1
|
Bai H, Wang XF, Xu YH, Zaorsky NG, Wang HH, Niu GM, Li JC, Dong Y, Li JY, Yu L, Chen MF, Lu XT, Yuan ZY, Yang JL, Meng MB. Brachial plexopathy following stereotactic body radiation therapy in apical lung malignancies: A dosimetric pooled analysis of individual patient data. Radiother Oncol 2024; 200:110529. [PMID: 39255923 DOI: 10.1016/j.radonc.2024.110529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study is to establish dosimetric constraints for the brachial plexus at risk of developing grade ≥ 2 brachial plexopathy in the context of stereotactic body radiation therapy (SBRT). PATIENTS AND METHODS Individual patient data from 349 patients with 356 apical lung malignancies who underwent SBRT were extracted from 5 articles. The anatomical brachial plexus was delineated following the guidelines provided in the atlases developed by Hall, et al. and Kong, et al.. Patient characteristics, pertinent SBRT dosimetric parameters, and brachial plexopathy grades (according to CTCAE 4.0 or 5.0) were obtained. Normal tissue complication probability (NTCP) models were used to estimate the risk of developing grade ≥ 2 brachial plexopathy through maximum likelihood parameter fitting. RESULTS The prescription dose/fractionation schedules for SBRT ranged from 27 to 60 Gy in 1 to 8 fractions. During a follow-up period spanning from 6 to 113 months, 22 patients (6.3 %) developed grade ≥2 brachial plexopathy (4.3 % grade 2, 2.0 % grade 3); the median time to symptoms onset after SBRT was 8 months (ranged, 3-54 months). NTCP models estimated a 10 % risk of grade ≥2 brachial plexopathy with an anatomic brachial plexus maximum dose (Dmax) of 20.7 Gy, 34.2 Gy, and 42.7 Gy in one, three, and five fractions, respectively. Similarly, the NTCP model estimates the risks of grade ≥2 brachial plexopathy as 10 % for BED Dmax at 192.3 Gy and EQD2 Dmax at 115.4 Gy with an α/β ratio of 3, respectively. Symptom persisted after treatment in nearly half of patients diagnosed with grade ≥2 brachial plexopathy (11/22, 50 %). CONCLUSIONS This study establishes dosimetric constraints ranging from 20.7 to 42.7 Gy across 1-5 fractions, aimed at mitigating the risk of developing grade ≥2 brachial plexopathy following SBRT. These findings provide valuable guidance for future ablative SBRT in apical lung malignancies.
Collapse
Affiliation(s)
- Hui Bai
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xiao-Feng Wang
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yi-Han Xu
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Huan-Huan Wang
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Geng-Min Niu
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Jia-Cheng Li
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yang Dong
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Jun-Yi Li
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Lu Yu
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Mei-Feng Chen
- Department of Respiratory and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, PR China
| | - Xiao-Tong Lu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, PR China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Ji-Long Yang
- Department of Bone and Soft Tissue Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Mao-Bin Meng
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China.
| |
Collapse
|
2
|
De Rose F, Carmen De Santis M, Lucidi S, Ray Colciago R, Marino L, Cucciarelli F, La Rocca E, Di Pressa F, Lohr F, Vanoni V, Meduri B. Dose constraints in breast cancer radiotherapy. A critical review. Radiother Oncol 2024; 202:110591. [PMID: 39427931 DOI: 10.1016/j.radonc.2024.110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/13/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Radiotherapy plays an essential role in the treatment of breast cancer (BC). Recent advances in treatment technology and radiobiological knowledge have a major impact in BC patients with locoregional disease as the majority are now long-term survivors. Over the last three decades, intensity-modulated radiotherapy (IMRT), volumetric-modulated arc therapy (VMAT) and deep inspiration breath-hold (DIBH) techniques, together with the increasing adoption of moderately hypofractionated and ultra-hypofractionated treatment schedules as well as the possibility to offer partial breast radiotherapy to a well-defined patient subset have significantly changed radiotherapy for BC patients. As dose-volume constraints (DVCs) have to be adapted to these new treatment paradigms we have reviewed available evidence-based data concerning dose-constraints for the main organs at risk (OARs) that apply to the treatment of whole breast/chest wall radiotherapy, whole breast/chest wall radiotherapy including regional nodal irradiation (RNI) and partial breast irradiation (PBI), for the most relevant fractionation schedules that have been introduced recently. This narrative review provides a comprehensive summary that may help to harmonize treatment planning strategies.
Collapse
Affiliation(s)
| | - Maria Carmen De Santis
- Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | | | - Lorenza Marino
- Servizio di Radioterapia, Humanitas Istituto Clinico Catanese, Misterbianco, CT, Italy
| | - Francesca Cucciarelli
- Radiotherapy Department, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Eliana La Rocca
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Francesca Di Pressa
- Department of Radiation Oncology, University Hospital of Modena, Modena, Italy
| | - Frank Lohr
- Proton Therapy Unit, APSS, Trento, Italy; CISMED - Centro Interdipartimentale di Scienze Mediche, University of Trento, Trento, Italy
| | | | - Bruno Meduri
- Department of Radiation Oncology, University Hospital of Modena, Modena, Italy
| |
Collapse
|
3
|
Noel Alexander FH, Srikantia N, Muzumder S, Udayashankara AH, Sebastian MJ, Tom DC, Kathiressan RP, Raj JM. Radiation induced brachial plexopathy in head and neck cancer patients treated with definitive radiotherapy and correlation with disease characteristics and dosimetric parameters. Rep Pract Oncol Radiother 2024; 29:348-356. [PMID: 39144264 PMCID: PMC11321783 DOI: 10.5603/rpor.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/31/2024] [Indexed: 08/16/2024] Open
Abstract
Background Definitive concurrent chemoradiotherapy (CRT) is the standard of care in advanced stages of head and neck cancer (HNC). With evident increase in survival rate there is also simultaneous increase in toxicity affecting the quality of life. One of the less researched late toxicity is radiation induced brachial plexopathy (RIBP). In this dosimetric study we intent to contour the brachial plexus (BP) as an organ at risk (OAR) and determine the factors that contribute to dose variations to BP, and clinically evaluate the patients for RIBP during follow-up using a questionnaire. Materials and methods 30 patients with HNC planned for CRT from September 2020 to June 2022 were accrued. Patients were treated to a dose of 6600 cGy with intensity modulated radiotherapy using the simultaneous integrated boost technique. From the dose-volume histogram (DVH) statistics the BP volume, Dmax and other parameters like V66, V60 were assessed and was correlated with respect to primary tumour and nodal stage. Results On corelation, more than the T stage, the N stage and the primary location had a significant impact on the Dmax. With a median follow-up of 17.9 months, the incidence of RIBP was 6.67%. The 2-year disease free survival and the 2-year overall survival were 53.7% and 59.4%, respectively. Conclusions In oropharyngeal/hypopharyngeal primaries and in advanced nodal disease, BP receives higher doses contributing to RIBP. Primary tumor and nodal stage also impacted V60 and V66 of BP. Hence, contouring of BP as an OAR becomes imperative, and respecting the DVH parameters is essential.
Collapse
Affiliation(s)
| | - Nirmala Srikantia
- Radiation Oncology, St John's Medical College Hospital, Bangalore, India
| | - Sandeep Muzumder
- Radiation Oncology, St John's Medical College Hospital, Bangalore, India
| | | | - Mg John Sebastian
- Radiation Oncology, St John's Medical College Hospital, Bangalore, India
| | - Deepu C Tom
- Radiation Oncology, St John's Medical College Hospital, Bangalore, India
| | - R P Kathiressan
- Radiation Oncology, St John's Medical College Hospital, Bangalore, India
| | - John Michael Raj
- Biostatistics, St John's Medical College Hospital, Bangalore, India
| |
Collapse
|
4
|
Milano MT, Doucette C, Mavroidis P, Yorke E, Ryckman J, Mahadevan A, Kapitanova I, Kong FMS, Grimm J, Marks LB. Hypofractionated Stereotactic Radiation Therapy Dosimetric Tolerances for the Inferior Aspect of the Brachial Plexus: A Systematic Review. Int J Radiat Oncol Biol Phys 2024; 118:931-943. [PMID: 36682981 PMCID: PMC11325459 DOI: 10.1016/j.ijrobp.2022.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 01/22/2023]
Abstract
We sought to systematically review and summarize dosimetric factors associated with radiation-induced brachial plexopathy (RIBP) after stereotactic body radiation therapy (SBRT) or hypofractionated image guided radiation therapy (HIGRT). From published studies identified from searches of PubMed and Embase databases, data quantifying risks of RIBP after 1- to 10-fraction SBRT/HIGRT were extracted and summarized. Published studies have reported <10% risks of RIBP with maximum doses (Dmax) to the inferior aspect of the brachial plexus of 32 Gy in 5 fractions and 25 Gy in 3 fractions. For 10-fraction HIGRT, risks of RIBP appear to be low with Dmax < 40 to 50 Gy. For a given dose value, greater risks are anticipated with point volume-based metrics (ie, D0.03-0.035cc: minimum dose to hottest 0.03-0.035 cc) versus Dmax. With SBRT/HIGRT, there were insufficient published data to predict risks of RIBP relative to brachial plexus dose-volume exposure. Minimizing maximum doses and possibly volume exposure of the brachial plexus can reduce risks of RIBP after SBRT/HIGRT. Further study is needed to better understand the effect of volume exposure on the brachial plexus and whether there are location-specific susceptibilities along or within the brachial plexus structure.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York.
| | | | - Panayiotis Mavroidis
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jeff Ryckman
- Department of Radiation Oncology, West Virginia University, Parkersburg, West Virginia
| | - Anand Mahadevan
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | - Irina Kapitanova
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | - Feng-Ming Spring Kong
- Department of Clinical Oncology, University of Hong Kong-Shenzhen Hospital/Li Ka Shing School of Medicine, Shenzhen/Hong Kong, China
| | - Jimm Grimm
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Burgess L, Nguyen E, Tseng CL, Guckenberger M, Lo SS, Zhang B, Nielsen M, Maralani P, Nguyen QN, Sahgal A. Practice and principles of stereotactic body radiation therapy for spine and non-spine bone metastases. Clin Transl Radiat Oncol 2024; 45:100716. [PMID: 38226025 PMCID: PMC10788412 DOI: 10.1016/j.ctro.2023.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/23/2023] [Accepted: 12/16/2023] [Indexed: 01/17/2024] Open
Abstract
Radiotherapy is the dominant treatment modality for painful spine and non-spine bone metastases (NSBM). Historically, this was achieved with conventional low dose external beam radiotherapy, however, stereotactic body radiotherapy (SBRT) is increasingly applied for these indications. Meta-analyses and randomized clinical trials have demonstrated improved pain response and more durable tumor control with SBRT for spine metastases. However, in the setting of NSBM, there is limited evidence supporting global adoption and large scale randomized clinical trials are in need. SBRT is technically demanding requiring careful consideration of organ at risk tolerance, and strict adherence to technical requirements including immobilization, simulation, contouring and image-guidance procedures. Additional considerations include follow up practices after SBRT, with appropriate imaging playing a critical role in response assessment. Finally, there is renewed research into promising new technologies that may further refine the use of SBRT in both spinal and NSBM in the years to come.
Collapse
Affiliation(s)
- Laura Burgess
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eric Nguyen
- Department of Radiation Oncology, Walker Family Cancer Centre, St. Catharines, Ontario, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simon S. Lo
- Department of Radiation Oncology, University of Washington, Seattle, WA, United States
| | - Beibei Zhang
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Michelle Nielsen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Pejman Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, MD Anderson Cancer Centre, University of Texas, Houston, TX, United States
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Choi JI, McCormick B, Park P, Millar M, Walker K, Tung CC, Huang S, Florio P, Chen CC, Lozano A, Hanlon AL, Fox J, Xu AJ, Zinovoy M, Mueller B, Bakst R, LaPlant Q, Braunstein LZ, Khan AJ, Powell SN, Cahlon O. Comparative Evaluation of Proton Therapy and Volumetric Modulated Arc Therapy for Brachial Plexus Sparing in the Comprehensive Reirradiation of High-Risk Recurrent Breast Cancer. Adv Radiat Oncol 2024; 9:101355. [PMID: 38405315 PMCID: PMC10885571 DOI: 10.1016/j.adro.2023.101355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/07/2023] [Indexed: 02/27/2024] Open
Abstract
Purpose Recurrent or new primary breast cancer requiring comprehensive regional nodal irradiation after prior radiation therapy (RT) to the supraclavicular area and upper axilla is challenging due to cumulative brachial plexus (BP) dose tolerance. We assessed BP dose sparing achieved with pencil beam scanning proton therapy (PBS-PT) and photon volumetric modulated arc therapy (VMAT). Methods and Materials In an institutional review board-approved planning study, all patients with ipsilateral recurrent breast cancer treated with PBS-PT re-RT (PBT1) with at least partial BP overlap from prior photon RT were identified. Comparative VMAT plans (XRT1) using matched BP dose constraints were developed. A second pair of proton (PBT2) and VMAT (XRT2) plans using standardized target volumes were created, applying uniform prescription dose of 50.4 per 1.8 Gy and a maximum BP constraint <25 Gy. Incidence of brachial plexopathy was also assessed. Results Ten consecutive patients were identified. Median time between RT courses was 48 months (15-276). Median first, second, and cumulative RT doses were 50.4 Gy (range, 42.6-60.0), 50.4 Gy relative biologic effectiveness (RBE) (45.0-64.4), and 102.4 Gy (RBE) (95.0-120.0), respectively. Median follow-up was 15 months (5-33) and 18 months for living patients (11-33) Mean BP max was 37.5 Gy (RBE) for PBT1 and 36.9 Gy for XRT1. Target volume coverage of V85% (volume receiving 85% of prescription dose), V90%, and V95% were numerically lower for XRT1 versus PBT1. Similarly, axilla I-III and supraclavicular area coverage were significantly higher for PBT2 than XRT2 at dose levels of V55%, V65%, V75%, V85%, and V95%. Only axilla I V55% did not reach significance (P = .06) favoring PBS-PT. Two patients with high cumulative BPmax (95.2 Gy [RBE], 101.6 Gy [RBE]) developed brachial plexopathy symptoms with ulnar nerve distribution neuropathy without pain or weakness (1 of 2 had symptom resolution after 6 months without intervention). Conclusions PBS-PT improved BP sparing and target volume coverage versus VMAT. For patients requiring comprehensive re-RT for high-risk, nonmetastatic breast cancer recurrence with BP overlap and reasonable expectation for prolonged life expectancy, PBT may be the preferred treatment modality.
