasanzadeh Kafshgari
- Center for Translational Cancer Research (TranslaTUM), Heinz-Nixdorf-Chair for Biomedical Electronics, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine Radiation Immuno-Oncology Group, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaningerstr. 22, 81675, Munich, Germany.
| |
Collapse
|
2
|
Texakalidis P, Giannopoulos S, Tsouknidas I, Song S, Rivet DJ, Reiter ER, Reavey-Cantwell J. Prevalence of carotid stenosis following radiotherapy for head and neck cancer: A systematic review and meta-analysis. Head Neck 2020; 42:1077-1088. [PMID: 32048781 DOI: 10.1002/hed.26102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/08/2020] [Accepted: 01/28/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Radiation to the head and neck is a well-established risk factor for the development of carotid artery stenosis. Our objective was to identify the prevalence, incidence, and degree of carotid stenosis in patients with a history of head and neck irradiation. METHODS This study was performed according to the PRISMA guidelines. A random effects model meta-analysis was conducted. RESULTS Nineteen studies comprising 1479 patients were included. The prevalence of carotid stenosis >50%, >70%, and carotid occlusion was 25% (95% CI: 19%-32%), 12% (95% CI: 7%-17%), and 4% (95% CI: 2%-8%), respectively. The cumulative 12-month incidence of carotid stenosis >50% was 4% (95% CI: 2%-5%), the 24-month was 12% (95% CI: 9%-15%), and the 36-month was 21% (95% CI: 9%-36%). CONCLUSIONS The yearly incidence of carotid stenosis >50% increased every year during the first 3 years following radiotherapy. We propose routine yearly Doppler ultrasound screening beginning 1 year after head and neck radiotherapy.
Collapse
Affiliation(s)
- Pavlos Texakalidis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | | | - Ioannis Tsouknidas
- Department of Vascular Surgery, Naval and Veterans Hospital of Athens, Athens, Greece
| | - Shiyu Song
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Dennis J Rivet
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia
| | - Evan R Reiter
- Department of Otolaryngology-Head and Neck Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - John Reavey-Cantwell
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
3
|
Deana Y, Burgara-Estrella AJ, Montalvo-Corral M, Angulo-Molina A, Acosta-Elías MA, Silva-Campa E, Sarabia-Sainz JA, Rodríguez-Hernández IC, Pedroza-Montero MR. Effect of gamma irradiation doses in the structural and functional properties of mice splenic cells. Int J Radiat Biol 2018; 95:286-297. [PMID: 30496016 DOI: 10.1080/09553002.2019.1547435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Ionizing radiation is nowadays effectively used in cancer treatments. However, the effect of irradiation in immune-system cells is poorly understood and remains controversial. The aim of this work was to determine the effect of γ-irradiation in the structural and functional properties of mice splenic cells. MATERIALS AND METHODS Structural traits of irradiated splenic cells were evaluated by Atomic Force Microscopy and Raman spectroscopy. Functional properties were measured by gene and protein expression by RT-qPCR and ELISA, respectively. The induced cytotoxic effect was evaluated by MTT assay and the phagocytic capability by flow cytometry. RESULTS Membrane roughness and molecular composition of splenic adherent cells are not changed by irradiation doses exposure. An increase in transcription of pro-inflammatory cytokines was observed. While protein expression decreased in IL-2 dose-dependent, relevant differences were identified in the anti-inflammatory marker IL-10 at 27 Gy. An increase of cytotoxicity in irradiated cells at 7 Gy and 27 Gy doses was observed, while phagocytosis was slight increased at 7 Gy dose but not statistically significant. CONCLUSIONS We have demonstrated that γ-irradiation affects the splenic cells and changes the cytokines profile toward a pro-inflammatory phenotype and a tendency to increase the cytotoxicity was found, which implies a stimulation of immune response induced by γ-irradiation.
