1
|
Midroni J, Salunkhe R, Liu Z, Chow R, Boldt G, Palma D, Hoover D, Vinogradskiy Y, Raman S. Incorporation of Functional Lung Imaging Into Radiation Therapy Planning in Patients With Lung Cancer: A Systematic Review and Meta-Analysis. Int J Radiat Oncol Biol Phys 2024; 120:370-408. [PMID: 38631538 DOI: 10.1016/j.ijrobp.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
Our purpose was to provide an understanding of current functional lung imaging (FLI) techniques and their potential to improve dosimetry and outcomes for patients with lung cancer receiving radiation therapy (RT). Excerpta Medica dataBASE (EMBASE), PubMed, and Cochrane Library were searched from 1990 until April 2023. Articles were included if they reported on FLI in one of: techniques, incorporation into RT planning for lung cancer, or quantification of RT-related outcomes for patients with lung cancer. Studies involving all RT modalities, including stereotactic body RT and particle therapy, were included. Meta-analyses were conducted to investigate differences in dose-function parameters between anatomic and functional RT planning techniques, as well as to investigate correlations of dose-function parameters with grade 2+ radiation pneumonitis (RP). One hundred seventy-eight studies were included in the narrative synthesis. We report on FLI modalities, dose-response quantification, functional lung (FL) definitions, FL avoidance techniques, and correlations between FL irradiation and toxicity. Meta-analysis results show that FL avoidance planning gives statistically significant absolute reductions of 3.22% to the fraction of well-ventilated lung receiving 20 Gy or more, 3.52% to the fraction of well-perfused lung receiving 20 Gy or more, 1.3 Gy to the mean dose to the well-ventilated lung, and 2.41 Gy to the mean dose to the well-perfused lung. Increases in the threshold value for defining FL are associated with decreases in functional parameters. For intensity modulated RT and volumetric modulated arc therapy, avoidance planning results in a 13% rate of grade 2+ RP, which is reduced compared with results from conventional planning cohorts. A trend of increased predictive ability for grade 2+ RP was seen in models using FL information but was not statistically significant. FLI shows promise as a method to spare FL during thoracic RT, but interventional trials related to FL avoidance planning are sparse. Such trials are critical to understanding the effect of FL avoidance planning on toxicity reduction and patient outcomes.
Collapse
Affiliation(s)
- Julie Midroni
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada
| | - Rohan Salunkhe
- Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Zhihui Liu
- Biostatistics, Princess Margaret Cancer Center, Toronto, Canada
| | - Ronald Chow
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada; London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Gabriel Boldt
- London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - David Palma
- London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada; Ontario Institute for Cancer Research, Toronto, Canada
| | - Douglas Hoover
- London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Yevgeniy Vinogradskiy
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, United States of America; Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, United States of America
| | - Srinivas Raman
- Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Karlsen J, Tandstad T, Steinshamn S, Salvesen Ø, Parlikar ND, Lundgren S, Reidunsdatter RJ. Pulmonary Function and Lung Fibrosis up to 12 Years After Breast Cancer Radiotherapy. Int J Radiat Oncol Biol Phys 2024; 118:1066-1077. [PMID: 38099884 DOI: 10.1016/j.ijrobp.2023.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 02/26/2024]
Abstract
PURPOSE Breast cancer (BC) treatment may affect pulmonary function, but evidence of long-term pulmonary toxicity is scarce. This study aimed to evaluate pulmonary function, radiation fibrosis (RF), and patient-reported dyspnea up to 12 years after different BC treatment modalities. METHODS AND MATERIALS Two hundred fifty patients with BC referred to postoperative radiotherapy (RT) were included in this study. High-resolution computed tomography, pulmonary function tests (PFTs), clinical examinations, and patient-reported dyspnea were assessed before RT and at 3, 6, and 12 months and up to 12 years after RT. RESULTS Vital capacity (VC), forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and diffusion capacity of the lungs for carbon monoxide (DLCO) declined at 3 months after RT and remained low at long-term follow-up except for DLCO, which increased up to 12 years after RT. VC, FEV1, and FVC changes differed between patients treated with and without chemotherapy, and FEV1 differed between patients treated with locoregional and local RT. An early decline in VC, FEV1, and FVC predicted a late decline in PFT values up to 12 years after RT (P = .020, P = .004, and P = .020, respectively). RF, mainly grade 1, was observed in 91% of patients at long-term follow-up. Few patients reported severe dyspnea at long-term follow-up, and there was no statistically significant association with concurrent RF or decline in PFT values from baseline. CONCLUSIONS Chemotherapy and locoregional RT affected performance in PFTs up to 12 years after RT. Reduction in VC, FVC, and FEV1 3 months after RT predicted a decline in PFT values at long-term follow-up. However, a late decline in PFT values was not associated with long-term RF or patient-reported dyspnea.