Collapse
Affiliation(s)
- J. Isabelle Choi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- New York Proton Center, New York, New York
| | - Beryl McCormick
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter Park
- New York Proton Center, New York, New York
| | | | - Katherine Walker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Peter Florio
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Alicia Lozano
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Roanoke, Virginia
| | - Alexandra L. Hanlon
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Roanoke, Virginia
| | - Jana Fox
- New York Proton Center, New York, New York
- Department of Radiation Oncology, Montefiore Medical Center
| | - Amy J. Xu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa Zinovoy
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Boris Mueller
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard Bakst
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Mt. Sinai Health System, New York, New York
| | - Quincey LaPlant
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lior Z. Braunstein
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Atif J. Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Simon N. Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Oren Cahlon
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, New York University Langone, New York, New York
| |
Collapse
|
7
|
Welgemoed C, Spezi E, Riddle P, Gooding MJ, Gujral D, McLauchlan R, Aboagye EO. Clinical evaluation of atlas-based auto-segmentation in breast and nodal radiotherapy. Br J Radiol 2023; 96:20230040. [PMID: 37493138 PMCID: PMC10461279 DOI: 10.1259/bjr.20230040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVES Accurate contouring of anatomical structures allows for high-precision radiotherapy planning, targeting the dose at treatment volumes and avoiding organs at risk. Manual contouring is time-consuming with significant user variability, whereas auto-segmentation (AS) has proven efficiency benefits but requires editing before treatment planning. This study investigated whether atlas-based AS (ABAS) accuracy improves with template atlas group size and character-specific atlas and test case selection. METHODS AND MATERIALS One clinician retrospectively contoured the breast, nodes, lung, heart, and brachial plexus on 100 CT scans, adhering to peer-reviewed guidelines. Atlases were clustered in group sizes, treatment positions, chest wall separations, and ASs created with Mirada software. The similarity of ASs compared to reference contours was described by the Jaccard similarity coefficient (JSC) and centroid distance variance (CDV). RESULTS Across group sizes, for all structures combined, the mean JSC was 0.6 (SD 0.3, p = .999). Across atlas-specific groups, 0.6 (SD 0.3, p = 1.000). The correlation between JSC and structure volume was weak in both scenarios (adjusted R2-0.007 and 0.185).Mean CDV was similar across groups but varied up to 1.2 cm for specific structures. CONCLUSIONS Character-specific atlas groups and test case selection did not improve accuracy outcomes. High-quality ASs were obtained from groups containing as few as ten atlases, subsequently simplifying the application of ABAS. CDV measures indicating auto-segmentation variations on the x, y, and z axes can be utilised to decide on the clinical relevance of variations and reduce AS editing. ADVANCES IN KNOWLEDGE High-quality ABASs can be obtained from as few as ten template atlases.Atlas and test case selection do not improve AS accuracy.Unlike well-known quantitative similarity indices, volume displacement metrics provide information on the location of segmentation variations, helping assessment of the clinical relevance of variations and reducing clinician editing. Volume displacement metrics combined with the qualitative measure of clinician assessment could reduce user variability.
Collapse
Affiliation(s)
| | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff, United Kingdom
| | - Pippa Riddle
- Radiotherapy Department, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, United Kingdom
| | | | | | | | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
8
|
Management of the brachial plexus in head and neck cancer. Curr Opin Otolaryngol Head Neck Surg 2023; 31:105-110. [PMID: 36912222 DOI: 10.1097/moo.0000000000000869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
PURPOSE OF REVIEW The brachial plexus is an important anatomical structure that is regularly encountered by head and neck surgeons and radiation oncologists. Surgical or radiation-induced brachial plexus injury have great impact on arm function and quality of life. Anatomical variations and management of the brachial plexus in head and neck cancer treatment are discussed. RECENT FINDINGS The brachial plexus consists of spinal roots from C5-C8 and T1. The most prevalent anatomical variations in brachial plexus anatomy include the prefixed brachial plexus (additional contribution from C4) in 11%, the roots of C5 and C6 piercing the belly of the anterior scalene muscle in 6.8%, and presence of the scalenus minimus muscle in 4.1-46%. Due to its location, the brachial plexus is at risk of inadvertent division or neuropraxia during surgical procedures such as neck dissection or robot-assisted transaxillary thyroid surgery (RATS). In case of inadvertent division, nerve reconstruction surgery is warranted and may lead to improved function. The risk of radiation-induced brachial plexus injury is dose-dependent and occurs in approximately 12-22%. Currently, no successful treatment options exist for radiation-induced injury. SUMMARY Knowledge of anatomical variations is important for head and neck surgeons to minimize the risk of brachial plexus injury. Limiting radiation therapy dose to the brachial plexus is desirable to decrease the risk of brachial plexus injury.
Collapse
|
9
|
Iovoli AJ, Prasad S, Malhotra HK, Malik NK, Fung-Kee-Fung S, Singh AK, Farrugia MK. Brachial Plexopathy After Single-Fraction Stereotactic Body Radiation Therapy in Apical Lung Tumors. Pract Radiat Oncol 2022; 13:e246-e253. [PMID: 36581198 DOI: 10.1016/j.prro.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE The objective of this study was to evaluate the incidence of brachial plexus injury (BPI) after single-fraction stereotactic body radiation therapy (SBRT) to apical lung tumors. METHODS AND MATERIALS A retrospective cohort analysis was performed of all patients treated with single-fraction lung SBRT at our institution from 2007 to 2022. Apical tumors were identified as those with an epicenter located above the arch of the aorta. Dosimetric analysis of dose to the brachial plexus (BP) was done using both the subclavian vessel (SCV) surrogate structure and anatomic BP. BPI was assessed per Common Terminology Criteria for Adverse Events, version 4.0, as regional paresthesia, marked discomfort and muscle weakness, and limited movement of the arm or hand. RESULTS A total of 45 patients met inclusion criteria with median follow-up of 21 months. There were 9 patients who exceeded the BP dose constraint using the SCV or anatomic BP volume. Only 1 patient (2.2%) developed grade 2 BPI, occurring 7 months after SBRT. Dose to the anatomic BP for the affected patient was 26.39 Gy. For the entire cohort, the median SCV and anatomic maximum BP doses were 8.44 and 7.14 Gy, respectively. CONCLUSIONS There is considerable variability in dose delivered to the BP after SBRT to apical lung tumors. BPI after single-fraction SBRT to apical tumors is rare and rates are comparable with those reported with multifraction regimens.
Collapse
Affiliation(s)
- Austin J Iovoli
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sharan Prasad
- College of Human Ecology, Cornell University, Ithaca, New York
| | - Harish K Malhotra
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Nadia K Malik
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Simon Fung-Kee-Fung
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anurag K Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mark K Farrugia
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
10
|
Implementation of a Commercial Deep Learning-Based Auto Segmentation Software in Radiotherapy: Evaluation of Effectiveness and Impact on Workflow. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122088. [PMID: 36556455 PMCID: PMC9782080 DOI: 10.3390/life12122088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Proper delineation of both target volumes and organs at risk is a crucial step in the radiation therapy workflow. This process is normally carried out manually by medical doctors, hence demanding timewise. To improve efficiency, auto-contouring methods have been proposed. We assessed a specific commercial software to investigate its impact on the radiotherapy workflow on four specific disease sites: head and neck, prostate, breast, and rectum. For the present study, we used a commercial deep learning-based auto-segmentation software, namely Limbus Contour (LC), Version 1.5.0 (Limbus AI Inc., Regina, SK, Canada). The software uses deep convolutional neural network models based on a U-net architecture, specific for each structure. Manual and automatic segmentation were compared on disease-specific organs at risk. Contouring time, geometrical performance (volume variation, Dice Similarity Coefficient-DSC, and center of mass shift), and dosimetric impact (DVH differences) were evaluated. With respect to time savings, the maximum advantage was seen in the setting of head and neck cancer with a 65%-time reduction. The average DSC was 0.72. The best agreement was found for lungs. Good results were highlighted for bladder, heart, and femoral heads. The most relevant dosimetric difference was in the rectal cancer case, where the mean volume covered by the 45 Gy isodose was 10.4 cm3 for manual contouring and 289.4 cm3 for automatic segmentation. Automatic contouring was able to significantly reduce the time required in the procedure, simplifying the workflow, and reducing interobserver variability. Its implementation was able to improve the radiation therapy workflow in our department.
Collapse
|
11
|
Cao X, Gao XS, Li W, Liu P, Qin SB, Dou YB, Li HZ, Shang S, Gu XB, Ma MW, Qi X, Xie M, Wang D. Contouring lumbosacral plexus nerves with MR neurography and MR/CT deformable registration technique. Front Oncol 2022; 12:818953. [DOI: 10.3389/fonc.2022.818953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
PurposeIt is difficult to contour nerve structures with the naked eye due to poor differentiation between the nerve structures with other soft tissues on CT images. Magnetic resonance neurography (MRN) has the advantage in nerve visualization. The purpose of this study is to identify one MRN sequence to better assist the delineation of the lumbosacral plexus (LSP) nerves to assess the radiation dose to the LSP using the magnetic resonance (MR)/CT deformable coregistration technique.MethodsA total of 18 cases of patients with prostate cancer and one volunteer with radiation-induced lumbosacral plexopathy (RILSP) were enrolled. The data of simulation CT images and original treatment plans were collected. Two MRN sequences (Lr_NerveVIEW sequence and Cs_NerveVIEW sequence) were optimized from a published MRN sequence (3D NerveVIEW sequence). The nerve visualization ability of the Lr_NerveVIEW sequence and the Cs_NerveVIEW sequence was evaluated via a four-point nerve visualization score (NVS) scale in the first 10 patients enrolled to determine the better MRN sequence for assisting nerve contouring. Deformable registration was applied to the selected MRN sequence and simulation CT images to get fused MR/CT images, on which the LSP was delineated. The contouring of the LSP did not alter treatment planning. The dosimetric data of the LSP nerve were collected from the dose–volume histogram in the original treatment plans. The data of the maximal dose (Dmax) and the location of the maximal radiation point received by the LSP structures were collected.ResultsThe Cs_NerveVIEW sequence gained lower NVS scores than the Lr_NerveVIEW sequence (Z=-2.887, p=0.004). The LSP structures were successfully created in 18 patients and one volunteer with MRN (Lr_NerveVIEW)/CT deformable registration techniques, and the LSP structures conformed with the anatomic distribution. In the patient cohort, the percentage of the LSP receiving doses exceeding 50, 55, and 60 Gy was 68% (12/18), 33% (6/18), and 17% (3/18), respectively. For the volunteer with RILSP, the maximum irradiation dose to his LSP nerves was 69 Gy.ConclusionThe Lr_NerveVIEW MRN sequence performed better than the Cs_NerveVIEW sequence in nerve visualization. The dose in the LSP needs to be measured to understand the potential impact on treatment-induced neuropathy.
Collapse
|
12
|
[Radiation induced brachial plexopathy: Diagnosis, risk factors, principles of care]. Cancer Radiother 2022; 27:163-169. [PMID: 35995719 DOI: 10.1016/j.canrad.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022]
Abstract
Radiation plexitis, also known as radiation-induced brachial neuropathy is a rare toxicity following axillary, breast, cervical or thoracic radiotherapy, first described in 1966 by Stoll and Andrew. Although improvements in radiotherapy techniques have greatly reduced its risk over the past seventy years, its severe form remains a dreaded complication that is difficult to manage in patients with increased life expectancy. This article summarizes the epidemiological elements, risk factors, diagnostic methods, doses and constraints to be respected in radiotherapy and the treatment strategies of radiation plexitis.
