1
|
Sabri ME, Moghaddasi L, Wilson P, Saran F, Bezak E. Targeted Alpha Therapy for Glioblastoma: Review on In Vitro, In Vivo and Clinical Trials. Target Oncol 2024; 19:511-531. [PMID: 38836953 PMCID: PMC11230998 DOI: 10.1007/s11523-024-01071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
Glioblastoma (GB), a prevalent and highly malignant primary brain tumour with a very high mortality rate due to its resistance to conventional therapies and invasive nature, resulting in 5-year survival rates of only 4-17%. Despite recent advancements in cancer management, the survival rates for GB patients have not significantly improved over the last 10-20 years. Consequently, there exists a critical unmet need for innovative therapies. One promising approach for GB is Targeted Alpha Therapy (TAT), which aims to selectively deliver potentially therapeutic radiation doses to malignant cells and the tumour microenvironment while minimising radiation exposure to surrounding normal tissue with or without conventional external beam radiation. This approach has shown promise in both pre-clinical and clinical settings. A review was conducted following PRISMA 2020 guidelines across Medline, SCOPUS, and Embase, identifying 34 relevant studies out of 526 initially found. In pre-clinical studies, TAT demonstrated high binding specificity to targeted GB cells, with affinity rates between 60.0% and 84.2%, and minimal binding to non-targeted cells (4.0-5.6%). This specificity significantly enhanced cytotoxic effects and improved biodistribution when delivered intratumorally. Mice treated with TAT showed markedly higher median survival rates compared to control groups. In clinical trials, TAT applied to recurrent GB (rGB) displayed varying success rates in extending overall survival (OS) and progression-free survival. Particularly effective when integrated into treatment regimens for both newly diagnosed and recurrent cases, TAT increased the median OS by 16.1% in newly diagnosed GB and by 36.4% in rGB, compared to current standard therapies. Furthermore, it was generally well tolerated with minimal adverse effects. These findings underscore the potential of TAT as a viable therapeutic option in the management of GB.
Collapse
Affiliation(s)
- Maram El Sabri
- Allied Health and Human Performance, University of South Australia, University of South Australia City East Campus, Adelaide, SA, 5001, Australia.
| | - Leyla Moghaddasi
- Department of Medical Physics, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Puthenparampil Wilson
- UniSA STEM, University of South Australia, Adelaide, SA, 5001, Australia
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, Australia
| | - Frank Saran
- Allied Health and Human Performance, University of South Australia, University of South Australia City East Campus, Adelaide, SA, 5001, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, SA, 5000, Australia
- Department of Radiotherapy, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Eva Bezak
- Allied Health and Human Performance, University of South Australia, University of South Australia City East Campus, Adelaide, SA, 5001, Australia
| |
Collapse
|
2
|
Rosenkranz AA, Slastnikova TA. Prospects of Using Protein Engineering for Selective Drug Delivery into a Specific Compartment of Target Cells. Pharmaceutics 2023; 15:pharmaceutics15030987. [PMID: 36986848 PMCID: PMC10055131 DOI: 10.3390/pharmaceutics15030987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A large number of proteins are successfully used to treat various diseases. These include natural polypeptide hormones, their synthetic analogues, antibodies, antibody mimetics, enzymes, and other drugs based on them. Many of them are demanded in clinical settings and commercially successful, mainly for cancer treatment. The targets for most of the aforementioned drugs are located at the cell surface. Meanwhile, the vast majority of therapeutic targets, which are usually regulatory macromolecules, are located inside the cell. Traditional low molecular weight drugs freely penetrate all cells, causing side effects in non-target cells. In addition, it is often difficult to elaborate a small molecule that can specifically affect protein interactions. Modern technologies make it possible to obtain proteins capable of interacting with almost any target. However, proteins, like other macromolecules, cannot, as a rule, freely penetrate into the desired cellular compartment. Recent studies allow us to design multifunctional proteins that solve these problems. This review considers the scope of application of such artificial constructs for the targeted delivery of both protein-based and traditional low molecular weight drugs, the obstacles met on the way of their transport to the specified intracellular compartment of the target cells after their systemic bloodstream administration, and the means to overcome those difficulties.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
3
|
Rosenkranz AA, Slastnikova TA, Durymanov MO, Georgiev GP, Sobolev AS. Exploiting active nuclear import for efficient delivery of Auger electron emitters into the cell nucleus. Int J Radiat Biol 2023; 99:28-38. [PMID: 32856963 DOI: 10.1080/09553002.2020.1815889] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The most attractive features of Auger electrons (AEs) in cancer therapy are their extremely short range and sufficiently high linear energy transfer (LET) for a majority of them. The cytotoxic effects of AE emitters can be realized only in close vicinity to sensitive cellular targets and they are negligible if the emitters are located outside the cell. The nucleus is considered the compartment most sensitive to high LET particles. Therefore, the use of AE emitters could be most useful in specific recognition of a cancer cell and delivery of AE emitters into its nucleus. PURPOSE This review describes the studies aimed at developing effective anticancer agents for the delivery of AE emitters to the nuclei of target cancer cells. The use of peptide-based conjugates, nanoparticles, recombinant proteins, and other constructs for AE emitter targeted intranuclear delivery as well as their advantages and limitations are discussed. CONCLUSION Transport from the cytoplasm to the nucleus along with binding to the cancer cell is one of the key stages in the delivery of AE emitters; therefore, several constructs for exploitation of this transport have been developed. The transport is carried out through a nuclear pore complex (NPC) with the use of specific amino acid nuclear localization sequences (NLS) and carrier proteins named importins, which are located in the cytosol. Therefore, the effectiveness of NLS-containing delivery constructs designed to provide energy-dependent transport of AE emitter into the nuclei of cancer cells also depends on their efficient entry into the cytosol of the target cell.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | - Alexander S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Voltà-Durán E, Sánchez JM, Parladé E, Serna N, Vazquez E, Unzueta U, Villaverde A. The Diphtheria Toxin Translocation Domain Impairs Receptor Selectivity in Cancer Cell-Targeted Protein Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14122644. [PMID: 36559138 PMCID: PMC9781143 DOI: 10.3390/pharmaceutics14122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Protein-based materials intended as nanostructured drugs or drug carriers are progressively gaining interest in nanomedicine, since their structure, assembly and cellular interactivity can be tailored by recruiting functional domains. The main bottleneck in the development of deliverable protein materials is the lysosomal degradation that follows endosome maturation. This is especially disappointing in the case of receptor-targeted protein constructs, which, while being highly promising and in demand in precision medicines, enter cells via endosomal/lysosomal routes. In the search for suitable protein agents that might promote endosome escape, we have explored the translocation domain (TD) of the diphtheria toxin as a functional domain in CXCR4-targeted oligomeric nanoparticles designed for cancer therapies. The pharmacological interest of such protein materials could be largely enhanced by improving their proteolytic stability. The incorporation of TD into the building blocks enhances the amount of the material detected inside of exposed CXCR4+ cells up to around 25-fold, in absence of cytotoxicity. This rise cannot be accounted for by endosomal escape, since the lysosomal degradation of the new construct decreases only moderately. On the other hand, a significant loss in the specificity of the CXCR4-dependent cellular penetration indicates the unexpected role of the toxin segment as a cell-penetrating peptide in a dose-dependent and receptor-independent fashion. These data reveal that the diphtheria toxin TD displayed on receptor-targeted oligomeric nanoparticles partially abolishes the exquisite receptor specificity of the parental material and it induces nonspecific internalization in mammalian cells.