Collapse
Affiliation(s)
- Yanik Deana
- a Departamento de Investigación en Física , Universidad de Sonora , Hermosillo , México.,b Institute for Chemistry and Bioanalytics , University of Applied Sciences and Arts Northwestern , Muttenz , Switzerland
| | | | - Maricela Montalvo-Corral
- c Departamento de Nutrición , Centro de Investigación en Alimentación y Desarrollo A.C. , Hermosillo , México
| | | | - Mónica A Acosta-Elías
- a Departamento de Investigación en Física , Universidad de Sonora , Hermosillo , México
| | - Erika Silva-Campa
- a Departamento de Investigación en Física , Universidad de Sonora , Hermosillo , México
| | - Jose A Sarabia-Sainz
- a Departamento de Investigación en Física , Universidad de Sonora , Hermosillo , México
| | | | | |
Collapse
|
4
|
Soloviev AI, Kizub IV. Mechanisms of vascular dysfunction evoked by ionizing radiation and possible targets for its pharmacological correction. Biochem Pharmacol 2018; 159:121-139. [PMID: 30508525 DOI: 10.1016/j.bcp.2018.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
Ionizing radiation (IR) leads to a variety of the cardiovascular diseases, including the arterial hypertension. A number of studies have demonstrated that blood vessels represent important target for IR, and the endothelium is one of the most vulnerable components of the vascular wall. IR causes an inhibition of nitric oxide (NO)-mediated endothelium-dependent vasodilatation and generation of reactive oxygen (ROS) and nitrogen (RNS) species trigger this process. Inhibition of NO-mediated vasodilatation could be due to endothelial NO synthase (eNOS) down-regulation, inactivation of endothelium-derived NO, and abnormalities in diffusion of NO from the endothelial cells (ECs) leading to a decrease in NO bioavailability. Beside this, IR suppresses endothelial large conductance Ca2+-activated K+ channels (BKCa) activity, which control NO synthesis. IR also leads to inhibition of the BKCa current in vascular smooth muscle cells (SMCs) which is mediated by protein kinase C (PKC). On the other hand, IR-evoked enhanced vascular contractility may result from PKC-mediated increase in SMCs myofilament Ca2+ sensitivity. Also, IR evokes vascular wall inflammation and atherosclerosis development. Vascular function damaged by IR can be effectively restored by quercetin-filled phosphatidylcholine liposomes and mesenchymal stem cells injection. Using RNA-interference technique targeted to different PKC isoforms can also be a perspective approach for pharmacological treatment of IR-induced vascular dysfunction.
Collapse
Affiliation(s)
- Anatoly I Soloviev
- Department of Pharmacology of Cellular Signaling Systems and Experimental Therapy, Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, 14 Eugene Pottier Street, Kiev 03068, Ukraine
| | - Igor V Kizub
- Department of Pharmacology, New York Medical College, 15 Dana Road, Valhalla 10595, NY, United States.
| |
Collapse
|
5
|
S N SG, Raviraj R, Nagarajan D, Zhao W. Radiation-induced lung injury: impact on macrophage dysregulation and lipid alteration - a review. Immunopharmacol Immunotoxicol 2018; 41:370-379. [PMID: 30442050 DOI: 10.1080/08923973.2018.1533025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lung cancer continues to be the leading cause of cancer deaths and more than one million lung cancer patients will die every year worldwide. Radiotherapy (RT) plays an important role in lung cancer treatment, but the side effects of RT are pneumonitis and pulmonary fibrosis. RT-induced lung injury causes damage to alveolar-epithelial cells and vascular endothelial cells. Macrophages play an important role in the development of pulmonary fibrosis despite its role in immune response. These injury activated macrophages develop into classically activated M1 macrophage or alternative activated M2 macrophage. It secretes cytokines, interleukins, interferons, and nitric oxide. Several pro-inflammatory lipids and pro-apoptotic proteins cause lipotoxicity such as LDL, FC, DAG, and FFA. The overall findings in this review conclude the importance of macrophages in inducing toxic/inflammatory effects during RT of lung cancer, which is clinically vital to treat the radiation-induced fibrosis.