Collapse
|
13
|
Paczona VR, Capala ME, Deák-Karancsi B, Borzási E, Együd Z, Végváry Z, Kelemen G, Kószó R, Ruskó L, Ferenczi L, Verduijn GM, Petit SF, Oláh J, Cserháti A, Wiesinger F, Hideghéty K. Magnetic Resonance Imaging-Based Delineation of Organs at Risk in the Head and Neck Region. Adv Radiat Oncol 2022; 8:101042. [PMID: 36636382 PMCID: PMC9830100 DOI: 10.1016/j.adro.2022.101042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/24/2022] [Indexed: 01/16/2023] Open
Abstract
Purpose The aim of this article is to establish a comprehensive contouring guideline for treatment planning using only magnetic resonance images through an up-to-date set of organs at risk (OARs), recommended organ boundaries, and relevant suggestions for the magnetic resonance imaging (MRI)-based delineation of OARs in the head and neck (H&N) region. Methods and Materials After a detailed review of the literature, MRI data were collected from the H&N region of healthy volunteers. OARs were delineated in the axial, coronal, and sagittal planes on T2-weighted sequences. Every contour defined was revised by 4 radiation oncologists and subsequently by 2 independent senior experts (H&N radiation oncologist and radiologist). After revision, the final structures were presented to the consortium partners. Results A definitive consensus was reached after multi-institutional review. On that basis, we provided a detailed anatomic and functional description and specific MRI characteristics of the OARs. Conclusions In the era of precision radiation therapy, the need for well-built, straightforward contouring guidelines is on the rise. Precise, uniform, delineation-based, automated OAR segmentation on MRI may lead to increased accuracy in terms of organ boundaries and analysis of dose-dependent sequelae for an adequate definition of normal tissue complication probability.
Collapse
Affiliation(s)
- Viktor R. Paczona
- Department of Oncotherapy, University of Szeged, Szeged, Hungary,Corresponding author: Viktor R. Paczona, MD
| | | | | | - Emőke Borzási
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Zsófia Együd
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Zoltán Végváry
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Gyöngyi Kelemen
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Renáta Kószó
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | | | | | | | | | - Judit Oláh
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | | | | | - Katalin Hideghéty
- Department of Oncotherapy, University of Szeged, Szeged, Hungary,ELI-HU Non-Profit Ltd, Szeged, Hungary
| |
Collapse
|
14
|
Rodríguez De Dios N, Navarro-Martin A, Cigarral C, Chicas-Sett R, García R, Garcia V, Gonzalez JA, Gonzalo S, Murcia-Mejía M, Robaina R, Sotoca A, Vallejo C, Valtueña G, Couñago F. GOECP/SEOR radiotheraphy guidelines for non-small-cell lung cancer. World J Clin Oncol 2022; 13:237-266. [PMID: 35582651 PMCID: PMC9052073 DOI: 10.5306/wjco.v13.i4.237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/27/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous disease accounting for approximately 85% of all lung cancers. Only 17% of patients are diagnosed at an early stage. Treatment is multidisciplinary and radiotherapy plays a key role in all stages of the disease. More than 50% of patients with NSCLC are treated with radiotherapy (curative-intent or palliative). Technological advances-including highly conformal radiotherapy techniques, new immobilization and respiratory control systems, and precision image verification systems-allow clinicians to individualize treatment to maximize tumor control while minimizing treatment-related toxicity. Novel therapeutic regimens such as moderate hypofractionation and advanced techniques such as stereotactic body radiotherapy (SBRT) have reduced the number of radiotherapy sessions. The integration of SBRT into routine clinical practice has radically altered treatment of early-stage disease. SBRT also plays an increasingly important role in oligometastatic disease. The aim of the present guidelines is to review the role of radiotherapy in the treatment of localized, locally-advanced, and metastatic NSCLC. We review the main radiotherapy techniques and clarify the role of radiotherapy in routine clinical practice. These guidelines are based on the best available evidence. The level and grade of evidence supporting each recommendation is provided.
Collapse
Affiliation(s)
- Núria Rodríguez De Dios
- Department of Radiation Oncology, Hospital del Mar, Barcelona 08003, Spain
- Radiation Oncology Research Group, Hospital Del Mar Medical Research Institution, Barcelona 08003, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08003, Spain
| | - Arturo Navarro-Martin
- Department of Radiation Oncology, Thoracic Malignancies Unit, Hospital Duran i Reynals. ICO, L´Hospitalet de L, Lobregat 08908, Spain
| | - Cristina Cigarral
- Department of Radiation Oncology, Hospital Clínico de Salamanca, Salamanca 37007, Spain
| | - Rodolfo Chicas-Sett
- Department of Radiation Oncology, ASCIRES Grupo Biomédico, Valencia 46004, Spain
| | - Rafael García
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Virginia Garcia
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | | | - Susana Gonzalo
- Department of Radiation Oncology, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Mauricio Murcia-Mejía
- Department of Radiation Oncology, Hospital Universitario Sant Joan de Reus, Reus 43204, Tarragona, Spain
| | - Rogelio Robaina
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | - Amalia Sotoca
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Carmen Vallejo
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - German Valtueña
- Department of Radiation Oncology, Hospital Clínico Universitario Lozano Blesa, Zaragoza 50009, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, Madrid 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid 28003, Spain
- Department of Clinical, Universidad Europea, Madrid 28670, Spain
| |
Collapse
|
15
|
Morse RT, Doke K, Ganju RG, Sood S, Mavroidis P, Chen AM. Stereotactic body radiotherapy for apical lung tumors: Dosimetric analysis of the brachial plexus and preliminary clinical outcomes. Pract Radiat Oncol 2021; 12:e183-e192. [PMID: 34929402 DOI: 10.1016/j.prro.2021.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Dosimetric constraints of the brachial plexus have not yet been well-established for patients undergoing stereotactic body radiotherapy (SBRT). This study evaluated long-term experience with the treatment of early stage apical lung tumors with SBRT and reports on dosimetric correlates of outcome. METHODS Between 2009 and 2018, a total of 78 consecutive patients with 81 apical lung tumors underwent SBRT for T1-3N0 non-small cell lung cancer. Apical tumors were those with tumor epicenter superior to the aortic arch. The brachial plexus (BP) was anatomically contoured according to the Radiation Therapy Oncology Group (RTOG) atlas. Patient medical records were retrospectively reviewed to determine incidence of brachial plexus injury (BPI) and a normal tissue complication probability model (NTCP) was applied to the dosimetric data. RESULTS Five patients (6.4%) reported neuropathic symptoms consistent with BPI and occurred a median 11.9 months after treatment (range, 5.2 to 28.1 months). Most common dose and fractionation in those developing BPI were 50 Gy in 5 fractions (4 patients). Symptoms consisted of pain in 2 patients (40.0%), numbness in the hand or axilla in 4 patients (80.0%), and ipsilateral hand weakness in 1 patient (20.0%). In the overall cohort the median BP Dmax (EQD23 Gy) was 5.13 Gy (range, 0.18 to 217.2 Gy) and in patients with BPI the median BP Dmax (EQD23 Gy) was 32.14 Gy (range, 13.4 to 99.9 Gy). The NTCP model gave good fit with an area under the curve (AUC) of 0.75 (OR 7.3, 95% CI: 0.8-68.3) for BP Dmax (EQD23 Gy) threshold of 20 Gy. CONCLUSION Significant variation exists in the dose delivered to the brachial plexus for patients treated by SBRT for apical lung tumors. The incidence of neuropathic symptoms in the post-SBRT setting was appreciable and prospective clinical correlation with dosimetric information should be utilized in order to develop evidence-based dose constraints.
Collapse
Affiliation(s)
- Ryan T Morse
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Kaleigh Doke
- Department of Radiation Oncology, University of Colorado
| | - Rohit G Ganju
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Sumit Sood
- Department of Radiation Oncology, University of Minnesota
| | | | - Allen M Chen
- Department of Radiation Oncology, University of California Irvine.
| |
Collapse
|
16
|
Khalifa J, Lerouge D, Le Péchoux C, Pourel N, Darréon J, Mornex F, Giraud P. Radiotherapy for primary lung cancer. Cancer Radiother 2021; 26:231-243. [PMID: 34953709 DOI: 10.1016/j.canrad.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein are presented the recommendations from the Société française de radiothérapie oncologique regarding indications and modalities of lung cancer radiotherapy. The recommendations for delineation of the target volumes and organs at risk are detailed.
Collapse
Affiliation(s)
- J Khalifa
- Département de radiothérapie, Institut universitaire du cancer de Toulouse - Oncopole, 1, avenue Irène-Joliot-Curie, 31100 Toulouse, France.
| | - D Lerouge
- Département de radiothérapie, centre François-Baclesse, 3, avenue du General-Harris, 14076 Caen, France
| | - C Le Péchoux
- Département de radiothérapie, Gustave-Roussy, 114, rue Édouard-Vaillant, 94805 Villejuif cedex, France
| | - N Pourel
- Département de radiothérapie, institut Sainte-Catherine, 250, chemin de Baigne-Pieds, CS80005, 84918 Avignon cedex 9, France
| | - J Darréon
- Service de physique médicale, institut Paoli-Calmettes, 232, boulevard de Sainte-Marguerite, 13009 Marseille, France
| | - F Mornex
- Service de radiothérapie, CHU Lyon-Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France
| | - P Giraud
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris, 20, rue Leblanc, Paris, France; Université de Paris, 85, boulevard Saint-Germain, 75006 Paris, France
| |
Collapse
|
17
|
Evaluation of the impact of teaching on delineation variation during a virtual stereotactic ablative radiotherapy contouring workshop. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396921000583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Introduction:
Variation in delineation of target volumes/organs at risk (OARs) is well recognised in radiotherapy and may be reduced by several methods including teaching. We evaluated the impact of teaching on contouring variation for thoracic/pelvic stereotactic ablative radiotherapy (SABR) during a virtual contouring workshop.
Materials and methods:
Target volume/OAR contours produced by workshop participants for three cases were evaluated against reference contours using DICE similarity coefficient (DSC) and line domain error (LDE) metrics. Pre- and post-workshop DSC results were compared using Wilcoxon signed ranks test to determine the impact of teaching during the workshop.
Results:
Of 50 workshop participants, paired pre- and post-workshop contours were available for 21 (42%), 20 (40%) and 22 (44%) participants for primary lung cancer, pelvic bone metastasis and pelvic node metastasis cases, respectively. Statistically significant improvements post-workshop in median DSC and LDE results were observed for 6 (50%) and 7 (58%) of 12 structures, respectively, although the magnitude of DSC/LDE improvement was modest in most cases. An increase in median DSC post-workshop ≥0·05 was only observed for GTVbone, IGTVlung and SacralPlex, and reduction in median LDE > 1 mm was only observed for GTVbone, CTVbone and SacralPlex. Post-workshop, median DSC values were >0·7 for 75% of structures. For 92% of the structures, post-workshop contours were considered to be acceptable or within acceptable variation following review by the workshop faculty.
Conclusions:
This study has demonstrated that virtual SABR contouring training is feasible and was associated with some improvements in contouring variation for multiple target volumes/OARs.
Collapse
|
18
|
Hrycushko B, van der Kogel AJ, Phillips L, Chhabra A, Folkert MR, Sayre JW, Vernino S, Hassan-Rezaeian N, Yamada Y, Timmerman R, Medin PM. Brachial Plexus Tolerance to Single-Session SAbR in a Pig Model. Int J Radiat Oncol Biol Phys 2021; 112:565-571. [PMID: 34597718 DOI: 10.1016/j.ijrobp.2021.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE The single-session dose tolerance of the spinal nerves has been observed to be similar to that of the spinal cord in pigs, counter to the perception that peripheral nerves are more tolerant to radiation. This pilot study aims to obtain a first impression of the single-session dose-response of the brachial plexus using pigs as a model. METHODS AND MATERIALS Ten Yucatan minipigs underwent computed tomography and magnetic resonance imaging for treatment planning, followed by single-session stereotactic ablative radiotherapy. A 2.5-cm length of the left-sided brachial plexus cords was irradiated. Pigs were distributed in 3 groups with prescription doses of 16 (n = 3), 19 (n = 4), and 22 Gy (n = 3). Neurologic status was assessed by observation for changes in gait and electrodiagnostic examination. Histopathologic examination was performed with light microscopy of paraffin-embedded sections stained with Luxol fast blue/periodic acid-Schiff and Masson's trichrome. RESULTS Seven of the 10 pigs developed motor deficit to the front limb of the irradiated side, with a latency from 5 to 8 weeks after irradiation. Probit analysis of the maximum nerve dose yields an estimated ED50 of 19.3 Gy for neurologic deficit, but the number of animals was insufficient to estimate 95% confidence intervals. No motor deficits were observed at a maximum dose of 17.6 Gy for any pig. Nerve conduction studies showed an absence of sensory response in all responders and absent or low motor response in most of the responders (71%). All symptomatic pigs showed histologic lesions to the left-sided plexus consistent with radiation-induced neuropathy. CONCLUSIONS The single-session ED50 for symptomatic plexopathy in Yucatan minipigs after irradiation of a 2.5-cm length of the brachial plexus cords was determined to be 19.3 Gy. The dose-response curve overlaps that of the spinal nerves and the spinal cord in the same animal model. The relationship between the brachial plexus tolerance in pigs and humans is unknown, and caution is warranted when extrapolating for clinical use.