Collapse
Affiliation(s)
- Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Julieta M. Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET-Universidad Nacional de Córdoba, Av. Velez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, 08025 Barcelona, Spain
- Correspondence: (U.U.); (A.V.)
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (U.U.); (A.V.)
| |
Collapse
|
5
|
Recent progress of astatine-211 in endoradiotherapy: Great advances from fundamental properties to targeted radiopharmaceuticals. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Krolicki L, Kunikowska J, Bruchertseifer F, Koziara H, Morgenstern A, Krolicki B, Rosiak E, Pawlak D, Merlo A. Nuclear medicine therapy of CNS tumors. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Li Y, Marcu LG, Hull A, Bezak E. Radioimmunotherapy of glioblastoma multiforme - Current status and future prospects. Crit Rev Oncol Hematol 2021; 163:103395. [PMID: 34119657 DOI: 10.1016/j.critrevonc.2021.103395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma multiforme (GBM) or grade IV astrocytoma is the most diagnosed form of primary brain tumours in adults. Radioimmunotherapy (RIT), mostly in combination with conventional therapies, is presented in the current review as a therapeutic strategy of high potential in the management of GBM. A systematic literature search was performed following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) to identify clinical studies that employed a form of radioimmunotherapy using alpha- or beta-emitting radioisotopes. The available literature on RIT in GBM and high-grade gliomas is presented and discussed. The results suggest that this promising treatment approach merits further investigation in future clinical studies.
Collapse
Affiliation(s)
- Yanrui Li
- Cancer Research Institute, University of South Australia, Adelaide, SA, 5001, Australia
| | - Loredana G Marcu
- Cancer Research Institute, University of South Australia, Adelaide, SA, 5001, Australia; Faculty of Informatics and Science, University of Oradea, Oradea, 410087, Romania
| | - Ashleigh Hull
- Cancer Research Institute, University of South Australia, Adelaide, SA, 5001, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, SA, 5001, Australia; Department of Physics, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
8
|
Rosenkranz AA, Slastnikova TA. Epidermal Growth Factor Receptor: Key to Selective Intracellular Delivery. BIOCHEMISTRY (MOSCOW) 2021; 85:967-1092. [PMID: 33050847 DOI: 10.1134/s0006297920090011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidermal growth factor receptor (EGFR) is an integral surface protein mediating cellular response to a number of growth factors. Its overexpression and increased activation due to mutations is one of the most common traits of many types of cancer. Development and clinical use of the agents, which block EGFR activation, became a prime example of the personalized targeted medicine. However, despite the obvious success in this area, cancer cure remains unattainable in most cases. Because of that, as well as the result of the search for possible ways to overcome the difficulties of treatment, a huge number of new treatment methods relying on the use of EGFR overexpression and its changes to destroy cancer cells. Modern data on the structure, functioning, and intracellular transport of EGFR, its natural ligands, as well as signaling cascades triggered by the EGFR activation, peculiarities of the EGFR expression and activation in oncological disorders, as well as applied therapeutic approaches aimed at blocking EGFR signaling pathway are summarized and analyzed in this review. Approaches to the targeted delivery of various chemotherapeutic agents, radionuclides, immunotoxins, photosensitizers, as well as the prospects for gene therapy aimed at cancer cells with EGFR overexpression are reviewed in detail. It should be noted that increasing attention is being paid nowadays to the development of multifunctional systems, either carrying several different active agents, or possessing several environment-dependent transport functions. Potentials of the systems based on receptor-mediated endocytosis of EGFR and their possible advantages and limitations are discussed.
Collapse
Affiliation(s)
- A A Rosenkranz
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - T A Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
9
|
Khramtsov YV, Vlasova AD, Vlasov AV, Rosenkranz AA, Ulasov AV, Ryzhykau YL, Kuklin AI, Orekhov AS, Eydlin IB, Georgiev GP, Gordeliy VI, Sobolev AS. Low-resolution structures of modular nanotransporters shed light on their functional activity. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:1270-1279. [PMID: 33263332 DOI: 10.1107/s2059798320013765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
Modular nanotransporters (MNTs) are multifunctional chimeric polypeptides for the multistep transport of locally acting cytotoxic agents into the nuclei of cancer target cells. MNTs consist of several polypeptide domains (functional modules) for the recognition of a cell-surface internalizable receptor, pH-dependent endosomal escape and subsequent transport into the nucleus through the nuclear pores. MNTs are a promising means for cancer treatment. As has been shown previously, all of the modules of MNTs retain their functionalities. Despite their importance, there is no structural information available about these chimeric polypeptides, which hampers the creation of new MNT variants. Here, a low-resolution 3D structure of an MNT is presented which was obtained by atomic force microscopy, transmission electron microscopy and small-angle X-ray scattering coupled to size-exclusion chromatography. The data suggest that the MNT can adopt two main conformations, but in both conformations the protein N- and C-termini are distanced and do not influence each other. The change in the MNT conformation during acidification of the medium was also studied. It was shown that the fraction of the elongated conformation increases upon acidification. The results of this work will be useful for the development of MNTs that are suitable for clinical trials and possible therapeutic applications.
Collapse
Affiliation(s)
- Yuri V Khramtsov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russian Federation
| | - Anastasiia D Vlasova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russian Federation
| | - Alexey V Vlasov
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Andrey A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russian Federation
| | - Alexey V Ulasov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russian Federation
| | - Yury L Ryzhykau
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Alexander I Kuklin
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Anton S Orekhov
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Ilia B Eydlin
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Georgii P Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russian Federation
| | - Valentin I Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Alexander S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russian Federation
| |
Collapse
|
10
|
Sobolev AS. The Delivery of Biologically Active Agents into the Nuclei of Target Cells for the Purposes of Translational Medicine. Acta Naturae 2020; 12:47-56. [PMID: 33456977 PMCID: PMC7800601 DOI: 10.32607/actanaturae.11049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
Development of vehicles for the subcellular targeted delivery of biologically active agents is very promising for the purposes of translational medicine. This review summarizes the results obtained by researchers from the Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology RAS, which allowed them to design the core technology: modular nanotransporters. This approach ensures high efficacy and cell specificity for different anti-cancer agents, as they are delivered into the most vulnerable subcellular compartment within the cells of interest and makes it possible for antibody mimetics to penetrate into a compartment of interest within the target cells ("diving antibodies"). Furthermore, polyplexes, complexes of polycationic block copolymers of DNA, have been developed and characterized. These complexes are efficient both in vitro and in vivo and demonstrate predominant transfection of actively dividing cells.