Collapse
Affiliation(s)
- Jarle Karlsen
- Cancer Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Torgrim Tandstad
- Cancer Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigurd Steinshamn
- Department og Thoracic Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Salvesen
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nayan Deepak Parlikar
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Steinar Lundgren
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Randi J Reidunsdatter
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
Stana M, Grambozov B, Karner J, Gollner I, Gaisberger C, Ruznic E, Zellinger B, Moosbrugger R, Studnicka M, Fastner G, Sedlmayer F, Zehentmayr F. Chemo-Radio-Immunotherapy for NSCLC III: ESR/ATS Thresholds for DLCO Correlate with Radiation Dosimetry and Pneumonitis Rate. Cancers (Basel) 2023; 15:cancers15071966. [PMID: 37046627 PMCID: PMC10092995 DOI: 10.3390/cancers15071966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Durvalumab following chemoradiotherapy (CRT) for non-small cell lung cancer stage III has become the standard of care (SoC) in the past few years. With this regimen, 5-year overall survival (OS) has risen to 43%. Therefore, adequate pulmonary function (PF) after treatment is paramount in long-term survivors. In this respect, carbon monoxide diffusing capacity (DLCO), which represents the alveolar compartment, seems to be a suitable measure for residual lung capacity. The aim of the current analysis was to correlate DLCO with pneumonitis and radiation dose. Patients and methods: One hundred and twelve patients with histologically confirmed NSCLC III treated between 2015/10 and 2022/03 were eligible for this study. Patients received two cycles of platinum-based induction chemotherapy followed by high-dose radiotherapy (RT). As of 2017/09, durvalumab maintenance therapy was administered for one year. The clinical endpoints were based on the thresholds jointly published by the European Respiratory Society (ERS) and the American Thoracic Society (ATS). Pre-treatment DLCO of 60% was correlated to the incidence of pneumonitis, whereas the post-treatment DLCO decline of 10% was related to radiation dose. Results: Patients with a pre-treatment DLCO < 60% had a higher probability of pneumonitis (n = 98; r = 0.175; p-value 0.042), which could be reproduced in the subgroup of patients who did not receive durvalumab (n = 40; r = 0.288; p-value 0.036). In these individuals, the decline in DLCO ≥ 10% depended significantly on the size of the lung volume receiving between 45% and 65% (V65–45%) of the total radiation dose (r = 0.354; p-value = 0.020) and V20 Total Lung (r = 0.466; corrected p-value = 0.042). Conclusions: The current analysis revealed that DLCO is a predictor for clinically relevant pneumonitis and a monitoring tool for post-treatment lung function as it correlates with radiation dose. This underlines the importance of peri-treatment lung function testing.