Collapse
Affiliation(s)
- Brian Hrycushko
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Albert J van der Kogel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Lauren Phillips
- Department of Neurology, UT Southwestern Medical Center, Dallas, Texas
| | - Avneesh Chhabra
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Michael R Folkert
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - James W Sayre
- Departments of Biostatistics; Radiology, University of California Los Angeles, California
| | - Steven Vernino
- Department of Neurology, UT Southwestern Medical Center, Dallas, Texas
| | - Nima Hassan-Rezaeian
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yoshiya Yamada
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Timmerman
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Paul M Medin
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
19
|
Abstract
The delineation of organs at risk is the basis of radiotherapy oncologists' work. Indeed, the knowledge of this delineation enables to better identify the target volumes and to optimize dose distribution, involving the prognosis of the patients but also their future. The learning of this delineation must continue throughout the clinician's career. Some contour changes have appeared with better imaging, some volumes are now required due to development of knowledge of side effects. In addition, the increasing survival time of patients requires to be more systematic and precise in the delineations, both to avoid complications until now exceptional but also because re-irradiations are becoming more and more frequent. We present the update of the recommendations of the French Society for Radiation Oncology (SFRO) on new findings or adaptations to volumes at risk.
Collapse
Affiliation(s)
- G Noël
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France.
| | - C Le Fèvre
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France
| | - D Antoni
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France
| |
Collapse
|
20
|
Jin K, Luo J, Wang X, Yang Z, Zhang L, Mei X, Ma J, Chen X, Zhang X, Zhou Z, Wang X, Shao Z, Zhang Z, Guo X, Yu X. Symptoms Related to Brachial Plexus Neuropathy After Supraclavicular Irradiation and Boost in Breast Cancer. Pract Radiat Oncol 2021; 12:e13-e23. [PMID: 34450336 DOI: 10.1016/j.prro.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To evaluate the incidence of symptoms related to brachial plexus neuropathy (BPN) and the dose distribution to the brachial plexus (BP) in patients with breast cancertreated with supraclavicular (SCV) irradiation and boost. METHODS AND MATERIALS In this study, 117 patients with initial ipsilateral supraclavicular lymph node (SLN) metastasis and 39 with recurrent SLN metastasis between 2008 and 2018 in our cancer center were retrospectively analyzed. All patients were treated with 50 Gy of SCV irradiation in 25 fractions and a boost (median dose, 10 Gy; range, 10-16 Gy) to involved nodes in the SCV area. Symptoms related to BPN (including ipsilateral arm numbness, pain, and weakness) were recorded and graded according to the Common Terminology Criteria for Adverse Events, version 5.0. The BP was delineated on simulation computed tomography, and the dose distributions to the BP were evaluated. Meanwhile, 297 patients treated with SCV irradiation without boost during the same period were identified as a control group to compare the incidences of BPN-related symptoms and dosimetric data with patients who received an SCV boost. RESULTS The 5-year overall survival rate was 80.3% for patients with initial SLN metastasis and 51.0% for patients with recurrent SLN metastasis. For patients who received an SCV boost, incidence rates of ipsilateral arm numbness, pain, and weakness were 23.9%, 18.3%, and 34.3%, respectively. Four patients (5.6%) developed grade 2 numbness and 3 (4.3%) developed grade 2 arm weakness. In the control group, incidence rates of arm numbness, pain, and weakness were 31.6%, 21.9%, and 36.0%, respectively. The incidence of BPN-related symptoms was not significantly different between the 2 groups. Symptoms of grade 3 were not observed in either cohort. The mean doses to the BP in patients who received boost and who did not were 56.8 and 46.8 Gy, respectively (P < .001). The maximum doses to the BP in patients who received boost and who did not were 64.5 and 53.5 Gy, respectively (P < .001). The BP volumes receiving at least 50 Gy, 60 Gy, 61 Gy, and 62 Gy were also significantly higher in the boosted group compared with the control group (P < .001). CONCLUSIONS This study found that an SCV boost of 10 Gy did not increase the incidence of BPN-related symptoms and that the toxicity to the BP was acceptable. Comprehensive treatment including SCV irradiation and boost led to satisfactory survival outcomes in patients with breast cancer who had SLN metastasis.
Collapse
Affiliation(s)
- Kairui Jin
- Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jurui Luo
- Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuanyi Wang
- Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhaozhi Yang
- Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Zhang
- Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Mei
- Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinli Ma
- Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xingxing Chen
- Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaomeng Zhang
- Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhirui Zhou
- Radiation Oncology Center, Huanshan Hospital
| | - Xiaofang Wang
- Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhimin Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Breast Surgery, Fudan University Shanghai Cancer Center
| | - Zhen Zhang
- Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaomao Guo
- Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaoli Yu
- Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Gilcrease-Garcia BM, Deshmukh SD, Parsons MS. Anatomy, Imaging, and Pathologic Conditions of the Brachial Plexus. Radiographics 2021; 40:1686-1714. [PMID: 33001787 DOI: 10.1148/rg.2020200012] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The brachial plexus is an intricate anatomic structure with an important function: providing innervation to the upper extremity, shoulder, and upper chest. Owing to its complex form and longitudinal course, the brachial plexus can be challenging to conceptualize in three dimensions, which complicates evaluations in standard orthogonal imaging planes. The components of the brachial plexus can be determined by using key anatomic landmarks. Applying this anatomic knowledge, a radiologist should then be able to identify pathologic appearances of the brachial plexus by using imaging modalities such as MRI, CT, and US. Brachial plexopathies can be divided into two broad categories that are based on disease origin: traumatic and nontraumatic. In the traumatic plexopathy group, there are distinct imaging findings and management methods for pre- versus postganglionic injuries. For nontraumatic plexopathies, having access to an accurate patient history is often crucial. Knowledge of the timing of radiation therapy is critical to diagnosing post-radiation therapy brachial plexopathy. In acute brachial neuritis, antecedent stressors occur within a specific time frame. Primary and secondary tumors of the brachial plexus are not uncommon, with the most common primary tumors being peripheral nerve sheath tumors. Direct extension and metastasis from primary malignancies such as breast and lung cancer can occur. Although diagnosing a brachial plexus anomaly is potentially perplexing, it can be straightforward if it is based on foundational knowledge of anatomy, imaging findings, and pathologic features. ©RSNA, 2020.
Collapse
Affiliation(s)
- Brian M Gilcrease-Garcia
- From the Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill (B.M.G., S.D.D.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Box 8131, St Louis, MO 63110 (M.S.P.)
| | - Swati D Deshmukh
- From the Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill (B.M.G., S.D.D.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Box 8131, St Louis, MO 63110 (M.S.P.)
| | - Matthew S Parsons
- From the Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill (B.M.G., S.D.D.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Box 8131, St Louis, MO 63110 (M.S.P.)
| |
Collapse
|
22
|
Wong J, Huang V, Giambattista JA, Teke T, Kolbeck C, Giambattista J, Atrchian S. Training and Validation of Deep Learning-Based Auto-Segmentation Models for Lung Stereotactic Ablative Radiotherapy Using Retrospective Radiotherapy Planning Contours. Front Oncol 2021; 11:626499. [PMID: 34164335 PMCID: PMC8215371 DOI: 10.3389/fonc.2021.626499] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Deep learning-based auto-segmented contour (DC) models require high quality data for their development, and previous studies have typically used prospectively produced contours, which can be resource intensive and time consuming to obtain. The aim of this study was to investigate the feasibility of using retrospective peer-reviewed radiotherapy planning contours in the training and evaluation of DC models for lung stereotactic ablative radiotherapy (SABR). METHODS Using commercial deep learning-based auto-segmentation software, DC models for lung SABR organs at risk (OAR) and gross tumor volume (GTV) were trained using a deep convolutional neural network and a median of 105 contours per structure model obtained from 160 publicly available CT scans and 50 peer-reviewed SABR planning 4D-CT scans from center A. DCs were generated for 50 additional planning CT scans from center A and 50 from center B, and compared with the clinical contours (CC) using the Dice Similarity Coefficient (DSC) and 95% Hausdorff distance (HD). RESULTS Comparing DCs to CCs, the mean DSC and 95% HD were 0.93 and 2.85mm for aorta, 0.81 and 3.32mm for esophagus, 0.95 and 5.09mm for heart, 0.98 and 2.99mm for bilateral lung, 0.52 and 7.08mm for bilateral brachial plexus, 0.82 and 4.23mm for proximal bronchial tree, 0.90 and 1.62mm for spinal cord, 0.91 and 2.27mm for trachea, and 0.71 and 5.23mm for GTV. DC to CC comparisons of center A and center B were similar for all OAR structures. CONCLUSIONS The DCs developed with retrospective peer-reviewed treatment contours approximated CCs for the majority of OARs, including on an external dataset. DCs for structures with more variability tended to be less accurate and likely require using a larger number of training cases or novel training approaches to improve performance. Developing DC models from existing radiotherapy planning contours appears feasible and warrants further clinical workflow testing.
Collapse
Affiliation(s)
- Jordan Wong
- Radiation Oncology, British Columbia Cancer – Vancouver, Vancouver, BC, Canada
| | - Vicky Huang
- Medical Physics, British Columbia Cancer – Fraser Valley, Surrey, BC, Canada
| | - Joshua A. Giambattista
- Radiation Oncology, Saskatchewan Cancer Agency, Regina, SK, Canada
- Limbus AI Inc, Regina, SK, Canada
| | - Tony Teke
- Medical Physics/Radiation Oncology, British Columbia Cancer – Kelowna, Kelowna, BC, Canada
| | | | | | - Siavash Atrchian
- Medical Physics/Radiation Oncology, British Columbia Cancer – Kelowna, Kelowna, BC, Canada
| |
Collapse
|
23
|
Turchan WT, Arya R, Hight R, Al‐Hallaq H, Dominello M, Joyce D, McCabe BP, McCall AR, Perevalova E, Stepaniak C, Yenice K, Burmeister J, Golden DW. Physician review of image registration and normal structure delineation. J Appl Clin Med Phys 2020; 21:80-87. [PMID: 32986307 PMCID: PMC7701106 DOI: 10.1002/acm2.13031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/01/2020] [Accepted: 08/27/2020] [Indexed: 11/11/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- William Tyler Turchan
- Department of Radiation and Cellular Oncology The University of Chicago Chicago IL USA
| | - Ritu Arya
- Department of Radiation and Cellular Oncology The University of Chicago Chicago IL USA
| | - Robert Hight
- Department of Radiation and Cellular Oncology The University of Chicago Chicago IL USA
| | - Hania Al‐Hallaq
- Department of Radiation and Cellular Oncology The University of Chicago Chicago IL USA
| | - Michael Dominello
- Department of Oncology Division of Radiation Oncology Wayne State UniversityKarmanos Cancer Institute Detroit MI USA
| | - Dan Joyce
- Department of Radiation and Cellular Oncology The University of Chicago Chicago IL USA
| | - Bradley P. McCabe
- Department of Radiation and Cellular Oncology The University of Chicago Chicago IL USA
| | - Anne R. McCall
- Department of Radiation and Cellular Oncology The University of Chicago Chicago IL USA
| | - Eugenia Perevalova
- Department of Radiation and Cellular Oncology The University of Chicago Chicago IL USA
| | - Christopher Stepaniak
- Department of Radiation and Cellular Oncology The University of Chicago Chicago IL USA
| | - Kamil Yenice
- Department of Radiation and Cellular Oncology The University of Chicago Chicago IL USA
| | - Jay Burmeister
- Department of Oncology Division of Radiation Oncology Wayne State UniversityKarmanos Cancer Institute Detroit MI USA
| | - Daniel W. Golden
- Department of Radiation and Cellular Oncology The University of Chicago Chicago IL USA
| |
Collapse
|
24
|
Rudra S, Roy A, Brenneman R, Gabani P, Roach MC, Ochoa L, Prather H, Appleton C, Margenthaler J, Peterson LL, Bagegni NA, Zoberi JE, Garcia-Ramirez J, Thomas MA, Zoberi I. Radiation-Induced Brachial Plexopathy in Patients With Breast Cancer Treated With Comprehensive Adjuvant Radiation Therapy. Adv Radiat Oncol 2020; 6:100602. [PMID: 33665488 PMCID: PMC7897772 DOI: 10.1016/j.adro.2020.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2020] [Accepted: 10/14/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Our purpose was to describe the risk of radiation-induced brachial plexopathy (RIBP) in patients with breast cancer who received comprehensive adjuvant radiation therapy (RT). Methods and Materials Records for 498 patients who received comprehensive adjuvant RT (treatment of any residual breast tissue, the underlying chest wall, and regional nodes) between 2004 and 2012 were retrospectively reviewed. All patients were treated with conventional 3 to 5 field technique (CRT) until 2008, after which intensity modulated RT (IMRT) was introduced. RIBP events were determined by reviewing follow-up documentation from oncologic care providers. Patients with RIBP were matched (1:2) with a control group of patients who received CRT and a group of patients who received IMRT. Dosimetric analyses were performed in these patients to determine whether there were differences in ipsilateral brachial plexus dose distribution between RIBP and control groups. Results Median study follow-up was 88 months for the overall cohort and 92 months for the IMRT cohort. RIBP occurred in 4 CRT patients (1.6%) and 1 IMRT patient (0.4%) (P = .20). All patients with RIBP in the CRT cohort received a posterior axillary boost. Maximum dose to the brachial plexus in RIBP, CRT control, and IMRT control patients had median values of 56.0 Gy (range, 49.7-65.1), 54.8 Gy (47.4-60.5), and 54.8 Gy (54.2-57.3), respectively. Conclusions RIBP remains a rare complication of comprehensive adjuvant breast radiation and no clear dosimetric predictors for RIBP were identified in this study. The IMRT technique does not appear to adversely affect the development of this late toxicity.