Collapse
Affiliation(s)
- A. S. Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow,119334 Russia
- Lomonosov Moscow State University, Moscow, 119234 Russia
| |
Collapse
|
11
|
Karyagina TS, Ulasov AV, Slastnikova TA, Rosenkranz AA, Lupanova TN, Khramtsov YV, Georgiev GP, Sobolev AS. Targeted Delivery of 111In Into the Nuclei of EGFR Overexpressing Cells via Modular Nanotransporters With Anti-EGFR Affibody. Front Pharmacol 2020; 11:176. [PMID: 32194412 PMCID: PMC7064642 DOI: 10.3389/fphar.2020.00176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
Since cell nucleus is one of the most vulnerable compartments, the maximum therapeutic effect from a variety of locally acting agents, such as photosensitizers, alfa-emitters, Auger electron emitters, will be expected when they get there. Therefore, the targeted delivery of these agents into the nuclei of target tumor cells is necessary for their anticancer effects and minimization of side effects. Modular nanotransporters (MNT) are artificial polypeptides comprising several predefined modules that recognize target cell, launching their subsequent internalization, escape from endosomes, and transport the drug load to the nucleus. This technology significantly enhances the cytotoxicity of locally acting drugs in vitro and in vivo. Epidermal growth factor receptors (EGFR) are useful molecular targets as they are overexpressed in glioblastoma, head-and-neck cancer, bladder cancer, and other malignancies. Here, we examined the possibility of using internalizable anti-EGFR affibody as an EGFR-targeting MNT module for drug transport into the cancer cell nuclei. It binds to both murine and human EGFR facilitating preclinical studies. We showed that MNT with affibody on the N-terminus (MNTN-affibody) effectively delivered the Auger electron emitter 111In to target cell nuclei and had pronounced cytotoxic efficacy against EGFR-overexpressing human A431 epidermoid carcinoma cells. Using EGFR-expressing human adenocarcinoma MCF-7 cells, we demonstrated that in contrast to MNT with N-terminal epidermal growth factor (EGF), MNTN-affibody and MNT with EGF on the C-terminus did not stimulate cancer cell proliferation.
Collapse
Affiliation(s)
- Tatiana S Karyagina
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey V Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana N Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yuri V Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Georgii P Georgiev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Delivery systems exploiting natural cell transport processes of macromolecules for intracellular targeting of Auger electron emitters. Nucl Med Biol 2019; 80-81:45-56. [PMID: 31810828 DOI: 10.1016/j.nucmedbio.2019.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
The presence of Auger electrons (AE) among the decay products of a number of radionuclides makes these radionuclides an attractive means for treating cancer because these short-range electrons can cause significant damage in the immediate vicinity of the decomposition site. Moreover, the extreme locality of the effect provides a potential for selective eradication of cancer cells with minimal damage to adjacent normal cells provided that the delivery of the AE emitter to the most vulnerable parts of the cell can be achieved. Few cellular compartments have been regarded as the desired target site for AE emitters, with the cell nucleus generally recognized as the preferred site for AE decay due to the extreme sensitivity of nuclear DNA to direct damage by radiation of high linear energy transfer. Thus, the advantages of AE emitters for cancer therapy are most likely to be realized by their selective delivery into the nucleus of the malignant cells. To achieve this goal, delivery systems must combine a challenging complex of properties that not only provide cancer cell preferential recognition but also cell entry followed by transport into the cell nucleus. A promising strategy for achieving this is the recruitment of natural cell transport processes of macromolecules, involved in each of the aforementioned steps. To date, a number of constructs exploiting intracellular transport systems have been proposed for AE emitter delivery to the nucleus of a targeted cell. An example of such a multifunctional vehicle that provides smart step-by-step delivery is the so-called modular nanotransporter, which accomplishes selective recognition, binding, internalization, and endosomal escape followed by nuclear import of the delivered radionuclide. The current review will focus on delivery systems utilizing various intracellular transport pathways and their combinations in order to provide efficient targeting of AE to the cancer cell nucleus.
Collapse
|
13
|
Ma W, Wang X, Liu W, Ma H, Su Y, Yang Y, Liu N, Wang Y, Yang G. A Theoretical Model for Predicting and Optimizing In Vitro Screening of Potential Targeted Alpha-Particle Therapy Drugs. Radiat Res 2019; 191:475-482. [PMID: 30830838 DOI: 10.1667/rr15297.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
One highly promising approach to cancer treatment, especially for tumors that have undergone micrometastasis, is targeted alpha-particle therapy (TAT). However, the development of a TAT drug has been impeded due to numerous unsuccessful attempts to establish effective in vitro screening methods. The goal of this study was to construct a model to predict and optimize in vitro screening of potential TAT drugs. Based on mean field hypothesis, microdosimetry and the classic linear-quadratic equation, a novel model was built, which can predict our own in vitro experiments and replicate published data from others. Interestingly, this model can also be used to quickly optimize several key parameters in in vitro screening of potential TAT drugs, instructing the optimal combinations of the expression level of antigen, the binding affinity of antibody and drug antibody ratio, as well as others. In addition, to conveniently evaluate the therapeutic benefit of different drugs, a simple but universal parameter, the death ratio, is proposed. To our knowledge, this is the first model that can predict and guide the optimization of in vitro potential targeted alpha-particle therapy drug screening, which may then accelerate the development of potential targeted alpha-particle therapy drugs dramatically.
Collapse
Affiliation(s)
- Wenzong Ma
- a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Xudong Wang
- a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Weihao Liu
- b Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Huan Ma
- b Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Yue Su
- a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Yuanyou Yang
- b Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Ning Liu
- b Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Yugang Wang
- a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Gen Yang
- a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
14
|
Rosenkranz AA, Slastnikova TA, Karmakova TA, Vorontsova MS, Morozova NB, Petriev VM, Abrosimov AS, Khramtsov YV, Lupanova TN, Ulasov AV, Yakubovskaya RI, Georgiev GP, Sobolev AS. Antitumor Activity of Auger Electron Emitter 111In Delivered by Modular Nanotransporter for Treatment of Bladder Cancer With EGFR Overexpression. Front Pharmacol 2018; 9:1331. [PMID: 30510514 PMCID: PMC6252321 DOI: 10.3389/fphar.2018.01331] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Gamma-ray emitting 111In, which is extensively used for imaging, is also a source of short-range Auger electrons (AE). While exhibiting negligible effect outside cells, these AE become highly toxic near DNA within the cell nucleus. Therefore, these radionuclides can be used as a therapeutic anticancer agent if delivered precisely into the nuclei of tumor target cells. Modular nanotransporters (MNTs) designed to provide receptor-targeted delivery of short-range therapeutic cargoes into the nuclei of target cells are perspective candidates for specific intracellular delivery of AE emitters. The objective of this study was to evaluate the in vitro and in vivo efficacy of 111In attached MNTs to kill human bladder cancer cells overexpressing epidermal growth factor receptor (EGFR). The cytotoxicity of 111In delivered by the EGFR-targeted MNT (111In-MNT) was greatly enhanced on EJ-, HT-1376-, and 5637-expressing EGFR bladder cancer cell lines compared with 111In non-targeted control. In vivo microSPECT/CT imaging and antitumor efficacy studies revealed prolonged intratumoral retention of 111In-MNT with t½ = 4.1 ± 0.5 days as well as significant dose-dependent tumor growth delay (up to 90% growth inhibition) after local infusion of 111In-MNT in EJ xenograft-bearing mice.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Tatiana A Karmakova
- National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Maria S Vorontsova
- National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Natalia B Morozova
- National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vasiliy M Petriev
- National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia.,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | | | - Yuri V Khramtsov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Alexey V Ulasov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Raisa I Yakubovskaya
- National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | | | - Alexander S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
15
|
Slastnikova TA, Ulasov AV, Rosenkranz AA, Sobolev AS. Targeted Intracellular Delivery of Antibodies: The State of the Art. Front Pharmacol 2018; 9:1208. [PMID: 30405420 PMCID: PMC6207587 DOI: 10.3389/fphar.2018.01208] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
A dominant area of antibody research is the extension of the use of this mighty experimental and therapeutic tool for the specific detection of molecules for diagnostics, visualization, and activity blocking. Despite the ability to raise antibodies against different proteins, numerous applications of antibodies in basic research fields, clinical practice, and biotechnology are restricted to permeabilized cells or extracellular antigens, such as membrane or secreted proteins. With the exception of small groups of autoantibodies, natural antibodies to intracellular targets cannot be used within living cells. This excludes the scope of a major class of intracellular targets, including some infamous cancer-associated molecules. Some of these targets are still not druggable via small molecules because of large flat contact areas and the absence of deep hydrophobic pockets in which small molecules can insert and perturb their activity. Thus, the development of technologies for the targeted intracellular delivery of antibodies, their fragments, or antibody-like molecules is extremely important. Various strategies for intracellular targeting of antibodies via protein-transduction domains or their mimics, liposomes, polymer vesicles, and viral envelopes, are reviewed in this article. The pitfalls, challenges, and perspectives of these technologies are discussed.