Collapse
Affiliation(s)
- Sunil Gowda S N
- a Radiation Biology Laboratory, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur , India
| | - Raghavi Raviraj
- a Radiation Biology Laboratory, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur , India
| | - Devipriya Nagarajan
- a Radiation Biology Laboratory, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur , India
| | - Weiling Zhao
- b School of Biomedical Informatics , The University of Texas Health Sciences Center , Houston , TX , USA
| |
Collapse
|
6
|
Giannopoulos S, Texakalidis P, Jonnalagadda AK, Karasavvidis T, Giannopoulos S, Kokkinidis DG. Revascularization of radiation-induced carotid artery stenosis with carotid endarterectomy vs. carotid artery stenting: A systematic review and meta-analysis. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2018; 19:638-644. [DOI: 10.1016/j.carrev.2018.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 01/21/2023]
|
7
|
Kloosterman A, Dillen TV, Bijwaard H, Heeneman S, Hoving S, Stewart FA, Dekkers F. How radiation influences atherosclerotic plaque development: a biophysical approach in ApoE⁻/⁻ mice. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:423-431. [PMID: 28866809 PMCID: PMC5655690 DOI: 10.1007/s00411-017-0709-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Atherosclerosis is the development of lipid-laden plaques in arteries and is nowadays considered as an inflammatory disease. It has been shown that high doses of ionizing radiation, as used in radiotherapy, can increase the risk of development or progression of atherosclerosis. To elucidate the effects of radiation on atherosclerosis, we propose a mathematical model to describe radiation-promoted plaque development. This model distinguishes itself from other models by combining plaque initiation and plaque growth, and by incorporating information from biological experiments. It is based on two consecutive processes: a probabilistic dose-dependent plaque initiation process, followed by deterministic plaque growth. As a proof of principle, experimental plaque size data from carotid arteries from irradiated ApoE[Formula: see text] mice was used to illustrate how this model can provide insight into the underlying biological processes. This analysis supports the promoting role for radiation in plaque initiation, but the model can easily be extended to include dose-related effects on plaque growth if available experimental data would point in that direction. Moreover, the model could assist in designing future biological experiments on this research topic. Additional biological data such as plaque size data from chronically-irradiated mice or experimental data sets with a larger variety in biological parameters can help to further unravel the influence of radiation on plaque development. To the authors' knowledge, this is the first biophysical model that combines probabilistic and mechanistic modeling which uses experimental data to investigate the influence of radiation on plaque development.
Collapse
Affiliation(s)
- Astrid Kloosterman
- Centre for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Teun van Dillen
- Centre for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Harmen Bijwaard
- Centre for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Medical Technology Research Group, Inholland University of Applied Sciences, Haarlem, The Netherlands
| | - Sylvia Heeneman
- Experimental Vascular Pathology group, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Saske Hoving
- Division of Biological Stress Response (H3), Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Fiona A Stewart
- Division of Biological Stress Response (H3), Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Fieke Dekkers
- Centre for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
8
|
Wu Q, Allouch A, Martins I, Modjtahedi N, Deutsch E, Perfettini JL. Macrophage biology plays a central role during ionizing radiation-elicited tumor response. Biomed J 2017; 40:200-211. [PMID: 28918908 PMCID: PMC6136289 DOI: 10.1016/j.bj.2017.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/01/2017] [Accepted: 06/11/2017] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is one of the major therapeutic modalities for most solid tumors. The anti-tumor effect of radiation therapy consists of the direct tumor cell killing, as well as the modulation of tumor microenvironment and the activation of immune response against tumors. Radiation therapy has been shown to promote immunogenic cells death, activate dendritic cells and enhance tumor antigen presentation and anti-tumor T cell activation. Radiation therapy also programs innate immune cells such as macrophages that leads to either radiosensitization or radioresistance, according to different tumors and different radiation regimen studied. The mechanisms underlying radiation-induced macrophage activation remain largely elusive. Various molecular players such as NF-κB, MAPKs, p53, reactive oxygen species, inflammasomes have been involved in these processes. The skewing to a pro-inflammatory phenotype thus results in the activation of anti-tumor immune response and enhanced radiotherapy effect. Therefore, a comprehensive understanding of the mechanism of radiation-induced macrophage activation and its role in tumor response to radiation therapy is crucial for the development of new therapeutic strategies to enhance radiation therapy efficacy.