Collapse
|
4
|
Kapoor R, Sleeman W, Palta J, Weiss E. 3D deep convolution neural network for radiation pneumonitis prediction following stereotactic body radiotherapy. J Appl Clin Med Phys 2023; 24:e13875. [PMID: 36546583 PMCID: PMC10018674 DOI: 10.1002/acm2.13875] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/11/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated 3D convolutional neural networks (CNNs) with input from radiographic and dosimetric datasets of primary lung tumors and surrounding lung volumes to predict the likelihood of radiation pneumonitis (RP). Pre-treatment, 3- and 6-month follow-up computed tomography (CT) and 3D dose datasets from one hundred and ninety-three NSCLC patients treated with stereotactic body radiotherapy (SBRT) were retrospectively collected and analyzed for this study. DenseNet-121 and ResNet-50 models were selected for this study as they are deep neural networks and have been proven to have high accuracy for complex image classification tasks. Both were modified with 3D convolution and max pooling layers to accept 3D datasets. We used a minority class oversampling approach and data augmentation to address the challenges of data imbalance and data scarcity. We built two sets of models for classification of three (No RP, Grade 1 RP, Grade 2 RP) and two (No RP, Yes RP) classes as outputs. The 3D DenseNet-121 models performed better (F1 score [0.81], AUC [0.91] [three class]; F1 score [0.77], AUC [0.84] [two class]) than the 3D ResNet-50 models (F1 score [0.54], AUC [0.72] [three-class]; F1 score [0.68], AUC [0.71] [two-class]) (p = 0.017 for three class predictions). We also attempted to identify salient regions within the input 3D image dataset via integrated gradient (IG) techniques to assess the relevance of the tumor surrounding volume for RP stratification. These techniques appeared to indicate the significance of the tumor and surrounding regions in the prediction of RP. Overall, 3D CNNs performed well to predict clinical RP in our cohort based on the provided image sets and radiotherapy dose information.
Collapse
Affiliation(s)
- Rishabh Kapoor
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - William Sleeman
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jatinder Palta
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
5
|
Forghani F, Castillo R, Castillo E, PhD BJ, Rusthoven C, Kwak J, Moiseenko V, Grills I, Miften M, Vinogradskiy Y, Guerrero T. Is individual perfusion dose-response different than ventilation dose-response for lung cancer patients treated with radiotherapy? Br J Radiol 2023; 96:20220119. [PMID: 36633096 PMCID: PMC9975372 DOI: 10.1259/bjr.20220119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/18/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Current ventilation and perfusion dose-response studies focus on single-modalities (ventilation or perfusion) and perform pulmonary-toxicity assessment related to radiotherapy on a population-based basis. This study aims at quantitative and clinical evaluation of intrapatient differences between ventilation and perfusion dose-responses among lung cancer patients treated with radiotherapy. METHODS 20 patients enrolled on a prospective functional avoidance protocol underwent single photon emission computed tomography-CT ventilation and perfusion scans pre- and post-radiotherapy. Relative changes in pre- to post-treatment ventilation and perfusion in lung regions receiving ≥20 Gy were calculated. In addition, the slopes of the linear fit to the relative ventilation and perfusion changes in regions receiving 0-60 Gy were calculated. A radiologist read and assigned a functional defect score to pre- and post-treatment ventilation/perfusion scans. RESULTS 25% of patients had a difference >35% between ventilation and perfusion pre- to post-treatment changes and 20-30% of patients had opposite directions for ventilation and perfusion pre- to post-treatment changes. Using a semi-quantitative scale, radiologist assessment showed that 20% of patients had different pre- to post-treatment ventilation changes when compared to pre- to post-treatment perfusion changes. CONCLUSION Our data showed that ventilation dose-response can differ from perfusion dose-response for 20-30% of patients. Therefore, when performing thoracic dose-response in cancer patients, it is insufficient to look at ventilation or perfusion alone; but rather both modes of functional imaging may be needed when predicting for clinical outcomes. ADVANCES IN KNOWLEDGE The significance of this study can be highlighted by the differences between the intrapatient dose-response assessments of this analysis compared to existing population-based dose-response analyses. Elucidating intrapatient ventilation and perfusion dose-response differences may be valuable in predicting pulmonary toxicity in lung cancer patients post-radiotherapy.