Collapse
Affiliation(s)
- Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A. V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A. A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - A. S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
16
|
Abstract
α-Particle irradiation of cancerous tissue is increasingly recognized as a potent therapeutic option. We briefly review the physics, radiobiology, and dosimetry of α-particle emitters, as well as the distinguishing features that make them unique for radiopharmaceutical therapy. We also review the emerging clinical role of α-particle therapy in managing cancer and recent studies on in vitro and preclinical α-particle therapy delivered by antibodies, other small molecules, and nanometer-sized particles. In addition to their unique radiopharmaceutical characteristics, the increased availability and improved radiochemistry of α-particle radionuclides have contributed to the growing recent interest in α-particle radiotherapy. Targeted therapy strategies have presented novel possibilities for the use of α-particles in the treatment of cancer. Clinical experience has already demonstrated the safe and effective use of α-particle emitters as potent tumor-selective drugs for the treatment of leukemia and metastatic disease.
Collapse
Affiliation(s)
- Michael R McDevitt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - George Sgouros
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Stavroula Sofou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
17
|
Kamaletdinova TR, Rosenkranz AA, Ulasov AV, Khramtsov YV, Tsvetkova AD, Georgiev GP, Sobolev AS. Modular Nanotransporter with P21 Fragment Inhibits DNA Repair after Bleomycin Treatment. DOKL BIOCHEM BIOPHYS 2018; 479:95-97. [DOI: 10.1134/s1607672918020114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 12/18/2022]
|
18
|
Ulasov AV, Khramtsov YV, Lupanova TN, Tsvetkova AD, Rosenkranz AA, Slastnikova TA, Georgiev GP, Sobolev AS. MNT Optimization for Intracellular Delivery of Antibody Fragments. DOKL BIOCHEM BIOPHYS 2018; 479:62-65. [PMID: 29779097 DOI: 10.1134/s1607672918020023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 12/27/2022]
Abstract
We studied the possibility of optimizing modular nanotransporters (MNTs) for the intracellular delivery of antibody fragments into the nuclei of cells of a specified type. Basic MNT with a reduced size retaining the desired functions was obtained, and the principal possibility of obtaining an MNT carrying an antibody fragment by microbiological synthesis was shown.
Collapse
Affiliation(s)
- A V Ulasov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Y V Khramtsov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - T N Lupanova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - A D Tsvetkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Faculty of Biology, Moscow State University, Moscow, 119992, Russia
| | - A A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Faculty of Biology, Moscow State University, Moscow, 119992, Russia
| | - T A Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - G P Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - A S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia. .,Faculty of Biology, Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
19
|
Sonawane P, Choi YA, Pandya H, Herpai DM, Fokt I, Priebe W, Debinski W. Novel Molecular Multilevel Targeted Antitumor Agents. CANCER TRANSLATIONAL MEDICINE 2017; 3:69-79. [PMID: 28825042 PMCID: PMC5558462 DOI: 10.4103/ctm.ctm_12_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A multifunctional fusion protein, IL-13.E13K-D2-NLS, effectively recognizes glioblastoma (GBM) cells and delivers its portion to the cell nucleus. IL-13.E13K-D2-NLS is composed of a cancer cell targeting ligand (IL-13.E13K), specialized cytosol translocation bacterial toxin domain 2 of Pseudomonas exotoxin A (D2) and SV40 T antigen nuclear localization signal (NLS). We have now tested whether we can produce proteins that would serve as a delivery vehicle to lysosomes and mitochondria as well. Moreover, we examined whether IL-13.E13K-D2-NLS can deliver anti-cancer drugs like doxorubicin to their nuclear site of action in cancer cells. We have thus constructed two novel proteins: IL-13.E13K-D2-LLS which incorporates lysosomal localization signal (LLS) of a human lysosomal associated membrane protein (LAMP-1) for targeting to lysosomes and IL-13-D2-KK2, which incorporates a pro-apoptotic peptide (KLAKLAK)2 (KK2) exerting its action in mitochondria. Furthermore, we have produced IL-13.E13K-D2-NLS and IL-13.E13K-D2-LLS versions containing a cysteine for site-specific conjugation with a modified doxorubicin, WP936. We found that single-chain recombinant proteins IL-13.E13K-D2-LLS and IL-13-D2-KK2 are internalized and localized mostly to the lysosomal and mitochondrial compartments, respectively, without major trafficking to cells' nuclei. We also determined that IL-13.E13K-D2-NLS-cys[WP936], IL-13.E13K-D2-LAMP-cys[WP936] and IL-13-D2-KK2 were cytotoxic to GBM cells overexpressing IL-13RA2, while much less cytotoxic to GBM cell lines expressing low levels of the receptor. IL-13.E13K-D2-NLS-cys[WP936] was the most potent of the tested anti-tumor agents including free WP936. We believe that our receptor-directed intracellular organelle-targeted proteins can be employed for numerous specific and safer treatment applications when drugs have specific intracellular sites of their action.