Collapse
Affiliation(s)
- Qiuji Wu
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France; Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Hubei, China
| | - Awatef Allouch
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Isabelle Martins
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Nazanine Modjtahedi
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Eric Deutsch
- Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Jean-Luc Perfettini
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France.
| |
Collapse
|
9
|
Soltani B, Bodaghabadi N, Ghaemi N, Sadeghizadeh M. Radiation-induced surge of macrophage foam cell formation, oxidative damage, and cytokine release is attenuated by a nanoformulation of curcumin. Int J Radiat Biol 2016; 93:303-314. [DOI: 10.1080/09553002.2016.1242817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Behrooz Soltani
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Narges Bodaghabadi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasser Ghaemi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Ravin RA, Gottlieb A, Pasternac K, Cayne N, Schneider D, Krishnan P, Marin M, Faries PL. Carotid artery stenting may be performed safely in patients with radiation therapy-associated carotid stenosis without increased restenosis or target lesion revascularization. J Vasc Surg 2015; 62:624-30. [PMID: 26304480 DOI: 10.1016/j.jvs.2015.04.390] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/13/2015] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Neck radiation therapy (XRT) can induce carotid artery stenosis and may increase the technical difficulty of endarterectomy. It is considered a relative indication for carotid angioplasty and carotid artery stenting (CAS). This study sought to evaluate differences in CAS embolic potential and restenosis performed on XRT and non-XRT patients. METHODS At three institutions, 366 CAS procedures were performed on 321 patients (XRT, n = 43; non-XRT, n = 323). Mean follow-up was 410 days (median, 282 days; range, 7-1920 days). Patients were observed with duplex ultrasound to assess for restenosis. Additional end points included target lesion revascularization (TLR), myocardial and cerebrovascular events, and perioperative complications. Captured particulate from embolic protection filters was analyzed with photomicroscopy and image analysis software for 27 XRT and 214 non-XRT filters. RESULTS XRT patients were more likely to be male and had lower rates of hypertension, coronary artery disease, and diabetes mellitus, although the mean age at procedure did not differ. There was no increase in severe internal carotid tortuosity among XRT patients (XRT: 50% vs non-XRT: 34.7%; P = .06). Indication for CAS did not differ between the two groups, including the number of CAS procedures performed for symptomatic carotid stenosis (XRT: 39.7% vs non-XRT: 39.0%; P = NS). Perioperative outcomes, including the composite 30-day stroke, myocardial infarction, and mortality, were not significantly different (XRT: 2.6% vs non-XRT: 3.9%; P = NS.) There were no significant differences in restenosis rate at the 50% (XRT: 9.4% vs non-XRT: 8.6%; P = NS) or 70% (XRT: 3.5% vs non-XRT: 8.6%; P = NS) threshold. Filter particle analysis revealed that filters from XRT patients had more numerous large particles per filter (1.4 vs 0.7; P < .05) and larger mean particle size (464.1 μm vs 320.0 μm; P < .05). TLR did not differ significantly between the groups. CONCLUSIONS In contrast to earlier studies, this analysis reveals that there are significant differences in XRT and non-XRT patients undergoing CAS in terms of medical comorbidities and embolic material captured in embolic protection filters. The decreased incidence of atherosclerotic risk factors was observed in XRT patients probably because XRT was the primary factor responsible for carotid stenosis. Despite increased embolic particle size, CAS can be performed safely with no increased morbidity, TLR, or restenosis in XRT patients.
Collapse
Affiliation(s)
- Reid A Ravin
- Division of Vascular Surgery, Mount Sinai Hospital, New York, NY.