Collapse
Affiliation(s)
- Soumon Rudra
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Amit Roy
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Randall Brenneman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Prashant Gabani
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael C Roach
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Laura Ochoa
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Heidi Prather
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Catherine Appleton
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Julie Margenthaler
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Lindsay L Peterson
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Nusayba A Bagegni
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jacqueline E Zoberi
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jose Garcia-Ramirez
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Maria A Thomas
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
25
|
Vrtovec T, Močnik D, Strojan P, Pernuš F, Ibragimov B. Auto-segmentation of organs at risk for head and neck radiotherapy planning: From atlas-based to deep learning methods. Med Phys 2020; 47:e929-e950. [PMID: 32510603 DOI: 10.1002/mp.14320] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is one of the basic treatment modalities for cancer of the head and neck (H&N), which requires a precise spatial description of the target volumes and organs at risk (OARs) to deliver a highly conformal radiation dose to the tumor cells while sparing the healthy tissues. For this purpose, target volumes and OARs have to be delineated and segmented from medical images. As manual delineation is a tedious and time-consuming task subjected to intra/interobserver variability, computerized auto-segmentation has been developed as an alternative. The field of medical imaging and RT planning has experienced an increased interest in the past decade, with new emerging trends that shifted the field of H&N OAR auto-segmentation from atlas-based to deep learning-based approaches. In this review, we systematically analyzed 78 relevant publications on auto-segmentation of OARs in the H&N region from 2008 to date, and provided critical discussions and recommendations from various perspectives: image modality - both computed tomography and magnetic resonance image modalities are being exploited, but the potential of the latter should be explored more in the future; OAR - the spinal cord, brainstem, and major salivary glands are the most studied OARs, but additional experiments should be conducted for several less studied soft tissue structures; image database - several image databases with the corresponding ground truth are currently available for methodology evaluation, but should be augmented with data from multiple observers and multiple institutions; methodology - current methods have shifted from atlas-based to deep learning auto-segmentation, which is expected to become even more sophisticated; ground truth - delineation guidelines should be followed and participation of multiple experts from multiple institutions is recommended; performance metrics - the Dice coefficient as the standard volumetric overlap metrics should be accompanied with at least one distance metrics, and combined with clinical acceptability scores and risk assessments; segmentation performance - the best performing methods achieve clinically acceptable auto-segmentation for several OARs, however, the dosimetric impact should be also studied to provide clinically relevant endpoints for RT planning.
Collapse
Affiliation(s)
- Tomaž Vrtovec
- Faculty Electrical Engineering, University of Ljubljana, Tržaška cesta 25, Ljubljana, SI-1000, Slovenia
| | - Domen Močnik
- Faculty Electrical Engineering, University of Ljubljana, Tržaška cesta 25, Ljubljana, SI-1000, Slovenia
| | - Primož Strojan
- Institute of Oncology Ljubljana, Zaloška cesta 2, Ljubljana, SI-1000, Slovenia
| | - Franjo Pernuš
- Faculty Electrical Engineering, University of Ljubljana, Tržaška cesta 25, Ljubljana, SI-1000, Slovenia
| | - Bulat Ibragimov
- Faculty Electrical Engineering, University of Ljubljana, Tržaška cesta 25, Ljubljana, SI-1000, Slovenia.,Department of Computer Science, University of Copenhagen, Universitetsparken 1, Copenhagen, D-2100, Denmark
| |
Collapse
|
26
|
Impact of brachial plexus movement during radical radiotherapy for head and neck cancers: the case for a larger planning organ at risk volume margin. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396919000499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractIntroduction:Treatment volumes for radical radiotherapy to head and neck cancers commonly extend into the lower neck, the territory of the brachial plexus (BP). There is a risk of radiation-induced brachial plexopathy, a non-reversible late toxicity experienced by a small number of patients. The BP was anatomically divided into superior and inferior divisions and analysed to establish if segmental inter-fractional BP movement should be considered when planning radiotherapy in this high-dose region.Methods:A retrospective single-centre analysis of 15 patients with head and neck cancers treated with radical bilateral neck irradiation was conducted. The extent of BP movement relative to the planning scan was assessed using weekly cone beam computed tomography (CBCT) scans. The BP was contoured on the planning scan and the subsequent six weekly CBCTs; this was used to calculate the Jaccard Conformity Index (JCI) for the left, right, superior and inferior divisions of the BP.Results:The mean (±SD) JCI for right and left superior BP was 44·4±15·5%, whereas the mean (±SD) JCI for right and left inferior BP was 38·3±15·5%. There was a statistically significant difference between superior and inferior JCI, p=0·0002, 95% CI (−9·26 to −2·88). Bilateral superior BP JCI was higher, with better conformity than the corresponding inferior divisions.Conclusions:Inter-fractional BP movement occurs; the greatest movement is seen at the inferior division. This data suggest the need for re-evaluation of current BP margins and consideration of a larger inferior BP planning at risk volume (PRV) margin.
Collapse
|
27
|
|
28
|
Ucuncu Kefeli A, Sanal-Toprak C, Asedov R, Ozen Z, Akyuz G, Dane F, Atasoy BM. Long-term neuromusculoskeletal side effects and quality of life in nasopharyngeal cancer patients receiving radiochemotherapy. Eur Arch Otorhinolaryngol 2020; 277:2325-2333. [PMID: 32236708 DOI: 10.1007/s00405-020-05932-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/17/2020] [Indexed: 12/25/2022]
Abstract
AIM In this study, we aimed to evaluate the neuromusculoskeletal late side effects and their impact on the quality of life of patients with nasopharyngeal carcinoma treated with radiochemotherapy. PATIENTS AND METHODS Twenty-seven patients were included. The mean follow-up was 61 months (range, 18-111 months). The median external radiotherapy dose applied to the nasopharynx and primary tumor was 70 Gy (range, 61-73 Gy). The mean dose received by the temporomandibular joint in the dose-volume histograms of these patients was 60.7 Gy. The maximal doses of the muscles responsible for cervical motion in different ranges were greater than 60 Gy, and the mean doses were greater than 40 Gy in the muscle groups, except for the extensor muscles. RESULTS Two patients had brachial plexus involvement, while 89% of the patients had restriction in flexion and extension movements. Of the patients, 52% had trismus. There was a significant correlation between extension restriction and general heath score and the physical subscale of the quality-of-life questionnaire (p = 0.01). There was also a correlation between trismus and pain killer usage (p = 0.004). CONCLUSION This is the first study to analyze long-term muscle and nerve toxicity and their correlation between doses in nasopharyngeal cancer patients following radiochemotherapy. Despite the advances in radiotherapy techniques, it is necessary to pay attention to the doses of the nerves and muscles for late effects.
Collapse
Affiliation(s)
- Aysegul Ucuncu Kefeli
- Faculty of Medicine, Department of Radiation Oncology, Kocaeli University, Kocaeli, Turkey
| | - Canan Sanal-Toprak
- School of Medicine, Department of Physical Medicine and Rehabilitation, Marmara University, Istanbul, Turkey
| | - Ruslan Asedov
- Marmara University Pendik Education and Research Hospital Radiology Clinic, Istanbul, Turkey
| | - Zeynep Ozen
- Acıbadem Altunizade Hospital Radiation Oncology Clinic, Istanbul, Turkey
| | - Gulseren Akyuz
- School of Medicine, Department of Physical Medicine and Rehabilitation, Marmara University, Istanbul, Turkey
| | - Faysal Dane
- School of Medicine, Department of Internal Medicine Division of Medical Oncology, Marmara University, Istanbul, Turkey
| | - Beste M Atasoy
- School of Medicine, Department of Radiation Oncology, Marmara University, Istanbul, Turkey. .,S.B.-M.Ü. Pendik Egitim ve Arastırma Hastanesi Radyasyon Onkolojisi Klinigi, Fevzi Cakmak Mah, Muhsin Yazicioglu Cad. No: 6 Pendik 34899, Istanbul, Turkey.
| |
Collapse
|
29
|
Palma DA, Chen H, Bahig H, Gaede S, Harrow S, Laba JM, Qu XM, Rodrigues GB, Yaremko BP, Yu E, Louie AV, Dhaliwal I, Ryerson CJ. Assessment of precision irradiation in early non-small cell lung cancer and interstitial lung disease (ASPIRE-ILD): study protocol for a phase II trial. BMC Cancer 2019; 19:1206. [PMID: 31829203 PMCID: PMC6905060 DOI: 10.1186/s12885-019-6392-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/21/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Stereotactic ablative radiotherapy (SABR) has become an established treatment option for medically-inoperable early-stage (Stage I-IIA) non-small cell lung cancer (ES-NSCLC). SABR is able to obtain high rates of local control with low rates of symptomatic toxicity in this patient population. However, in a subset of patients with fibrotic interstitial lung disease (ILD), elevated rates of SABR-related toxicity and mortality have been described. The Assessment of Precision Irradiation in Early Non-Small Cell Lung Cancer and Interstitial Lung Disease (ASPIRE-ILD) study will conduct a thorough prospective evaluation of the clinical outcomes, toxicity, changes in diagnostic test parameters and patient-related outcomes following SABR for ES-NSCLC for patients with fibrotic ILD. METHODS ASPIRE-ILD is a single-arm Phase II prospective study. The accrual target is 39 adult patients with T1-2N0M0 non-small cell lung cancer with co-existing ILD who are not candidates for surgical excision. Pathological confirmation of diagnosis is strongly recommended but not strictly required. Enrolled patients will be stratified by ILD-related mortality risk. The starting SABR dose will be 50 Gy in 5 fractions every other day (biologically effective dose: 100 Gy10 or 217 Gy3), but the radiation dose can be de-escalated up to two times to 50 Gy in 10 fractions daily (75 Gy10 or 133 Gy3) and 45 Gy in 15 fractions daily (58 Gy10 or 90 Gy3). Dose de-escalation will occur if 2 or more of the first 7 patients in a cohort experiences grade 5 toxicity within 6 months of treatment. Similarly, dose de-escalation can also occur if 2 or more of the first 7 patients with a specific subtype of ILD experiences grade 5 toxicity within 6 months of treatment. The primary endpoint is overall survival. Secondary endpoints include toxicity (CTC-AE 4.0), progression-free survival, local control, patient-reported outcomes (cough severity and quality of life), rates of ILD exacerbation and changes in pulmonary function tests/high-resolution computed tomography findings post-SABR. DISCUSSION ASPIRE-ILD will be the first prospective study specifically designed to comprehensively evaluate the effectiveness and safety of SABR for ES-NSCLC in patients with co-existing ILD. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT03485378. Date of registration: April 2, 2018.
Collapse
Affiliation(s)
- David A. Palma
- Department of Oncology, Western University, 1151 Richmond Street, London, Ontario N6A 3K7 Canada
| | - Hanbo Chen
- Department of Oncology, Western University, 1151 Richmond Street, London, Ontario N6A 3K7 Canada
| | - Houda Bahig
- Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal, 1051 Sanguinet Street, Montreal, Quebec H2X 3E4 Canada
| | - Stewart Gaede
- Department of Oncology, Western University, 1151 Richmond Street, London, Ontario N6A 3K7 Canada
| | - Stephen Harrow
- Department of Clinical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow, G12 0YN UK
| | - Joanna M. Laba
- Department of Oncology, Western University, 1151 Richmond Street, London, Ontario N6A 3K7 Canada
| | - X. Melody Qu
- Department of Oncology, Western University, 1151 Richmond Street, London, Ontario N6A 3K7 Canada
| | - George B. Rodrigues
- Department of Oncology, Western University, 1151 Richmond Street, London, Ontario N6A 3K7 Canada
| | - Brian P. Yaremko
- Department of Oncology, Western University, 1151 Richmond Street, London, Ontario N6A 3K7 Canada
| | - Edward Yu
- Department of Oncology, Western University, 1151 Richmond Street, London, Ontario N6A 3K7 Canada
| | - Alexander V. Louie
- Department of Radiation Oncology, Sunnybrook Cancer Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 Canada
| | - Inderdeep Dhaliwal
- Department of Respirology, Western University, 1151 Richmond Street, London, Ontario N6A 3K7 Canada
| | - Christopher J. Ryerson
- Department of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9 Canada
| |
Collapse
|
30
|
Mutter RW, Jethwa KR, Wan Chan Tseung HS, Wick SM, Kahila MMH, Viehman JK, Shumway DA, Corbin KS, Park SS, Remmes NB, Whitaker TJ, Beltran CJ. Incorporation of Biologic Response Variance Modeling Into the Clinic: Limiting Risk of Brachial Plexopathy and Other Late Effects of Breast Cancer Proton Beam Therapy. Pract Radiat Oncol 2019; 10:e71-e81. [PMID: 31494289 PMCID: PMC7734652 DOI: 10.1016/j.prro.2019.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/30/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
Purpose: The relative biologic effectiveness (RBE) rises with increasing linear energy transfer toward the end of proton tracks. Presently, there is no consensus on how RBE heterogeneity should be accounted for in breast cancer proton therapy treatment planning. Our purpose was to determine the dosimetric consequences of incorporating a brachial plexus (BP) biologic dose constraint and to describe other clinical implications of biologic planning. Methods and Materials: We instituted a biologic dose constraint for the BP in the context of MC1631, a randomized trial of conventional versus hypofractionated postmastectomy intensity modulated proton therapy (IMPT). IMPT plans of 13 patients treated before the implementation of the biologic dose constraint (cohort A) were compared with IMPT plans of 38 patients treated on MC1631 after its implementation (cohort B) using (1) a commercially available Eclipse treatment planning system (RBE = 1.1); (2) an in-house graphic processor unit-based Monte Carlo physical dose simulation (RBE = 1.1); and (3) an in-house Monte Carlo biologic dose (MCBD) simulation that assumes a linear relationship between RBE and dose-averaged linear energy transfer (product of RBE and physical dose = biologic dose). Results: Before implementation of a BP biologic dose constraint, the Eclipse mean BP D0.01 cm3 was 107%, and the MCBD estimate was 128% (ie, 64 Gy [RBE = biologic dose] in 25 fractions for a 50-Gy [RBE = 1.1] prescription), compared with 100.0% and 116.0%, respectively, after the implementation of the constraint. Implementation of the BP biologic dose constraint did not significantly affect clinical target volume coverage. MCBD plans predicted greater internal mammary node coverage and higher heart dose than Eclipse plans. Conclusions: Institution of a BP biologic dose constraint may reduce brachial plexopathy risk without compromising target coverage. MCBD plan evaluation provides valuable information to physicians that may assist in making clinical judgments regarding relative priority of target coverage versus normal tissue sparing.