Collapse
Affiliation(s)
| | | | - Edward Castillo
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan, United States
| | - Bernard Jones PhD
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO
| | - Chad Rusthoven
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO
| | - Jennifer Kwak
- Department of Radiology, University of Colorado School of Medicine, Aurora, CO
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applies Sciences, University of California San Diego, San Diego, CA
| | - Inga Grills
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan, United States
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO
| | | | - Thomas Guerrero
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan, United States
| |
Collapse
|
6
|
Carbon Monoxide Diffusing Capacity (DL CO) Correlates with CT Morphology after Chemo-Radio-Immunotherapy for Non-Small Cell Lung Cancer Stage III. Diagnostics (Basel) 2022; 12:diagnostics12051027. [PMID: 35626183 PMCID: PMC9139430 DOI: 10.3390/diagnostics12051027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction: Curatively intended chemo-radio-immunotherapy for non-small cell lung cancer (NSCLC) stage III may lead to post-therapeutic pulmonary function (PF) impairment. We hypothesized that the decrease in global PF corresponds to the increase in tissue density in follow-up CTs. Hence, the study aim was to correlate the dynamics in radiographic alterations to carbon monoxide diffusing capacity (DLCO) and FEV1, which may contribute to a better understanding of radiation-induced lung disease. Methods: Eighty-five patients with NSCLC III were included. All of them received two cycles of platinum-based induction chemotherapy followed by high dose radiation. Thereafter, durvalumab was administered for one year in 63/85 patients (74%). Pulmonary function tests (PFTs) were performed three months and six months after completion of radiotherapy (RT) and compared to baseline. At the same time points, patients underwent diagnostic CT (dCT). These dCTs were matched to the planning CT (pCT) using RayStation® Model Based Segmentation and deformable image registration. Differential volumes defined by specific isodoses were generated to correlate them with the PFTs. Results: In general, significant correlations between PFTs and differential volumes were found in the mid-dose range, especially for the volume of the lungs receiving between 65% and 45% of the dose prescribed (V65−45%) and DLCO (p<0.01). This volume range predicted DLCO after RT (p-value 0.03) as well. In multivariate analysis, DLCO (p-value 0.040) and FEV1 (p-value 0.014) predicted pneumonitis. Conclusions: The current analysis revealed a strong relation between the dynamics of DLCO and CT morphology changes in the mid-dose range, which convincingly indicates the importance of routinely used PFTs in the context of a curative treatment approach.
Collapse
|
7
|
Stavropoulou A, Szmul A, Chandy E, Veiga C, Landau D, McClelland JR. A multichannel feature-based approach for longitudinal lung CT registration in the presence of radiation induced lung damage. Phys Med Biol 2021; 66:175020. [PMID: 34352743 PMCID: PMC8395598 DOI: 10.1088/1361-6560/ac1b1d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
Quantifying parenchymal tissue changes in the lungs is imperative in furthering the study of radiation induced lung damage (RILD). Registering lung images from different time-points is a key step of this process. Traditional intensity-based registration approaches fail this task due to the considerable anatomical changes that occur between timepoints. This work proposes a novel method to successfully register longitudinal pre- and post-radiotherapy (RT) lung computed tomography (CT) scans that exhibit large changes due to RILD, by extracting consistent anatomical features from CT (lung boundaries, main airways, vessels) and using these features to optimise the registrations. Pre-RT and 12 month post-RT CT pairs from fifteen lung cancer patients were used for this study, all with varying degrees of RILD, ranging from mild parenchymal change to extensive consolidation and collapse. For each CT, signed distance transforms from segmentations of the lungs and main airways were generated, and the Frangi vesselness map was calculated. These were concatenated into multi-channel images and diffeomorphic multichannel registration was performed for each image pair using NiftyReg. Traditional intensity-based registrations were also performed for comparison purposes. For the evaluation, the pre- and post-registration landmark distance was calculated for all patients, using an average of 44 manually identified landmark pairs per patient. The mean (standard deviation) distance for all datasets decreased from 15.95 (8.09) mm pre-registration to 4.56 (5.70) mm post-registration, compared to 7.90 (8.97) mm for the intensity-based registrations. Qualitative improvements in image alignment were observed for all patient datasets. For four representative subjects, registrations were performed for three additional follow-up timepoints up to 48 months post-RT and similar accuracy was achieved. We have demonstrated that our novel multichannel registration method can successfully align longitudinal scans from RILD patients in the presence of large anatomical changes such as consolidation and atelectasis, outperforming the traditional registration approach both quantitatively and through thorough visual inspection.