| | - Armand Gottlieb
- Division of Vascular Surgery, Mount Sinai Hospital, New York, NY
| | - Kyle Pasternac
- Division of Vascular Surgery, Mount Sinai Hospital, New York, NY
| | - Neal Cayne
- NYU Langone Medical Center, New York, NY
| | | | - Prakash Krishnan
- Division of Vascular Surgery, Mount Sinai Hospital, New York, NY
| | - Michael Marin
- Division of Vascular Surgery, Mount Sinai Hospital, New York, NY
| | - Peter L Faries
- Division of Vascular Surgery, Mount Sinai Hospital, New York, NY
| |
Collapse
|
11
|
Li XY, Wang C, Xiang XR, Chen FC, Yang CM, Wu J. Porphyromonas gingivalis lipopolysaccharide increases lipid accumulation by affecting CD36 and ATP-binding cassette transporter A1 in macrophages. Oncol Rep 2013; 30:1329-36. [PMID: 23835648 DOI: 10.3892/or.2013.2600] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/19/2013] [Indexed: 11/06/2022] Open
Abstract
Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) promotes macrophage-derived foam cell formation, however, the mechanisms are not well established. In macrophages, lipid uptake is mediated by scavenger receptors including SR-A and CD36, while the cholesterol efflux is mediated by ATP-binding cassette transporter G1 (ABCG1), ABCA1 and SR-BI. We further investigated the mechanisms underlying the dysregulation by P. gingivalis LPS of these regulators resulting in the promotion of lipid accumulation in THP-1-derived macrophages. Our results showed that P. gingivalis LPS exacerbated lipid accumulation in oxidized low-density lipoprotein (oxLDL)-treated macrophages. However, cholesterol efflux was inhibited by P. gingivalis LPS in THP-1-derived macrophages. In oxLDL-untreated macrophages, P. gingivalis LPS treatment caused an increase in CD36 mRNA and protein levels, and a decrease in ABCA1 mRNA and protein levels, while having no effect on SR-A, SR-BI or ABCG1 expression. Upregulation of CD36 by P. gingivalis LPS resulted from activation of c-Jun/AP-1, and this was confirmed by the inhibition of increased CD36 expression after AP-1 inhibition using SP600125. However, the decreased protein stability of ABCA1 by P. gingivalis LPS was a result of increased calpain activity. Moreover, small hairpin RNA (shRNA) targeting heme oxygenase-1 (HO-1) augmented the P. gingivalis LPS-induced atherogenic effects on the expression of c-Jun/AP-1, CD36, ABCA1 and calpain activity. Accordingly, P. gingivalis LPS-regulated promotion of lipid accumulation in foam cells was also exacerbated by HO-1 shRNA. These results indicate that P. gingivalis LPS confers a exacerbation effect on the formation of foam cells by a novel HO-1-dependent mediation of cholesterol efflux and lipid accumulation in macrophages.
Collapse
Affiliation(s)
- Xiu-Ying Li
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | | | | | | | | | | |
Collapse
|
12
|
Li XY, Kong LX, Li J, He HX, Zhou YD. Kaempferol suppresses lipid accumulation in macrophages through the downregulation of cluster of differentiation 36 and the upregulation of scavenger receptor class B type I and ATP-binding cassette transporters A1 and G1. Int J Mol Med 2012; 31:331-8. [PMID: 23232972 DOI: 10.3892/ijmm.2012.1204] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 10/22/2012] [Indexed: 12/17/2022] Open
Abstract
The accumulation of foam cells in atherosclerotic lesions is a hallmark of early-stage atherosclerosis. Kaempferol has been shown to inhibit oxidized low-density lipoprotein (oxLDL) uptake by macrophages; however, the underlying molecular mechanisms are not yet fully investigated. In this study, we shown that treatment with kaempferol markedly suppresses oxLDL-induced macrophage foam cell formation, which occurs due to a decrease in lipid accumulation and an increase in cholesterol efflux from THP-1-derived macrophages. Additionally, the kaempferol treatment of macrophages led to the downregulation of cluster of differentiation 36 (CD36) protein levels, the upregulation of ATP-binding cassette (ABC) transporter A1 (ABCA1), scavenger receptor class B type I (SR-BI) and ABCG1 protein levels, while no effects on scavenger receptor A (SR-A) expression were observed. Kaempferol had similar effects on the mRNA and protein expression of ABCA1, SR-BI, SR-A, CD36 and ABCG1. The reduced CD36 expression following kaempferol treatment involved the inhibition of c-Jun-activator protein-1 (AP-1) nuclear translocation. The inhibition of AP-1 using the inhibitor, SP600125, confirmed this involvement, as the AP-1 inhibition significantly augmented the kaempferol-induced reduction in CD36 expression. Accordingly, the kaempferol-mediated suppression of lipid accumulation in macrophages was also augmented by SP600125. The increased expression of ABCA1, SR-BI and ABCG1 following kaempferol treatment was accompanied by the enhanced protein expression of heme oxygenase-1 (HO-1). This increase was reversed following the knockdown of the HO-1 gene using small hairpin RNA (shRNA). Moreover, the kaempferol-mediated attenuation of lipid accumulation and the promotion of cholesterol efflux was also inhibited by HO-1 shRNA. In conclusion, the c-Jun-AP‑1-dependent downregulation of CD36 and the HO-1-dependent upregulation of ABCG1, SR-BI and ABCA1 may mediate the beneficial effects of kaempferol on foam cell formation.