Collapse
Affiliation(s)
- Robert W Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Stephanie M Wick
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Jason K Viehman
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Dean A Shumway
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Sean S Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
31
|
Lindberg K, Grozman V, Lindberg S, Onjukka E, Lax I, Lewensohn R, Wersäll P. Radiation-induced brachial plexus toxicity after SBRT of apically located lung lesions. Acta Oncol 2019; 58:1178-1186. [PMID: 31066326 DOI: 10.1080/0284186x.2019.1601255] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose: To evaluate the rate and dose response of brachial plexus toxicity post stereotactic body radiation therapy (SBRT) of apically situated lung lesions. Material/methods: We retrospectively identified all patients with apically located tumors, defined by the epicenter of the tumor being located superiorly to the aortic arch, and treated with SBRT between 2008 and 2013. Patients with a shorter follow-up than 6 months were excluded. Primary aim was to evaluate radiation-induced brachial plexopathy (RIBP). Dose to the plexus was assessed by a retrospective delineation of the brachial plexus on the CT used for treatment planning. Then, Dmax, D0.1cc, D1cc and D3.0cc of the brachial plexus were collected from the dose-volume histograms (DVH) and recalculated to the biologically effective dose (BED) using α/β = 3 Gy. A normal tissue complication probability (NTCP) model, based on four different dose-volume parameters (BED3,max, BED3,0.1cc, BED3,1.0cc, BED3,3.0cc) was fitted to the data. Results: Fifty-two patients with 56 apically located tumors were identified. Median prescription dose per fraction was 15 Gy (range 6-17) and median number of fractions was 3 (3-10). With a median follow-up of 30 months (6.1-72) seven patients experienced maximum grade 2 (scored 3 times) or 3 (scored 4 times) RIBP after a median of 8.7 months (range 4.0-31). Three patients had combined symptoms with pain, sensory and motor affection and four patients had isolated pain. Median BED3,max for the patients experiencing RIBP was 381 Gy (range 30-524) versus BED3,max of 34 Gy (range 0.10-483) for the patients without RIBP. The NTCP models showed a very high predictive ability (area under the receiver operating characteristic curve (AUC) 0.80-0.88). Conclusion: SBRT of apically located lung lesions may cause severe neurological symptoms; for a three-fraction treatment, we suggest that the maximum dose to the plexus should be kept ≤30 Gy (130 Gy BED3).
Collapse
Affiliation(s)
- Karin Lindberg
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Section of Head, Neck, Lung and Skin tumors, Department of Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Vitali Grozman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Section of Thoracic Radiology, Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Lindberg
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Onjukka
- Section of Radiotherapy Physics and Engineering, Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ingmar Lax
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Section of Radiotherapy Physics and Engineering, Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Section of Head, Neck, Lung and Skin tumors, Department of Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Wersäll
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Section of Radiotherapy, Department of Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Firouzjah RA, Banaei A, Farhood B, Bakhshandeh M. Dosimetric Comparison of Four Different Techniques for Supraclavicular Irradiation in 3D-conformal Radiotherapy of Breast Cancer. HEALTH PHYSICS 2019; 116:631-636. [PMID: 30608247 DOI: 10.1097/hp.0000000000000991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study aimed to compare and evaluated the dosimetric characteristics of esophagus, spinal cord, carotid artery, lungs, and brachial plexus in patients with breast cancer undergoing four various techniques of supraclavicular irradiation. By keeping unchanged the breast tangential radiotherapy fields, four different treatment field arrangements were created to irradiate the supraclavicular region as follows: (1) four field (4F; 1 anterior-posterior and 1 posterior-anterior), (2) six field (6F; 2 anterior-posterior and 2 posterior-anterior), (3) five field-1 (5F-1; 2 anterior-posterior and 1 posterior-anterior), and (4) five field-2 (5F-2; 1 anterior-posterior and 2 posterior-anterior). Then, the dosimetric parameters for the above-mentioned organs were evaluated. The mean dose (Dmean) of the esophagus had significant difference between 6F and 5F-2 techniques. For the spinal cord, the Dmean dosimetric parameter demonstrated significant difference between the 4F and 6F techniques, and between the 4F and 5F-1 techniques, with lower values for the 4F technique. There was no significant difference between the different irradiation techniques in all the dosimetric parameters for the carotid artery. The Dmean of the left lung significantly differed between the 4F and 5F-2 techniques, with lower values for the 5F-2 technique. Furthermore, the V20Gy dosimetric parameter had significant difference between the 4F and 6F, and also 4F and 5F-2, techniques with lower values for 5F-2. The maximum dose (Dmax) of the brachial plexus showed significant difference between the two techniques of 5F. The V45Gy dosimetric parameter of the brachial plexus revealed significant difference between the 4F and 6F techniques, and also between the 4F and 5F-1 techniques, with lower values for 5F-1. In general, these techniques had similar dosimetric results, with little differences. The dosimetric parameters for the esophagus and lung showed better results with the 5F-2 technique in comparison with other techniques. Dosimetric results for the brachial plexus and spinal cord improved with the 5F-1 and 4F techniques, respectively, against other techniques. Dose distribution for the carotid artery did not differ in the four irradiation techniques.
Collapse
Affiliation(s)
- Razzagh Abedi Firouzjah
- Department of Medical Physics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Banaei
- Department of Radiology, Faculty of Paramedical Sciences, AJA University of Medical Sciences, Tehran, Iran
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Bakhshandeh
- Radiation Technology Department, Allied Medical Sciences Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Wu X, Udupa JK, Tong Y, Odhner D, Pednekar GV, Simone CB, McLaughlin D, Apinorasethkul C, Apinorasethkul O, Lukens J, Mihailidis D, Shammo G, James P, Tiwari A, Wojtowicz L, Camaratta J, Torigian DA. AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases. Med Image Anal 2019; 54:45-62. [PMID: 30831357 PMCID: PMC6499546 DOI: 10.1016/j.media.2019.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/04/2018] [Accepted: 01/26/2019] [Indexed: 12/25/2022]
Abstract
Contouring (segmentation) of Organs at Risk (OARs) in medical images is required for accurate radiation therapy (RT) planning. In current clinical practice, OAR contouring is performed with low levels of automation. Although several approaches have been proposed in the literature for improving automation, it is difficult to gain an understanding of how well these methods would perform in a realistic clinical setting. This is chiefly due to three key factors - small number of patient studies used for evaluation, lack of performance evaluation as a function of input image quality, and lack of precise anatomic definitions of OARs. In this paper, extending our previous body-wide Automatic Anatomy Recognition (AAR) framework to RT planning of OARs in the head and neck (H&N) and thoracic body regions, we present a methodology called AAR-RT to overcome some of these hurdles. AAR-RT follows AAR's 3-stage paradigm of model-building, object-recognition, and object-delineation. Model-building: Three key advances were made over AAR. (i) AAR-RT (like AAR) starts off with a computationally precise definition of the two body regions and all of their OARs. Ground truth delineations of OARs are then generated following these definitions strictly. We retrospectively gathered patient data sets and the associated contour data sets that have been created previously in routine clinical RT planning from our Radiation Oncology department and mended the contours to conform to these definitions. We then derived an Object Quality Score (OQS) for each OAR sample and an Image Quality Score (IQS) for each study, both on a 1-to-10 scale, based on quality grades assigned to each OAR sample following 9 key quality criteria. Only studies with high IQS and high OQS for all of their OARs were selected for model building. IQS and OQS were employed for evaluating AAR-RT's performance as a function of image/object quality. (ii) In place of the previous hand-crafted hierarchy for organizing OARs in AAR, we devised a method to find an optimal hierarchy for each body region. Optimality was based on minimizing object recognition error. (iii) In addition to the parent-to-child relationship encoded in the hierarchy in previous AAR, we developed a directed probability graph technique to further improve recognition accuracy by learning and encoding in the model "steady" relationships that may exist among OAR boundaries in the three orthogonal planes. Object-recognition: The two key improvements over the previous approach are (i) use of the optimal hierarchy for actual recognition of OARs in a given image, and (ii) refined recognition by making use of the trained probability graph. Object-delineation: We use a kNN classifier confined to the fuzzy object mask localized by the recognition step and then fit optimally the fuzzy mask to the kNN-derived voxel cluster to bring back shape constraint on the object. We evaluated AAR-RT on 205 thoracic and 298 H&N (total 503) studies, involving both planning and re-planning scans and a total of 21 organs (9 - thorax, 12 - H&N). The studies were gathered from two patient age groups for each gender - 40-59 years and 60-79 years. The number of 3D OAR samples analyzed from the two body regions was 4301. IQS and OQS tended to cluster at the two ends of the score scale. Accordingly, we considered two quality groups for each gender - good and poor. Good quality data sets typically had OQS ≥ 6 and had distortions, artifacts, pathology etc. in not more than 3 slices through the object. The number of model-worthy data sets used for training were 38 for thorax and 36 for H&N, and the remaining 479 studies were used for testing AAR-RT. Accordingly, we created 4 anatomy models, one each for: Thorax male (20 model-worthy data sets), Thorax female (18 model-worthy data sets), H&N male (20 model-worthy data sets), and H&N female (16 model-worthy data sets). On "good" cases, AAR-RT's recognition accuracy was within 2 voxels and delineation boundary distance was within ∼1 voxel. This was similar to the variability observed between two dosimetrists in manually contouring 5-6 OARs in each of 169 studies. On "poor" cases, AAR-RT's errors hovered around 5 voxels for recognition and 2 voxels for boundary distance. The performance was similar on planning and replanning cases, and there was no gender difference in performance. AAR-RT's recognition operation is much more robust than delineation. Understanding object and image quality and how they influence performance is crucial for devising effective object recognition and delineation algorithms. OQS seems to be more important than IQS in determining accuracy. Streak artifacts arising from dental implants and fillings and beam hardening from bone pose the greatest challenge to auto-contouring methods.