Collapse
Affiliation(s)
- Poonam Sonawane
- Department of Cancer Biology, Brain Tumor Center of Excellence,
Comprehensive Cancer Center of Wake Baptist Medical Center, Medical Center Boulevard,
Winston-Salem, NC 27157, USA
| | - Young A. Choi
- Department of Cancer Biology, Brain Tumor Center of Excellence,
Comprehensive Cancer Center of Wake Baptist Medical Center, Medical Center Boulevard,
Winston-Salem, NC 27157, USA
| | - Hetal Pandya
- National Institutes of Health, Bethesda, MD, USA
| | - Denise M. Herpai
- Department of Cancer Biology, Brain Tumor Center of Excellence,
Comprehensive Cancer Center of Wake Baptist Medical Center, Medical Center Boulevard,
Winston-Salem, NC 27157, USA
| | | | | | - Waldemar Debinski
- Department of Cancer Biology, Brain Tumor Center of Excellence,
Comprehensive Cancer Center of Wake Baptist Medical Center, Medical Center Boulevard,
Winston-Salem, NC 27157, USA
| |
Collapse
|
20
|
Slastnikova TA, Rosenkranz AA, Khramtsov YV, Karyagina TS, Ovechko SA, Sobolev AS. Development and evaluation of a new modular nanotransporter for drug delivery into nuclei of pathological cells expressing folate receptors. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1315-1334. [PMID: 28490863 PMCID: PMC5413543 DOI: 10.2147/dddt.s127270] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Modular nanotransporters (MNTs) are artificial multifunctional systems designed to facilitate receptor-specific transport from the cell surface into the cell nucleus through inclusion of polypeptide domains for accomplishing receptor binding and internalization, as well as sequential endosomal escape and nuclear translocation. The objective of this study was to develop a new MNT targeted at folate receptors (FRs) for precise delivery of therapeutic cargo to the nuclei of FR-positive cells and to evaluate its potential, particularly for delivery of therapeutic agents (eg, the Auger electron emitter 111In) into the nuclei of target cancer cells. METHODS A FR-targeted MNT was developed by site-specific derivatization of ligand-free MNT with maleimide-polyethylene glycol-folic acid. The ability of FR-targeted MNT to accumulate in target FR-expressing cells was evaluated using flow cytometry, and intracellular localization of this MNT was assessed using confocal laser scanning microscopy of cells. The cytotoxicity of the 111In-labeled FR-targeted MNT was evaluated on HeLa and U87MG cancer cell lines expressing FR. In vivo micro-single-photon emission computed tomography/CT imaging and antitumor efficacy studies were performed with intratumoral injection of 111In-labeled FR-targeted MNT in HeLa xenograft-bearing mice. RESULTS The resulting FR-targeted MNT accumulated in FR-positive HeLa cancer cell lines specifically and demonstrated the ability to reach its target destination - the cell nuclei. 111In-labeled FR-targeted MNT demonstrated efficient and specific FR-positive cancer cell eradication. A HeLa xenograft in vivo model revealed prolonged retention of 111In delivered by FR-targeted MNT and significant tumor growth delay (up to 80% growth inhibition). CONCLUSION The FR-targeted MNT met expectations of its ability to deliver active cargo into the nuclei of target FR-positive cells efficiently and specifically. As a result of this finding the new FR-targeted MNT approach warrants broad evaluation.
Collapse
Affiliation(s)
- Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
| | - Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences.,Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri V Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
| | - Tatiana S Karyagina
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
| | - Sergey A Ovechko
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander S Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences.,Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
21
|
Slastnikova TA, Rosenkranz AA, Morozova NB, Vorontsova MS, Petriev VM, Lupanova TN, Ulasov AV, Zalutsky MR, Yakubovskaya RI, Sobolev AS. Preparation, cytotoxicity, and in vivo antitumor efficacy of 111In-labeled modular nanotransporters. Int J Nanomedicine 2017; 12:395-410. [PMID: 28138237 PMCID: PMC5238804 DOI: 10.2147/ijn.s125359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Modular nanotransporters (MNTs) are a polyfunctional platform designed to achieve receptor-specific delivery of short-range therapeutics into the cell nucleus by receptor-mediated endocytosis, endosome escape, and targeted nuclear transport. This study evaluated the potential utility of the MNT platform in tandem with Auger electron emitting 111In for cancer therapy. METHODS Three MNTs developed to target either melanocortin receptor-1 (MC1R), folate receptor (FR), or epidermal growth factor receptor (EGFR) that are overexpressed on cancer cells were modified with p-SCN-Bn-NOTA and then labeled with 111In in high specific activity. Cytotoxicity of the 111In-labeled MNTs was evaluated on cancer cell lines bearing the appropriate receptor target (FR: HeLa, SK-OV-3; EGFR: A431, U87MG.wtEGFR; and MC1R: B16-F1). In vivo micro-single-photon emission computed tomography/computed tomography imaging and antitumor efficacy studies were performed with intratumoral injection of MC1R-targeted 111In-labeled MNT in B16-F1 melanoma tumor-bearing mice. RESULTS The three NOTA-MNT conjugates were labeled with a specific activity of 2.7 GBq/mg with nearly 100% yield, allowing use without subsequent purification. The cytotoxicity of 111In delivered by these MNTs was greatly enhanced on receptor-expressing cancer cells compared with 111In nontargeted control. In mice with B16-F1 tumors, prolonged retention of 111In by serial imaging and significant tumor growth delay (82% growth inhibition) were found. CONCLUSION The specific in vitro cytotoxicity, prolonged tumor retention, and therapeutic efficacy of MC1R-targeted 111In-NOTA-MNT suggest that this Auger electron emitting conjugate warrants further evaluation as a locally delivered radiotherapeutic, such as for ocular melanoma brachytherapy. Moreover, the high cytotoxicity observed with FR- and EGFR-targeted 111In-NOTA-MNT suggests further applications of the MNT delivery strategy should be explored.
Collapse
Affiliation(s)
- Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
| | - Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
- Department of Biophysics, Biological Faculty, Lomonosov Moscow State University
| | - Natalia B Morozova
- Department of Anticancer Therapy Modifiers and Protectors, Moscow Hertsen Research Institute of Oncology, Russian Ministry of Health Care, Moscow
| | - Maria S Vorontsova
- Department of Anticancer Therapy Modifiers and Protectors, Moscow Hertsen Research Institute of Oncology, Russian Ministry of Health Care, Moscow
| | - Vasiliy M Petriev
- National Medical Research Radiological Center, Russian Ministry of Health Care, Obninsk, Moscow Region
- Department of Nuclear Medicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - Tatiana N Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
| | - Alexey V Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Raisa I Yakubovskaya
- Department of Anticancer Therapy Modifiers and Protectors, Moscow Hertsen Research Institute of Oncology, Russian Ministry of Health Care, Moscow
| | - Alexander S Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
- Department of Biophysics, Biological Faculty, Lomonosov Moscow State University
| |
Collapse
|
22
|
Zhu C, Bandekar A, Sempkowski M, Banerjee SR, Pomper MG, Bruchertseifer F, Morgenstern A, Sofou S. Nanoconjugation of PSMA-Targeting Ligands Enhances Perinuclear Localization and Improves Efficacy of Delivered Alpha-Particle Emitters against Tumor Endothelial Analogues. Mol Cancer Ther 2015; 15:106-113. [PMID: 26586724 DOI: 10.1158/1535-7163.mct-15-0207] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/16/2015] [Indexed: 11/16/2022]
Abstract
This study aims to evaluate the effect on killing efficacy of the intracellular trafficking patterns of α-particle emitters by using different radionuclide carriers in the setting of targeted antivascular α-radiotherapy. Nanocarriers (lipid vesicles) targeted to the prostate-specific membrane antigen (PSMA), which is unique to human neovasculature for a variety of solid tumors, were loaded with the α-particle generator actinium-225 and were compared with a PSMA-targeted radiolabeled antibody. Actinium-225 emits a total of four α-particles per decay, providing highly lethal and localized irradiation of targeted cells with minimal exposure to surrounding healthy tissues. Lipid vesicles were derivatized with two types of PSMA-targeting ligands: a fully human PSMA antibody (mAb) and a urea-based, low-molecular-weight agent. Target selectivity and extent of internalization were evaluated on monolayers of human endothelial cells (HUVEC) induced to express PSMA in static incubation conditions and in a flow field. Both types of radiolabeled PSMA-targeted vesicles exhibit similar killing efficacy, which is greater than the efficacy of the radiolabeled control mAb when compared on the basis of delivered radioactivity per cell. Fluorescence confocal microscopy demonstrates that targeted vesicles localize closer to the nucleus, unlike antibodies which localize near the plasma membrane. In addition, targeted vesicles cause larger numbers of dsDNAs per nucleus of treated cells compared with the radiolabeled mAb. These findings demonstrate that radionuclide carriers, such as PSMA-targeted lipid-nanocarriers, which localize close to the nucleus, increase the probability of α-particle trajectories crossing the nuclei, and, therefore, enhance the killing efficacy of α-particle emitters.