Collapse
Affiliation(s)
- Xiu-Ying Li
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | | | | | | | | |
Collapse
|
13
|
Chu EM, Tai DC, Beer JL, Hill JS. Macrophage heterogeneity and cholesterol homeostasis: classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:378-86. [PMID: 23142249 DOI: 10.1016/j.bbalip.2012.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 11/15/2022]
Abstract
Macrophages are centrally involved during atherosclerosis development and are the predominant cell type that accumulates cholesterol in the plaque. Macrophages however, are heterogeneous in nature reflecting a variety of microenvironments and different phenotypes may be more prone to contribute towards atherosclerosis progression. Using primary human monocyte-derived macrophages, we sought to evaluate one aspect of atherogenic potential of different macrophage phenotypes by determining their propensity to associate with and accumulate oxidized low density lipoprotein (oxLDL). Classically-activated macrophages treated simultaneously with interferon γ (IFNγ) and tumor necrosis factor α (TNFα) associated with less oxLDL and accumulated less cholesterol compared to untreated controls. The combined treatment of IFNγ and TNFα reduced the mRNA expression of CD36 and the expression of both cell surface CD36 and macrophage scavenger receptor 1 (MSR1) protein. Under oxLDL loaded conditions, IFNγ and TNFα did not reduce macrophage protein expression of the transcription factor peroxisome proliferator-actived receptor γ (PPARγ) which is known to positively regulate CD36 expression. However, macrophages treated with IFNγ attenuated the ability of the PPARγ-specific agonist rosiglitazone from upregulating cell surface CD36 protein expression. Our results demonstrate that the observed reduction of cholesterol accumulation in macrophages treated with IFNγ and TNFα following oxLDL treatment was due at least in part to reduced cell surface CD36 and MSR1 protein expression.
Collapse
Affiliation(s)
- Eugene M Chu
- UBC James Hogg Research Centre, Heart and Lung Institute, St. Paul's Hospital, Vancouver, BC, Canada V6Z 1Y6.
| | | | | | | |
Collapse
|
14
|
Kasivisvanathan V, Thapar A, Davies KJ, Dharmarajah B, Shalhoub J, Davies AH. Periprocedural outcomes after surgical revascularization and stenting for postradiotherapy carotid stenosis. J Vasc Surg 2012; 56:1143-52.e2. [PMID: 22819749 DOI: 10.1016/j.jvs.2012.04.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/08/2012] [Accepted: 04/09/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Treatment of head and neck malignancy commonly involves radiotherapy, which is associated with the development of carotid artery stenosis. There is little evidence to guide clinicians on how to intervene in significant postradiotherapy carotid stenosis. This systematic review collated data pertaining to perioperative outcomes of carotid artery surgery and carotid stenting in postradiotherapy carotid stenosis to aid the clinical decision-making process. METHODS A systematic review of the literature, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2009 guidelines, was performed. We screened 575 articles related to carotid artery surgery or stenting in postradiotherapy carotid stenosis, from which 21 studies were included for quantitative analysis. The primary outcome was stroke or death ≤ 30 days of the procedure. Secondary outcomes included cranial nerve injury, restenosis, stroke, and death at >30 days. RESULTS Nine publications recorded 211 surgical procedures in 179 patients. In symptomatic patients, the 30-day mortality rate was 2.6% and the stroke or death rate was 2.7%. In asymptomatic patients, the 30-day mortality rate was 0% and the stroke or death rate was 1.1%. Permanent cranial nerve palsy was experienced by 0.6% of patients. Twelve publications recorded 510 carotid artery stenting procedures in 482 patients. In symptomatic patients, the 30-day mortality rate was 5.1%, and the stroke or death rate was 5.1%. In asymptomatic patients, the 30-day mortality rate was 1.4%, and the stroke or death rate was 2.1%. There was no statistically significant difference in 30-day stroke or death rate between surgical revascularization and carotid artery stenting in all (odds ratio [OR], 0.54; 95% confidence interval [CI] 0.17-1.70; P = .43), symptomatic (OR, 0.52; 95% CI, 0.14-1.98; P = .38), or asymptomatic patients (OR, 0.55; 95% CI, 0.06-5.42; P = .99). CONCLUSIONS The published outcomes from high-volume centers demonstrate that surgical revascularization and stenting are both technically feasible in postradiotherapy carotid stenosis and have similar safety profiles to nonirradiated necks. Radiation should therefore not be considered a contraindication to surgical intervention.