Collapse
Affiliation(s)
- A Stavropoulou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom
| | - A Szmul
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom
| | - E Chandy
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom
- University College Hospital London, United Kingdom
| | - C Veiga
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom
| | - D Landau
- University College Hospital London, United Kingdom
| | - J R McClelland
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom
| |
Collapse
|
8
|
Du F, Liu H, Wang W, Zhang Y, Li J. Correlation Between Lung Density Changes Under Different Dose Gradients and Radiation Pneumonitis-Based on an Analysis of Computed Tomography Scans During Esophageal Cancer Radiotherapy. Front Oncol 2021; 11:650764. [PMID: 34123799 PMCID: PMC8187904 DOI: 10.3389/fonc.2021.650764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose To assess the relationship between different doses of radiation and lung density changes and to determine the ability of this correlation to identify esophageal cancer (EC) patients who develop radiation pneumonitis (RP) and the occurrence time of RP. Methods A planning computed tomography (CT) scan and a re-planning CT scan were retrospectively collected under institutional review board approval for each of 103 thoracic segment EC patients who underwent radiotherapy (RT). The isodose curve was established on the planning CT with an interval of 5 Gy, which was used as the standard for dividing different gradient doses. Planning CT and re-planning CT scans were matched and the mean lung CT value (HU) between different doses gradients was automatically obtained by the software system. The density change value (ΔHU) was the difference of CT value between each dose gradient before and after treatment. The correlation between ΔHU and the corresponding dose was calculated, as well as the regression coefficients. Additionally the correlation between ΔHU and the occurrence and time of RP (< 4 weeks, 4-12 weeks, > 12 weeks) was calculated. Results The radiation dose and ΔHU was positively correlated, but the correlation coefficient and regression coefficient were lower, 0.261 (P <0.001) and 0.127 (P <0.001), respectively. With the increase of radiation dose gradient, ΔHU in RP≥2 group was higher than that in RP<2 group, and there was significant difference between two groups in ΔHU20-25, ΔHU25-30, ΔHU30-35, ΔHU35-40, ΔHU40-45, ΔHU45-50 (p<0.05). The occurrence time of RP was negatively correlated with the degree of ΔHU (P<0.05), with a high correlation coefficient (Y = week actual value -0.521, P < 0.001) (Y = week grade value -0.381, P = 0.004) and regression coefficient (Y = week actual value -0.503, P<0.001) (Y = week rating value -0.401, P=0.002). Conclusions A relationship between radiation dose and lung density changes was observed. For most dose intervals, there was an increase of ΔHU with an increased radiation dose, although low correlation coefficient. ΔHU were obvious after irradiation with dose ≥20 Gy which was closely related to the occurrence of RP. For patients with RP, the more obvious ΔHU, the earlier the occurrence of RP, there was a significant negative correlation between them.
Collapse
Affiliation(s)
- Feng Du
- School of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Zibo Municipal Hospital, Zibo, China
| | - Hong Liu
- Department of Radiation Oncology, Zibo Municipal Hospital, Zibo, China
| | - Wei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jianbin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
9
|
Veiga C, Chandy E, Jacob J, Yip N, Szmul A, Landau D, McClelland JR. Investigation of the evolution of radiation-induced lung damage using serial CT imaging and pulmonary function tests. Radiother Oncol 2020; 148:89-96. [PMID: 32344262 PMCID: PMC7416106 DOI: 10.1016/j.radonc.2020.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Radiation-induced lung damage (RILD) is a common consequence of lung cancer radiotherapy (RT) with unclear evolution over time. We quantify radiological RILD longitudinally and correlate it with dosimetry and respiratory morbidity. MATERIALS AND METHODS CTs were available pre-RT and at 3, 6, 12 and 24-months post-RT for forty-five subjects enrolled in a phase 1/2 clinical trial of isotoxic, dose-escalated chemoradiotherapy for locally advanced non-small cell lung cancer. Fifteen CT-based measures of parenchymal, pleural and lung volume change, and anatomical distortions, were calculated. Respiratory morbidity was assessed with the Medical Research Council (MRC) dyspnoea score and spirometric pulmonary function tests (PFTs): FVC, FEV1, FEV1/FVC and DLCO. RESULTS FEV1, FEV1/FVC and MRC scores progressively declined post-RT; FVC decreased by 6-months before partially recovering. Radiologically, an early phase (3-6 months) of acute inflammation was characterised by reversible parenchymal change and non-progressive anatomical distortion. A phase of chronic scarring followed (6-24 months) with irreversible parenchymal change, progressive volume loss and anatomical distortion. Post-RT increase in contralateral lung volume was common. Normal lung volume shrinkage correlated longitudinally with mean lung dose (r = 0.30-0.40, p = 0.01-0.04). Radiological findings allowed separation of patients with predominant acute versus chronic RILD; subjects with predominantly chronic RILD had poorer pre-RT lung function. CONCLUSIONS CT-based measures enable detailed quantification of the longitudinal evolution of RILD. The majority of patients developed progressive lung damage, even when the early phase was absent or mild. Pre-RT lung function and RT dosimetry may allow to identify subjects at increased risk of RILD.