Collapse
Affiliation(s)
- Xingyu Wu
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, 602 Goddard building, 3710 Hamilton Walk, 6th Floor, Rm 602W, Philadelphia, PA 19104, United States
| | - Jayaram K Udupa
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, 602 Goddard building, 3710 Hamilton Walk, 6th Floor, Rm 602W, Philadelphia, PA 19104, United States.
| | - Yubing Tong
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, 602 Goddard building, 3710 Hamilton Walk, 6th Floor, Rm 602W, Philadelphia, PA 19104, United States
| | - Dewey Odhner
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, 602 Goddard building, 3710 Hamilton Walk, 6th Floor, Rm 602W, Philadelphia, PA 19104, United States
| | - Gargi V Pednekar
- Quantitative Radiology Solutions, 3624 Market Street, Suite 5E, Philadelphia, PA 19104, United States
| | - Charles B Simone
- Department of Radiation Oncology, Maryland Proton Treatment Center, School of Medicine, University of Maryland 850W, Baltimore, MD 21201, United States
| | - David McLaughlin
- Quantitative Radiology Solutions, 3624 Market Street, Suite 5E, Philadelphia, PA 19104, United States
| | - Chavanon Apinorasethkul
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ontida Apinorasethkul
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - John Lukens
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Dimitris Mihailidis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Geraldine Shammo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Paul James
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Akhil Tiwari
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Lisa Wojtowicz
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Joseph Camaratta
- Quantitative Radiology Solutions, 3624 Market Street, Suite 5E, Philadelphia, PA 19104, United States
| | - Drew A Torigian
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, 602 Goddard building, 3710 Hamilton Walk, 6th Floor, Rm 602W, Philadelphia, PA 19104, United States
| |
Collapse
|
34
|
Standardizing Normal Tissue Contouring for Radiation Therapy Treatment Planning: An ASTRO Consensus Paper. Pract Radiat Oncol 2018; 9:65-72. [PMID: 30576843 DOI: 10.1016/j.prro.2018.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/29/2018] [Accepted: 12/08/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE The comprehensive identification and delineation of organs at risk (OARs) are vital to the quality of radiation therapy treatment planning and the safety of treatment delivery. This guidance aims to improve the consistency of ontouring OARs in external beam radiation therapy treatment planning by providing a single standardized resource for information regarding specific OARs to be contoured for each disease site. The guidance is organized in table format as a quality assurance tool for practices and a training resource for residents and other radiation oncology students (see supplementary materials). METHODS AND MATERIALS The Task Force formulated recommendations based on clinical practice and consensus. The draft manuscript was peer reviewed by 16 reviewers, the American Society for Radiation Oncology (ASTRO) legal counsel, and ASTRO's Multidisciplinary Quality Assurance Subcommittee and revised accordingly. The recommendations were posted on the ASTRO website for public comment in June 2018 for a 6-week period. The final document was approved by the ASTRO Board of Directors in August 2018. RESULTS Standardization improves patient safety, efficiency, and accuracy in radiation oncology treatment. This consensus guidance represents an ASTRO quality initiative to provide recommendations for the standardization of normal tissue contouring that is performed during external beam treatment planning for each anatomic treatment site. Table 1 defines 2 sets of structures for anatomic sites: Those that are recommended in all adult definitive cases and may assist with organ selection for palliative cases, and those that should be considered on a case-by-case basis depending on the specific clinical scenario. Table 2 outlines some of the resources available to define the parameters of general OAR tissue delineation. CONCLUSIONS Using this paper in conjunction with resources that define tissue parameters and published dose constraints will enable practices to develop a consistent approach to normal tissue evaluation and dose documentation.
Collapse
|
35
|
|
36
|
Li CH, Wu VW, Chiu G. A dosimetric evaluation on applying RTOG-based and CT/MRI-based delineation methods to brachial plexus in radiotherapy of nasopharyngeal carcinoma treated with helical tomotherapy. Br J Radiol 2018; 92:20170881. [PMID: 29714086 DOI: 10.1259/bjr.20170881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE In radiotherapy of nasopharyngeal carcinoma (NPC) patients, the brachial plexus (BP) situated at both sides of the neck is often irradiated to high dose. This study was to evaluate different BP delineation methods and analyse the dosimetric consequences when applying BP dose constraints in radiotherapy planning of NPC. METHODS 15 NPC cases radically treated with helical tomotherapy were recruited. Apart from the original treatment plan (Plan A), two new plans (Plans B and C) with additional BP dose constraints were computed using the same planning CT images, structures and planning parameters. Plan B consisted of BP contours based on Radiation Therapy Oncology Group (RTOG)-endorsed atlas; while those in Plan C were based on MR images registered with the planning CT images. RESULTS The mean BP volume by RTOG method was 19.04 ± 3.50 cm3 vs 10.44 ± 2.00 cm3 by CT/MRI method. The mean BP overlapping volume between the two contouring methods was 1.9 cm3 (0.38-4.03 cm3). There was significant difference between two methods (p < 0.001). The average Dmax, Dmean, D5%, D10% and D15% of both sides of BP in Plan A were significantly higher than those in both Plan B and Plan C. There were no significant dose differences in the targets and organs at risk (OARs) after applying dose constraints in Plan B and Plan C. CONCLUSION RTOG method was recommended since larger BP volume provided better protection. Applying BP dose constraints during tomotherapy plan optimisation for NPC patients could significantly reduce the BP dose (p < 0.05) without compromising the doses to the targets and other OARs. ADVANCES IN KNOWLEDGE This is the first study comparing the delineation method based on RTOG-endorsed atlas with the conventional CT/MRI delineation method for BP in tomotherapy of NPC patients. Our results showed that BP dose could be significantly reduced after applying the dose constraints without compromising the doses to the target volumes and other OARs. The RTOG method was more favoured as it gave a relatively larger BP volume and therefore offered better organ sparing.
Collapse
Affiliation(s)
- Chi-Him Li
- Department of Radiotherapy, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Vincent Wc Wu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - George Chiu
- Department of Radiotherapy, Hong Kong Sanatorium & Hospital, Hong Kong, China
| |
Collapse
|
37
|
Sood SS, McClinton C, Badkul R, Aguilera N, Wang F, Chen AM. Brachial plexopathy after stereotactic body radiation therapy for apical lung cancer: Dosimetric analysis and preliminary clinical outcomes. Adv Radiat Oncol 2018; 3:81-86. [PMID: 29556585 PMCID: PMC5856987 DOI: 10.1016/j.adro.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/17/2017] [Accepted: 10/03/2017] [Indexed: 12/25/2022] Open
Abstract
Purpose The treatment of apical lung tumors with stereotactic body radiation therapy (SBRT) is challenging due to the proximity of the brachial plexus and the concern for nerve damage. Methods and materials Between June 2009 and February 2017, a total of 75 consecutive patients underwent SBRT for T1-T3N0 non-small cell lung cancer involving the upper lobe of the lung. All patients were treated with 4-dimensional computed tomography (CT)-based image guided SBRT to a dose of 40 to 60 Gy in 3 to 5 fractions. For dosimetric analysis, only apical tumors as defined by the location of the tumor epicenter superior to the aortic arch were included. The anatomical brachial plexus was delineated using the Radiation Therapy Oncology Group atlas. Results Thirty-one patients with 31 apical lung tumors satisfied the anatomical criteria for inclusion. The median age was 73 years (range, 58-89). The median planning target volume was 26.5 cc (range, 8.2-81.4 cc). The median brachial plexus, brachial plexus maximum dose (Dmax), Dmax per fraction, V22 (cc, 3-4 fractions), V30 (cc, 5 fractions), and biologically effective dose 3 Gy were 15.8 Gy (range, 1.7-66.5 Gy), 3.4 Gy (range, 0.6-14.7 Gy), 0.0 cc (range, 0-0.9 cc), 0.06 cc (range, 0-2.5 cc), and 31.5 Gy (range, 3.3-133.1 Gy), respectively. At a median follow-up of 17 months, the observed incidence of brachial plexopathy was 0%. Conclusions There is significant variation in dose to the brachial plexus for patients treated with SBRT for apical lung tumors. Although the incidence of neuropathic symptoms in this series was zero, further attention should be focused on the clinical implications of these findings.
Collapse
Affiliation(s)
- Sumit S Sood
- Department of Radiation Oncology, The University of Kansas School of Medicine, Kansas City, Kansas
| | - Christopher McClinton
- Department of Radiation Oncology, The University of Kansas School of Medicine, Kansas City, Kansas
| | - Rajeev Badkul
- Department of Radiation Oncology, The University of Kansas School of Medicine, Kansas City, Kansas
| | - Nathan Aguilera
- Department of Radiation Oncology, The University of Kansas School of Medicine, Kansas City, Kansas
| | - Fen Wang
- Department of Radiation Oncology, The University of Kansas School of Medicine, Kansas City, Kansas
| | - Allen M Chen
- Department of Radiation Oncology, The University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
38
|
De Rose F, Franceschini D, Reggiori G, Stravato A, Navarria P, Ascolese AM, Tomatis S, Mancosu P, Scorsetti M. Organs at risk in lung SBRT. Phys Med 2017; 44:131-138. [PMID: 28433508 DOI: 10.1016/j.ejmp.2017.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/24/2017] [Accepted: 04/09/2017] [Indexed: 12/23/2022] Open
Abstract
Lung stereotactic body radiotherapy (SBRT) is an accurate and precise technique to treat lung tumors with high 'ablative' doses. Given the encouraging data in terms of local control and toxicity profile, SBRT has currently become a treatment option for both early stage lung cancer and lung oligometastatic disease in patients who are medically inoperable or refuse surgical resection. Dose-adapted fractionation schedules and ongoing prospective trials should provide further evidence of SBRT safety trying to reduce toxicities and complications. In this heterogeneous scenario, a non-systematic review of dose constraints for lung SBRT was performed, including the main organs at risk in the thorax.
Collapse
Affiliation(s)
- F De Rose
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy
| | - D Franceschini
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy
| | - G Reggiori
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy
| | - A Stravato
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy.
| | - P Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy
| | - A M Ascolese
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy
| | - S Tomatis
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy
| | - P Mancosu
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy
| | - M Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy; Depart ment of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
39
|
Stützer K, Jakobi A, Bandurska-Luque A, Barczyk S, Arnsmeyer C, Löck S, Richter C. Potential proton and photon dose degradation in advanced head and neck cancer patients by intratherapy changes. J Appl Clin Med Phys 2017; 18:104-113. [PMID: 28921843 PMCID: PMC5689930 DOI: 10.1002/acm2.12189] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/28/2017] [Accepted: 08/21/2017] [Indexed: 12/25/2022] Open
Abstract
Purpose Evaluation of dose degradation by anatomic changes for head‐and‐neck cancer (HNC) intensity‐modulated proton therapy (IMPT) relative to intensity‐modulated photon therapy (IMRT) and identification of potential indicators for IMPT treatment plan adaptation. Methods For 31 advanced HNC datasets, IMPT and IMRT plans were recalculated on a computed tomography scan (CT) taken after about 4 weeks of therapy. Dose parameter changes were determined for the organs at risk (OARs) spinal cord, brain stem, parotid glands, brachial plexus, and mandible, for the clinical target volume (CTV) and the healthy tissue outside planning target volume (PTV). Correlation of dose degradation with target volume changes and quality of rigid CT matching was investigated. Results Recalculated IMPT dose distributions showed stronger degradation than the IMRT doses. OAR analysis revealed significant changes in parotid median dose (IMPT) and near maximum dose (D1ml) of spinal cord (IMPT, IMRT) and mandible (IMPT). OAR dose parameters remained lower in IMPT cases. CTV coverage (V95%) and overdose (V107%) deteriorated for IMPT plans to (93.4 ± 5.4)% and (10.6 ± 12.5)%, while those for IMRT plans remained acceptable. Recalculated plans showed similarly decreased PTV conformity, but considerable hotspots, also outside the PTV, emerged in IMPT cases. Lower CT matching quality was significantly correlated with loss of PTV conformity (IMPT, IMRT), CTV homogeneity and coverage (IMPT). Target shrinkage correlated with increased dose in brachial plexus (IMRT, IMPT), hotspot generation outside the PTV (IMPT) and lower PTV conformity (IMRT). Conclusions The study underlines the necessity of precise positioning and monitoring of anatomy changes, especially in IMPT which might require adaptation more often. Since OAR doses remained typically below constraints, IMPT plan adaptation will be indicated by target dose degradations.
Collapse
Affiliation(s)
- Kristin Stützer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Fetscherstr. 74, PF 41, 01307, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Annika Jakobi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Fetscherstr. 74, PF 41, 01307, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Bautzner Landstr. 400, 01328, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Anna Bandurska-Luque
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Fetscherstr. 74, PF 41, 01307, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Steffen Barczyk
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Fetscherstr. 74, PF 41, 01307, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Carolin Arnsmeyer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Fetscherstr. 74, PF 41, 01307, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Fetscherstr. 74, PF 41, 01307, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Christian Richter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Fetscherstr. 74, PF 41, 01307, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Bautzner Landstr. 400, 01328, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden, Germany and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192, Heidelberg, Germany
| |
Collapse
|
40
|
Chen AM, Yoshizaki T, Velez MA, Mikaeilian AG, Hsu S, Cao M. Tolerance of the Brachial Plexus to High-Dose Reirradiation. Int J Radiat Oncol Biol Phys 2017; 98:83-90. [PMID: 28587056 DOI: 10.1016/j.ijrobp.2017.01.244] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/13/2017] [Accepted: 01/31/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To study the tolerance of the brachial plexus to high doses of radiation exceeding historically accepted limits by analyzing human subjects treated with reirradiation for recurrent tumors of the head and neck. METHODS AND MATERIALS Data from 43 patients who were confirmed to have received overlapping dose to the brachial plexus after review of radiation treatment plans from the initial and reirradiation courses were used to model the tolerance of this normal tissue structure. A standardized instrument for symptoms of neuropathy believed to be related to brachial plexus injury was utilized to screen for toxicity. Cumulative dose was calculated by fusing the initial dose distributions onto the reirradiation plan, thereby creating a composite plan via deformable image registration. The median elapsed time from the initial course of radiation therapy to reirradiation was 24 months (range, 3-144 months). RESULTS The dominant complaints among patients with symptoms were ipsilateral pain (54%), numbness/tingling (31%), and motor weakness and/or difficulty with manual dexterity (15%). The cumulative maximum dose (Dmax) received by the brachial plexus ranged from 60.5 Gy to 150.1 Gy (median, 95.0 Gy). The cumulative mean (Dmean) dose ranged from 20.2 Gy to 111.5 Gy (median, 63.8 Gy). The 1-year freedom from brachial plexus-related neuropathy was 67% and 86% for subjects with a cumulative Dmax greater than and less than 95.0 Gy, respectively (P=.05). The 1-year complication-free rate was 66% and 87%, for those reirradiated within and after 2 years from the initial course, respectively (P=.06). CONCLUSION The development of brachial plexus-related symptoms was less than expected owing to repair kinetics and to the relatively short survival of the subject population. Time-dose factors were demonstrated to be predictive of complications.