Collapse
Affiliation(s)
- Veeru Kasivisvanathan
- Academic Section of Vascular Surgery, Imperial College London, Charing Cross Hospital, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
15
|
Chaachouay H, Ohneseit P, Toulany M, Kehlbach R, Multhoff G, Rodemann HP. Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother Oncol 2011; 99:287-92. [PMID: 21722986 DOI: 10.1016/j.radonc.2011.06.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND PURPOSE Autophagy signaling is a novel important target to improve anticancer therapy. To study the role of autophagy on resistance of tumor cells to ionizing radiation (IR), breast cancer cell lines differing in their intrinsic radiosensitivity were used. MATERIALS AND METHODS Breast cancer cell lines MDA-MB-231 and HBL-100 were examined with respect to clonogenic cell survival and induction of autophagy after radiation exposure and pharmacological interference of the autophagic process. As marker for autophagy the appearance of LC3-I and LC3-II proteins was analyzed by SDS-PAGE and Western blotting. Formation of autophagic vacuoles was monitored by immunofluorescence staining of LC3. RESULTS LC3-I and LC3-II formation differs markedly in radioresistant MDA-MB-231 versus radiosensitive HBL-100 cells. Western blot analyses of LC3-II/LC3-I ratio indicated marked induction of autophagy by IR in radioresistant MDA-MB-231 cells, but not in radiosensitive HBL-100 cells. Indirect immunofluorescence analysis of LC3-II positive vacuoles confirmed this differential effect. Pre-treatment with 3-methyladenine (3-MA) antagonized IR-induced autophagy. Likewise, pretreatment of radioresistant MDA-231 cells with autophagy inhibitors 3-MA or chloroquine (CQ) significantly reduced clonogenic survival of irradiated cells. CONCLUSION Our data clearly indicate that radioresistant breast tumor cells show a strong post-irradiation induction of autophagy, which thus serves as a protective and pro-survival mechanism in radioresistance.
Collapse
Affiliation(s)
- Hassan Chaachouay
- Division of Radiobiology and Molecular Environmental Research, University of Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Takabe W, Li R, Ai L, Yu F, Berliner JA, Hsiai TK. Oxidized low-density lipoprotein-activated c-Jun NH2-terminal kinase regulates manganese superoxide dismutase ubiquitination: implication for mitochondrial redox status and apoptosis. Arterioscler Thromb Vasc Biol 2010; 30:436-41. [PMID: 20139358 DOI: 10.1161/atvbaha.109.202135] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Oxidized low-density lipoprotein (oxLDL) modulates intracellular redox status and induces apoptosis in endothelial cells. However, the signal pathways and molecular mechanism remain unknown. In this study, we investigated the role of manganese superoxide dismutase (Mn-SOD) on oxLDL-induced apoptosis via c-Jun NH2-terminal kinase (JNK)-mediated ubiquitin/proteasome pathway. METHODS AND RESULTS OxLDL induced JNK phosphorylation that peaked at 30 minutes in human aortic endothelial cells. Fluorescence-activated cell sorting analysis revealed that oxLDL increased mitochondrial superoxide production by 1.88+/-0.19-fold and mitochondrial membrane potential by 18%. JNK small interference RNA (siJNK) reduced oxLDL-induced mitochondrial superoxide production by 88.4% and mitochondrial membrane potential by 61.7%. OxLDL did not affect Mn-SOD mRNA expression, but it significantly reduced Mn-SOD protein level, which was restored by siJNK. Immunoprecipitation by ubiquitin antibody revealed that oxLDL increased ubiquitination of Mn-SOD, which was inhibited by siJNK. OxLDL-induced caspase-3 activities were also attenuated by siJNK but were enhanced by Mn-SOD small interfering RNA. Furthermore, overexpression of Mn-SOD abrogated oxLDL-induced caspase-3 activities. CONCLUSIONS OxLDL-induced JNK activation regulates mitochondrial redox status and Mn-SOD protein degradation via JNK-dependent ubiquitination, leading to endothelial cell apoptosis.