Collapse
Affiliation(s)
- Charles Zhu
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - Amey Bandekar
- Department of Chemical and Biochemical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - Michelle Sempkowski
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21287
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21287
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
| | - Stavroula Sofou
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
- Department of Chemical and Biochemical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| |
Collapse
|
23
|
Skin cancer and new treatment perspectives: A review. Cancer Lett 2015; 357:8-42. [DOI: 10.1016/j.canlet.2014.11.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 12/25/2022]
|
24
|
Immunobiology and immunotherapeutic targeting of glioma stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:139-66. [PMID: 25895711 DOI: 10.1007/978-3-319-16537-0_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
For decades human brain tumors have confounded our efforts to effectively manage and treat patients. In adults, glioblastoma multiforme is the most common malignant brain tumor with a patient survival of just over 14 months. In children, brain tumors are the leading cause of solid tumor cancer death and gliomas account for one-fifth of all childhood cancers. Despite advances in conventional treatments such as surgical resection, radiotherapy, and systemic chemotherapy, the incidence and mortality rates for gliomas have essentially stayed the same. Furthermore, research efforts into novel therapeutics that initially appeared promising have yet to show a marked benefit. A shocking and somewhat disturbing view is that investigators and clinicians may have been targeting the wrong cells, resulting in the appearance of the removal or eradication of patient gliomas only to have brain cancer recurrence. Here we review research progress in immunotherapy as it pertains to glioma treatment and how it can and is being adapted to target glioma stem cells (GSCs) as a means of dealing with this potential paradigm.
Collapse
|
25
|
Guseva LI. Radioisotope generators of short-lived α-emitting radionuclides promising for use in nuclear medicine. RADIOCHEMISTRY 2014. [DOI: 10.1134/s1066362214050014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Rosenkranz AA, Ulasov AV, Slastnikova TA, Khramtsov YV, Sobolev AS. Use of intracellular transport processes for targeted drug delivery into a specified cellular compartment. BIOCHEMISTRY (MOSCOW) 2014; 79:928-46. [DOI: 10.1134/s0006297914090090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Koumarianou E, Slastnikova TA, Pruszynski M, Rosenkranz AA, Vaidyanathan G, Sobolev AS, Zalutsky MR. Radiolabeling and in vitro evaluation of (67)Ga-NOTA-modular nanotransporter--a potential Auger electron emitting EGFR-targeted radiotherapeutic. Nucl Med Biol 2014; 41:441-9. [PMID: 24776093 PMCID: PMC4048709 DOI: 10.1016/j.nucmedbio.2014.03.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Modular nanotransporters (MNTs) are vehicles designed to transport drugs from the cell surface via receptor-mediated endocytosis and endosomal escape to nucleus. Hence their conjugation to Auger electron emitters, can cause severe cell killing, by nuclear localization. Herein we evaluate the use of MNT as a platform for targeted radiotherapy with (67)Ga. METHODS EGF was the targeting ligand on the MNT, and NOTA was selected for its radiolabeling with (67)Ga. In the radiolabeling study we dealt with the precipitation of MNT (pI 5.7) at the labeling pH (4.5-5.5) of (67)Ga. Cellular and nuclei uptake of (67)Ga-NOTA-MNT by the A431 cell line was determined. Its specific cytotoxicity was compared to that of (67)Ga-EDTA, (67)Ga-NOTA-BSA and (67)Ga-NOTA-hEGF, in A431 and U87MGWTT, cell lines, by clonogenic assay. Dosimetry studies were also performed. RESULTS (67)Ga-NOTA-MNT was produced with 90% yield and specific activity of 25.6mCi/mg. The in vitro kinetics revealed an increased uptake over 24h. 55% of the internalized radioactivity was detected in the nuclei at 1h. The cytotoxicity of (67)Ga-NOTA-MNT on A431 cell line was 17 and 385-fold higher when compared to non-specific (67)Ga-NOTA-BSA and (67)Ga-EDTA. While its cytotoxic potency was 13 and 72-fold higher when compared to (67)Ga-NOTA-hEGF in the A431 and the U87MGWTT cell lines, respectively, validating its nuclear localization. The absorbed dose, for 63% cell killing, was 8Gy, confirming the high specific index of (67)Ga. CONCLUSION These results demonstrate the feasibility of using MNT as a platform for single cell kill targeted radiotherapy by Auger electron emitters.
Collapse
Affiliation(s)
| | - Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Moscow, Russia; Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Marek Pruszynski
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Moscow, Russia; Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Alexander S Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Moscow, Russia; Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC, USA; Departments of Biomedical Engineering and Radiation Oncology, Duke University, Durham, NC, USA.
| |
Collapse
|
28
|
De Bonis P, Lofrese G, Anile C, Pompucci A, Vigo V, Mangiola A. Radioimmunotherapy for high-grade glioma. Immunotherapy 2014; 5:647-59. [PMID: 23725287 DOI: 10.2217/imt.13.43] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Patients with high-grade glioma (HGG) still have a very poor prognosis. The infiltrative nature of the tumor and the inter- and intra-tumoral cellular and genetic heterogeneity, leading to the acquisition of new mutations over time, represent the main causes of treatment failure. Radioimmunotherapy represents an emerging approach for the treatment of HGG. Radioimmunotherapy utilizes a molecular vehicle (monoclonal antibodies) to deliver a radionuclide (the drug) to a selected cell population target. This review will provide an overview of preclinical and clinical studies to date and assess the effectiveness of radioimmunotherapy, focusing on possible future therapies for the treatment of HGG.
Collapse
Affiliation(s)
- Pasquale De Bonis
- Department of Neurosurgery, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Pandya H, Debinski W. Toward intracellular targeted delivery of cancer therapeutics: progress and clinical outlook for brain tumor therapy. BioDrugs 2012; 26:235-44. [PMID: 22671766 DOI: 10.2165/11631600-000000000-00000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells.