Collapse
Affiliation(s)
- Allen M Chen
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Taeko Yoshizaki
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Maria A Velez
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Argin G Mikaeilian
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sophia Hsu
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Minsong Cao
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
41
|
Sharma M, Bennett EE, Rahmathulla G, Chao ST, Koech HK, Gregory SN, Emch T, Magnelli A, Meola A, Suh JH, Angelov L. Impact of cervicothoracic region stereotactic spine radiosurgery on adjacent organs at risk. Neurosurg Focus 2017; 42:E14. [DOI: 10.3171/2016.10.focus16364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE
Stereotactic radiosurgery (SRS) of the spine is a conformal method of delivering a high radiation dose to a target in a single or few (usually ≤ 5) fractions with a sharp fall-off outside the target volume. Although efforts have been focused on evaluating spinal cord tolerance when treating spinal column metastases, no study has formally evaluated toxicity to the surrounding organs at risk (OAR), such as the brachial plexus or the oropharynx, when performing SRS in the cervicothoracic region. The aim of this study was to evaluate the radiation dosimetry and the acute and delayed toxicities of SRS on OAR in such patients.
METHODS
Fifty-six consecutive patients (60 procedures) with a cervicothoracic spine tumor involving segments within C5–T1 who were treated using single-fraction SRS between February 2006 and July 2014 were included in the study. Each patient underwent CT simulation and high-definition MRI before treatment. The clinical target volume and OAR were contoured on BrainScan and iPlan software after image fusion. Radiation toxicity was evaluated using the common toxicity criteria for adverse events and correlated to the radiation doses delivered to these regions. The incidence of vertebral body compression fracture (VCF) before and after SRS was evaluated also.
RESULTS
Metastatic lesions constituted the majority (n = 52 [93%]) of tumors treated with SRS. Each patient was treated with a median single prescription dose of 16 Gy to the target. The median percentage of tumor covered by SRS was 93% (maximum target dose 18.21 Gy). The brachial plexus received the highest mean maximum dose of 17 Gy, followed by the esophagus (13.8 Gy) and spinal cord (13 Gy). A total of 14 toxicities were encountered in 56 patients (25%) during the study period. Overall, 14% (n = 8) of the patients had Grade 1 toxicity, 9% (n = 5) had Grade 2 toxicity, 2% (n = 1) had Grade 3 toxicity, and none of the patients had Grade 4 or 5 toxicity. The most common (12%) toxicity was dysphagia/odynophagia, followed by axial spine pain flare or painful radiculopathy (9%). The maximum radiation dose to the brachial plexus showed a trend toward significance (p = 0.066) in patients with worsening post-SRS pain. De novo and progressive VCFs after SRS were noted in 3% (3 of 98) and 4% (4 of 98) of vertebral segments, respectively.
CONCLUSIONS
From the analysis, the current SRS doses used at the Cleveland Clinic seem safe and well tolerated at the cervicothoracic junction. These preliminary data provide tolerance benchmarks for OAR in this region. Because the effect of dose-escalation SRS strategies aimed at improving local tumor control needs to be balanced carefully with associated treatment-related toxicity on adjacent OAR, larger prospective studies using such approaches are needed.
Collapse
Affiliation(s)
| | | | | | - Samuel T. Chao
- 2Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, and
| | | | | | - Todd Emch
- 3Imaging Institute, Section of Neuroradiology, Cleveland Clinic, Cleveland, Ohio; and
| | - Anthony Magnelli
- 2Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, and
| | | | - John H. Suh
- 2Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, and
| | | |
Collapse
|
42
|
Boisselier P, Racadot S, Thariat J, Graff P, Pointreau Y. Radiothérapie conformationnelle avec modulation d’intensité des cancers des voies aérodigestives supérieures. Dose de tolérance des tissus sains : moelle épinière et plexus brachial. Cancer Radiother 2016; 20:459-66. [DOI: 10.1016/j.canrad.2016.08.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/25/2022]
|
43
|
Comparison of CT-volumed supraclavicular fossa radiotherapy planning and conventional simulator-planned defined by bony landmarks for early breast cancer. Rep Pract Oncol Radiother 2016; 21:219-24. [PMID: 27601954 DOI: 10.1016/j.rpor.2016.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 10/14/2015] [Accepted: 02/16/2016] [Indexed: 11/23/2022] Open
Abstract
AIM A comparison of techniques, CT planning of the supraclavicular fossa and field based simulation. We highlight CT planned SCF radiotherapy which would be useful for a centre introducing the technique. BACKGROUND Development of radiotherapy technique includes a move from field-based simulation to CT planning. MATERIALS AND METHODS We conducted a retrospective review of the first 50 patients receiving radiotherapy according to the 3D CT planning protocol. Production of the previous field based technique, by virtual simulation methods on the same 50 patient CT data sets allowed both techniques to be compared for beam energy, field size, planning target volume (PTV) minimum and maximum, mean doses, depth dose normalisation, V40% lung volume and brachial plexus. RESULTS 88% CT-volumed plans received mean dose within ICRU recommended limits compared with only 8% using previous conventional technique. 76% required 10 MV to improve coverage and one patient (2%) an opposed posterior field. The mean normalisation depth was 4.5 cm (range 1.9-7.7 cm) compared with pre-set 3 cm of the conventional technique. With CT-volumed technique the whole lung volume exposed to V40%, including the tangential fields, reduced from 10.79% to 9.64% (p < 0.001) but the mean maximum brachial plexus dose increased from 48.9 Gy to 51.6 Gy (p < 0.001). CONCLUSIONS Dose coverage of the SCF PTV was greatly improved for plans produced from 3DCT volumes compared to field based techniques.
Collapse
|
44
|
Giraud P, Lacornerie T, Mornex F. Radiothérapie des cancers primitifs du poumon. Cancer Radiother 2016; 20 Suppl:S147-56. [DOI: 10.1016/j.canrad.2016.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Lapeyre M, Biau J, Racadot S, Moreira J, Berger L, Peiffert D. Radiothérapie des cancers de la cavité buccale. Cancer Radiother 2016; 20 Suppl:S116-25. [DOI: 10.1016/j.canrad.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Noël G, Antoni D, Barillot I, Chauvet B. Délinéation des organes à risque et contraintes dosimétriques. Cancer Radiother 2016; 20 Suppl:S36-60. [DOI: 10.1016/j.canrad.2016.07.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Zietman AL. The Red Journal's Top Downloads of 2015. Int J Radiat Oncol Biol Phys 2016; 95:861-863. [PMID: 27302501 DOI: 10.1016/j.ijrobp.2016.02.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/25/2022]
|
48
|
Mattes MD, Zhou Y, Berry SL, Barker CA. Dosimetric comparison of axilla and groin radiotherapy techniques for high-risk and locally advanced skin cancer. Radiat Oncol J 2016; 34:145-55. [PMID: 27306779 PMCID: PMC4938352 DOI: 10.3857/roj.2015.01592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/02/2016] [Accepted: 03/10/2016] [Indexed: 12/25/2022] Open
Abstract
Purpose: Radiation therapy targeting axilla and groin lymph nodes improves regional disease control in locally advanced and high-risk skin cancers. However, trials generally used conventional two-dimensional radiotherapy (2D-RT), contributing towards relatively high rates of side effects from treatment. The goal of this study is to determine if three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or volumetric-modulated arc therapy (VMAT) may improve radiation delivery to the target while avoiding organs at risk in the clinical context of skin cancer regional nodal irradiation. Materials and Methods: Twenty patients with locally advanced/high-risk skin cancers underwent computed tomography simulation. The relevant axilla or groin planning target volumes and organs at risk were delineated using standard definitions. Paired t-tests were used to compare the mean values of several dose-volumetric parameters for each of the 4 techniques. Results: In the axilla, the largest improvement for 3D-CRT compared to 2D-RT was for homogeneity index (13.9 vs. 54.3), at the expense of higher lung V20 (28.0% vs. 12.6%). In the groin, the largest improvements for 3D-CRT compared to 2D-RT were for anorectum Dmax (13.6 vs. 38.9 Gy), bowel D200cc (7.3 vs. 23.1 Gy), femur D50 (34.6 vs. 57.2 Gy), and genitalia Dmax (37.6 vs. 51.1 Gy). IMRT had further improvements compared to 3D-CRT for humerus Dmean (16.9 vs. 22.4 Gy), brachial plexus D5 (57.4 vs. 61.3 Gy), bladder D5 (26.8 vs. 36.5 Gy), and femur D50 (18.7 vs. 34.6 Gy). Fewer differences were observed between IMRT and VMAT. Conclusion: Compared to 2D-RT and 3D-CRT, IMRT and VMAT had dosimetric advantages in the treatment of nodal regions of skin cancer patients.
Collapse
Affiliation(s)
- Malcolm D Mattes
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying Zhou
- Department of Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean L Berry
- Department of Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher A Barker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
49
|
Early transient radiation-induced brachial plexopathy in locally advanced head and neck cancer. Contemp Oncol (Pozn) 2016; 20:67-72. [PMID: 27095943 PMCID: PMC4829741 DOI: 10.5114/wo.2015.55876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 12/15/2014] [Indexed: 12/25/2022] Open
Abstract
AIM OF THE STUDY Early transient brachial plexopathy following radiotherapy (RT) in patients with head and neck cancer may be underreported and associated with a dose-response. Our purpose was to determine the incidence of early transient radiation-ınduced brachial plexopathy (RIBP) in patients receiving primary RT (± chemotherapy) for locally advanced head and neck cancer (HNC). MATERIAL AND METHODS Twenty-seven locally advanced HNC patients who have no finding of brachial plexopathy at the diagnosis were evaluated 3 times by a specifically developed 13-item questionnaire for determining early transient RIBP. The 54 brachial plexus in 27 patients were delineated and dose volume histograms were calculated. RESULTS Median follow-up period was 28 (range: 15-40) months. The mean BP volume was 7.9 ±3.6 cm(3), and the mean and maximum doses to the BP were 45.3 (range: 32.3-59.3) Gy, and 59.4 (range: 41.4-70.3) Gy, respectively. Maximum dose to the BP was ≥ 70 Gy only in 2 nasopharyngeal cancer patients. Two (7%) early transient RIBP were reported at 7(th) and 8(th) month after RT under maximum 67.17 and 55.37 Gy, and mean 52.95 and 38.60 Gy RT doses. CONCLUSIONS Two (7%) early RIBP were seen in the patient group, although brachial plexus maximum doses were ≥ 66 Gy in 75% of patients.
Collapse
|
50
|
Van de Velde J, Wouters J, Vercauteren T, De Gersem W, Achten E, De Neve W, Van Hoof T. Optimal number of atlases and label fusion for automatic multi-atlas-based brachial plexus contouring in radiotherapy treatment planning. Radiat Oncol 2016; 11:1. [PMID: 26743131 PMCID: PMC4705618 DOI: 10.1186/s13014-015-0579-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/30/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The present study aimed to define the optimal number of atlases for automatic multi-atlas-based brachial plexus (BP) segmentation and to compare Simultaneous Truth and Performance Level Estimation (STAPLE) label fusion with Patch label fusion using the ADMIRE® software. The accuracy of the autosegmentations was measured by comparing all of the generated autosegmentations with the anatomically validated gold standard segmentations that were developed using cadavers. MATERIALS AND METHODS Twelve cadaver computed tomography (CT) atlases were used for automatic multi-atlas-based segmentation. To determine the optimal number of atlases, one atlas was selected as a patient and the 11 remaining atlases were registered onto this patient using a deformable image registration algorithm. Next, label fusion was performed by using every possible combination of 2 to 11 atlases, once using STAPLE and once using Patch. This procedure was repeated for every atlas as a patient. The similarity of the generated automatic BP segmentations and the gold standard segmentation was measured by calculating the average Dice similarity (DSC), Jaccard (JI) and True positive rate (TPR) for each number of atlases. These similarity indices were compared for the different number of atlases using an equivalence trial and for the two label fusion groups using an independent sample-t test. RESULTS DSC's and JI's were highest when using nine atlases with both STAPLE (average DSC = 0,532; JI = 0,369) and Patch (average DSC = 0,530; JI = 0,370). When comparing both label fusion algorithms using 9 atlases for both, DSC and JI values were not significantly different. However, significantly higher TPR values were achieved in favour of STAPLE (p < 0,001). When fewer than four atlases were used, STAPLE produced significantly lower DSC, JI and TPR values than did Patch (p = 0,0048). CONCLUSIONS Using 9 atlases with STAPLE label fusion resulted in the most accurate BP autosegmentations (average DSC = 0,532; JI = 0,369 and TPR = 0,760). Only when using fewer than four atlases did the Patch label fusion results in a significantly more accurate autosegmentation than STAPLE.
Collapse
Affiliation(s)
- Joris Van de Velde
- Department of Anatomy, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
- Department of Radiotherapy, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Johan Wouters
- Department of Anatomy, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Tom Vercauteren
- Department of Radiotherapy, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Werner De Gersem
- Department of Radiotherapy, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Eric Achten
- Department of Radiology, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Wilfried De Neve
- Department of Radiotherapy, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Tom Van Hoof
- Department of Anatomy, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| |
Collapse
|