Collapse
Affiliation(s)
- Wakako Takabe
- Department of Biomedical Engineering and Division of Cardiovascular Medicine, School of Medicine and School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
17
|
Sadek M, Cayne NS, Shin HJ, Turnbull IC, Marin ML, Faries PL. Safety and efficacy of carotid angioplasty and stenting for radiation-associated carotid artery stenosis. J Vasc Surg 2009; 50:1308-13. [PMID: 19703754 DOI: 10.1016/j.jvs.2009.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/02/2009] [Accepted: 07/02/2009] [Indexed: 11/19/2022]
Affiliation(s)
- Mikel Sadek
- New York University Medical Center, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
18
|
Mosig S, Rennert K, Büttner P, Krause S, Lütjohann D, Soufi M, Heller R, Funke H. Monocytes of patients with familial hypercholesterolemia show alterations in cholesterol metabolism. BMC Med Genomics 2008; 1:60. [PMID: 19040724 PMCID: PMC2633353 DOI: 10.1186/1755-8794-1-60] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 11/28/2008] [Indexed: 11/12/2022] Open
Abstract
Background Elevated plasma cholesterol promotes the formation of atherosclerotic lesions in which monocyte-derived lipid-laden macrophages are frequently found. To analyze, if circulating monocytes already show increased lipid content and differences in lipoprotein metabolism, we compared monocytes from patients with Familial Hypercholesterolemia (FH) with those from healthy individuals. Methods Cholesterol and oxidized cholesterol metabolite serum levels of FH and of healthy, gender/age matched control subjects were measured by combined gas chromatography – mass spectroscopy. Monocytes from patients with FH and from healthy subjects were isolated by antibody-assisted density centrifugation. Gene expression profiles of isolated monocytes were measured using Affymetrix HG-U 133 Plus 2.0 microarrays. We compared monocyte gene expression profiles from FH patients with healthy controls using a Welch T-test with correction for multiple testing (p < 0.05; Benjamini Hochberg correction, False Discovery Rate = 0.05). The differential expression of FH associated genes was validated at the mRNA level by qRT-PCR and/or at the protein level by Western Blot or flow cytometry. Functional validation of monocyte scavenger receptor activities were done by binding assays and dose/time dependent uptake analysis using native and oxidized LDL. Results Using microarray analysis we found in FH patients a significant up-regulation of 1,617 genes and a down-regulation of 701 genes compared to monocytes from healthy individuals. These include genes of proteins that are involved in the uptake, biosynthesis, disposition, and cellular efflux of cholesterol. In addition, plasma from FH patients contains elevated amounts of sterols and oxysterols. An increased uptake of oxidized as well as of native LDL by FH monocytes combined with a down-regulation of NPC1 and ABCA1 explains the lipid accumulation observed in these cells. Conclusion Our data demonstrate that circulating FH monocytes show differences in cell physiology that may contribute to the early onset of atherosclerosis in this disease.
Collapse
Affiliation(s)
- Sandy Mosig
- Molecular Hemostaseology, Friedrich-Schiller-University of Jena, Bachstrasse 18, 07743 Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|