Collapse
Affiliation(s)
- Hetal Pandya
- The Brain Tumor Center of Excellence, Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
30
|
|
31
|
Slastnikova TA, Koumarianou E, Rosenkranz AA, Vaidyanathan G, Lupanova TN, Sobolev AS, Zalutsky MR. Modular nanotransporters: a versatile approach for enhancing nuclear delivery and cytotoxicity of Auger electron-emitting 125I. EJNMMI Res 2012; 2:59. [PMID: 23107475 PMCID: PMC3511205 DOI: 10.1186/2191-219x-2-59] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 10/02/2012] [Indexed: 12/04/2022] Open
Abstract
Background This study evaluates the potential utility of a modular nanotransporter (MNT) for enhancing the nuclear delivery and cytotoxicity of the Auger electron emitter 125I in cancer cells that overexpress the epidermal growth factor receptor (EGFR). Methods MNTs are recombinant multifunctional polypeptides that we have developed for achieving selective delivery of short-range therapeutics into cancer cells. MNTs contain functional modules for receptor binding, internalization, endosomal escape and nuclear translocation, thereby facilitating the transport of drugs from the cell surface to the nucleus. The MNT described herein utilized EGF as the targeting ligand and was labeled with 125I using N-succinimidyl-4-guanidinomethyl-3-[125I]iodobenzoate (SGMIB). Membrane binding, intracellular and nuclear accumulation kinetics, and clonogenic survival assays were performed using the EGFR-expressing A431 epidermoid carcinoma and D247 MG glioma cell lines. Results [125I]SGMIB-MNT bound to A431 and D247 MG cells with an affinity comparable to that of native EGF. More than 60% of internalized [125I]SGMIB-MNT radioactivity accumulated in the cell nuclei after a 1-h incubation. The cytotoxic effectiveness of [125I]SGMIB-MNT compared with 125I-labeled bovine serum albumin control was enhanced by a factor of 60 for D247 MG cells and more than 1,000-fold for A431 cells, which express higher levels of EGFR. Conclusions MNT can be utilized to deliver 125I into the nuclei of cancer cells overexpressing EGFR, significantly enhancing cytotoxicity. Further evaluation of [125I]SGMIB-MNT as a targeted radiotherapeutic for EGFR-expressing cancer cells appears warranted.
Collapse
Affiliation(s)
- Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Vavilov St, 34/5, Moscow, 119334, Russia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Vaidyanathan G, Zalutsky MR. Applications of 211At and 223Ra in targeted alpha-particle radiotherapy. Curr Radiopharm 2012; 4:283-94. [PMID: 22202151 DOI: 10.2174/1874471011104040283] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/08/2011] [Accepted: 03/10/2011] [Indexed: 11/22/2022]
Abstract
Targeted radiotherapy using agents tagged with α-emitting radionuclides is gaining traction with several clinical trials already undertaken or ongoing, and others in the advanced planning stage. The most commonly used α-emitting radionuclides are 213Bi, 211At, 223Ra and 225Ac. While each one of these has pros and cons, it can be argued that 211At probably is the most versatile based on its half life, decay scheme and chemistry. On the other hand, for targeting bone metastases, 223Ra is the ideal radionuclide because simple cationic radium can be used for this purpose. In this review, we will discuss the recent developments taken place in the application of 211At-labeled radiopharmaceuticals and give an overview of the current status of 223Ra for targeted α-particle radiotherapy.
Collapse
Affiliation(s)
- Ganesan Vaidyanathan
- Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
33
|
Slastnikova TA, Rosenkranz AA, Gulak PV, Schiffelers RM, Lupanova TN, Khramtsov YV, Zalutsky MR, Sobolev AS. Modular nanotransporters: a multipurpose in vivo working platform for targeted drug delivery. Int J Nanomedicine 2012; 7:467-82. [PMID: 22346349 PMCID: PMC3277434 DOI: 10.2147/ijn.s28249] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Modular nanotransporters (MNT) are recombinant multifunctional polypeptides created to exploit a cascade of cellular processes, initiated with membrane receptor recognition to deliver selective short-range and highly cytotoxic therapeutics to the cell nucleus. This research was designed for in vivo concept testing for this drug delivery platform using two modular nanotransporters, one targeted to the α-melanocyte-stimulating hormone (αMSH) receptor overexpressed on melanoma cells and the other to the epidermal growth factor (EGF) receptor overexpressed on several cancers, including glioblastoma, and head-and-neck and breast carcinoma cells. Methods In vivo targeting of the modular nanotransporter was determined by immuno-fluorescence confocal laser scanning microscopy and by accumulation of 125I-labeled modular nanotransporters. The in vivo therapeutic effects of the modular nanotransporters were assessed by photodynamic therapy studies, given that the cytotoxicity of photosensitizers is critically dependent on their delivery to the cell nucleus. Results Immunohistochemical analyses of tumor and neighboring normal tissues of mice injected with multifunctional nanotransporters demonstrated preferential uptake in tumor tissue, particularly in cell nuclei. With 125I-labeled MNT{αMSH}, optimal tumor:muscle and tumor:skin ratios of 8:1 and 9.8:1, respectively, were observed 3 hours after injection in B16-F1 melanoma-bearing mice. Treatment with bacteriochlorin p-MNT{αMSH} yielded 89%–98% tumor growth inhibition and a two-fold increase in survival for mice with B16-F1 and Cloudman S91 melanomas. Likewise, treatment of A431 human epidermoid carcinoma-bearing mice with chlorin e6- MNT{EGF} resulted in 94% tumor growth inhibition compared with free chlorin e6, with 75% of animals surviving at 3 months compared with 0% and 20% for untreated and free chlorin e6-treated groups, respectively. Conclusion The multifunctional nanotransporter approach provides a new in vivo functional platform for drug development that could, in principle, be applicable to any combination of cell surface receptor and agent (photosensitizers, oligonucleotides, radionuclides) requiring nuclear delivery to achieve maximum effectiveness.
Collapse
Affiliation(s)
- Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pandya H, Gibo DM, Debinski W. Molecular targeting of intracellular compartments specifically in cancer cells. Genes Cancer 2011; 1:421-33. [PMID: 20740056 DOI: 10.1177/1947601910375274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/14/2010] [Accepted: 05/16/2010] [Indexed: 11/15/2022] Open
Abstract
We have implemented a strategy in which a genetically engineered, single-chain protein specifically recognizes cancer cells and is trafficked to a targeted subcellular compartment, such as the nucleus. The recombinant protein termed IL-13.E13K-D2-NLS has a triple functional property: (1) it binds a cancer-associated receptor, interleukin 13 receptor alpha 2 (IL-13Rα2), using modified IL-13 ligand, IL-13.E13K; (2) it exports its C-terminal portion out of the endosomal compartment using Pseudomonas aeruginosa exotoxin A (PE) translocation domain (D2); and (3) it travels to and accumulates in the nucleus guided by the nuclear localization signal (NLS). Here, we have demonstrated that this protein is transported into the brain tumor cells' nucleus, using 3 different methods of protein conjugation to dyes for the purpose of direct visualization of the protein's intracellular trafficking. IL-13.E13K-D2-NLS, and not the controls such as IL-13.E13K-D2, IL-13.E13K-NLS, or IL-13.E13K, accumulated in nuclei very efficiently, which increased with the time the cells were exposed to the protein. Also, IL-13.E13K-D2-NLS did not exhibit nuclear transport in cells with low expression levels of IL-13Rα2. Thus, it is possible to recognize cancer cells through their specific receptors and deliver a conjugated protein that travels specifically to the nucleus. Hence, our molecular targeting strategy succeeded in generating a single-chain proteinaceous agent capable of delivering drugs/labels needed to be localized to the cells' nuclei or potentially any other subcellular compartment, for their optimal efficacy or ability to exert their specific action.
Collapse
Affiliation(s)
- Hetal Pandya
- Departments of Neurosurgery, Radiation Oncology, and Cancer Biology, The Brain Tumor Center of Excellence, Wake Forest University, School of Medicine, Winston-Salem, NC, USA
| | | | | |
Collapse
|
35
|
Sobolev AS. Modular nanotransporters of anticancer drugs conferring cell specificity and higher efficiency. BIOCHEMISTRY (MOSCOW) 2010; 74:1567-74. [PMID: 20210709 DOI: 10.1134/s0006297909130094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review deals with artificial modular nanotransporters (MNT) of polypeptide nature for drug delivery into target cells and then into a specified cell compartment like the nucleus. The developed approach is based on the use of intracellular transport processes characteristic of practically all cells, including cancer cells. The first MNT module ligand carries out a double function: specific recognition of a cancer target cell and penetration into the cell via receptor-mediated endocytosis. The movement of the MNT within the cell along this path specifies the need to supply the MNT with an endosomolytic module making it possible to leave the endocytotic pathway before getting into lysosomes in order to have time for interaction with importins. For this purpose, a polypeptide fragment able to make defects in membranes only at the pH of endosomes is used as the second module. Delivery into the cell nucleus is provided by the third module containing an amino acid sequence of nuclear localization, "recognized" by importins located in the hyaloplasm. And finally, the fourth module, a carrier for joining the transported drug, is incorporated into the MNT. Depending on the type of ligand module, MNT for different target cell types have been produced. Each module retains its activity within the MNT, ligand modules bind target receptors with high affinity, while the module with the nuclear localization sequence binds importins. The endosomolytic module forms pores in lipid membranes through which MNT are able to leave acidifying cell compartments (endosomes). Modules within MNT can be replaced or transposed, which makes it possible to use them for delivery of different drugs into different target cells and their compartments. It was shown that photosensitizers and radionuclides used for cancer therapy acquire pronounced cell specificity as well as the 10-1000-fold higher efficiency resulting from their delivery into the most vulnerable compartment--the cell nucleus.
Collapse
Affiliation(s)
- A S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
36
|
Targeting the EGF receptor for ovarian cancer therapy. JOURNAL OF ONCOLOGY 2009; 2010:414676. [PMID: 20066160 PMCID: PMC2801454 DOI: 10.1155/2010/414676] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 09/11/2009] [Indexed: 12/16/2022]
Abstract
Ovarian carcinoma is the leading cause of death from gynecologic malignancy in the US. Factors such as the molecular heterogeneity of ovarian tumors and frequent diagnosis at advanced stages hamper effective disease treatment. There is growing emphasis on the identification and development of targeted therapies to disrupt molecular pathways in cancer. The epidermal growth factor (EGF) receptor is one such protein target with potential utility in the management of ovarian cancer. This paper will discuss contributions of EGF receptor activation to ovarian cancer pathogenesis and the status of EGF receptor inhibitors and EGF receptor targeted therapies in ovarian cancer treatment.
Collapse
|
37
|
Cuaron JJ, Hirsch JA, Medich DC, Rosenstein BS, Martel CB, Hirsch AE. A proposed methodology to select radioisotopes for use in radionuclide therapy. AJNR Am J Neuroradiol 2009; 30:1824-9. [PMID: 19661172 DOI: 10.3174/ajnr.a1773] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The American Journal of Neuroradiology has played a seminal role in the history of vertebral augmentation (VA). Because VA is increasingly being included in the multidisciplinary management of malignant vertebral compression fractures (VCFs), combined therapeutic approaches that include strategies to treat metastatic disease along with the fracture have become appealing options for patients. To that end, we recently investigated the dosimetric feasibility of treating malignant VCFs with radionuclide therapy. The goal would be to provide local control of the systemic disease beyond the pain relief and structural support provided by polymethylmethacrylate cement. The purpose of this article is to propose a methodology for evaluating radionuclides for use in radiation therapy that takes into account a number of factors including radiation characteristics, biochemical effects, production capacity, and safety. The goal of such a methodology is to introduce a systematic approach to selecting radionuclides in designing treatment regimens and future investigations and also to stimulate discussion and experimentation involving new radionuclides that may provide more effective treatments than the current isotopes in widespread use.
Collapse
Affiliation(s)
- J J Cuaron
- Department of Radiation Oncology, Boston University Medical Center, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
38
|
Sobolev AS. Novel modular transporters delivering anticancer drugs and foreign DNA to the nuclei of target cancer cells. JOURNAL OF B.U.ON. : OFFICIAL JOURNAL OF THE BALKAN UNION OF ONCOLOGY 2009; 14 Suppl 1:S33-S42. [PMID: 19785068 PMCID: PMC2834187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A major challenge in the development of specific and effective cancer treatments is the paradoxical situation that exploiting a molecular target that is accessible (surface membrane or extracellular matrix) is critical for achieving tumor selectivity whereas delivery of the therapeutic inside the cell, to the cell nucleus is generally required for maximizing the therapeutic effect. Photosensitizers, alpha-particle emitting radionuclides and foreign genetic material could be considered as such therapeutics if they possessed cellular and subcellular specificity. The author describes a novel approach of using modular recombinant transporters to target the therapeutics to the nucleus of cancer cells, where their action is most pronounced or can only be expressed. Photo-sensitizer-transporter conjugates displayed up to 3000 times greater efficacy than free photosensitizers and acquired cell specificity in contrast to free photosensitizers. Alpha-emitting radionuclides, conjugated with the modular transporters, acquired similar properties. DNA complexed with analogous transporters efficiently transfected target cells. The different modules of the transporters are interchangeable, meaning that they can be tailored for particular applications.
Collapse
Affiliation(s)
- A S Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Moscow, Russia.
| |
Collapse
|
39
|
Abstract
The development of effective immunotherapy strategies for glioma requires adequate understanding of the unique immunological microenvironment in the central nervous system (CNS) and CNS tumors. Although the CNS is often considered to be an immunologically privileged site and poses unique challenges for the delivery of effector cells and molecules, recent advances in technology and discoveries in CNS immunology suggest novel mechanisms that may significantly improve the efficacy of immunotherapy against gliomas. In this review, we first summarize recent advances in the CNS and CNS tumor immunology. We address factors that may promote immune escape of gliomas. We also review advances in passive and active immunotherapy strategies for glioma, with an emphasis on lessons learned from recent early-phase clinical trials. We also discuss novel immunotherapy strategies that have been recently tested in non-CNS tumors and show great potential for application to gliomas. Finally, we discuss how each of these promising strategies can be combined to achieve clinical benefit for patients with gliomas.
Collapse
Affiliation(s)
- Hideho Okada
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|