Collapse
Affiliation(s)
- Catarina Veiga
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering, University College London, UK.
| | | | - Joseph Jacob
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering, University College London, UK; Department of Respiratory Medicine, University College London, UK
| | - Natalie Yip
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering, University College London, UK
| | - Adam Szmul
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering, University College London, UK
| | - David Landau
- Department of Oncology, University College London Hospital, UK; Department of Clinical Oncology, Guy's & St Thomas' NHS Foundation Trust, UK
| | - Jamie R McClelland
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering, University College London, UK
| |
Collapse
|
10
|
Thomas HMT, Zeng J, Lee, Jr HJ, Sasidharan BK, Kinahan PE, Miyaoka RS, Vesselle HJ, Rengan R, Bowen SR. Comparison of regional lung perfusion response on longitudinal MAA SPECT/CT in lung cancer patients treated with and without functional tissue-avoidance radiation therapy. Br J Radiol 2019; 92:20190174. [PMID: 31364397 PMCID: PMC6849661 DOI: 10.1259/bjr.20190174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The effect of functional lung avoidance planning on radiation dose-dependent changes in regional lung perfusion is unknown. We characterized dose-perfusion response on longitudinal perfusion single photon emission computed tomography (SPECT)/CT in two cohorts of lung cancer patients treated with and without functional lung avoidance techniques. METHODS The study included 28 primary lung cancer patients: 20 from interventional (NCT02773238) (FLARE-RT) and eight from observational (NCT01982123) (LUNG-RT) clinical trials. FLARE-RT treatment plans included perfused lung dose constraints while LUNG-RT plans adhered to clinical standards. Pre- and 3 month post-treatment macro-aggregated albumin (MAA) SPECT/CT scans were rigidly co-registered to planning four-dimensional CT scans. Tumour-subtracted lung dose was converted to EQD2 and sorted into 5 Gy bins. Mean dose and percent change between pre/post-RT MAA-SPECT uptake (%ΔPERF), normalized to total tumour-subtracted lung uptake, were calculated in each binned dose region. Perfusion frequency histograms of pre/post-RT MAA-SPECT were analyzed. Dose-response data were parameterized by sigmoid logistic functions to estimate maximum perfusion increase (%ΔPERFmaxincrease), maximum perfusion decrease (%ΔPERFmaxdecrease), dose midpoint (Dmid), and dose-response slope (k). RESULTS Differences in MAA perfusion frequency distribution shape between time points were observed in 11/20 (55%) FLARE-RT and 2/8 (25%) LUNG-RT patients (p < 0.05). FLARE-RT dose response was characterized by >10% perfusion increase in the 0-5 Gy dose bin for 8/20 patients (%ΔPERFmaxincrease = 10-40%), which was not observed in any LUNG-RT patients (p = 0.03). The dose midpoint Dmid at which relative perfusion declined by 50% trended higher in FLARE-RT compared to LUNG-RT cohorts (35 GyEQD2 vs 21 GyEQD2, p = 0.09), while the dose-response slope k was similar between FLARE-RT and LUNG-RT cohorts (3.1-3.2, p = 0.86). CONCLUSION Functional lung avoidance planning may promote increased post-treatment perfusion in low dose regions for select patients, though inter-patient variability remains high in unbalanced cohorts. These preliminary findings form testable hypotheses that warrant subsequent validation in larger cohorts within randomized or case-matched control investigations. ADVANCES IN KNOWLEDGE This novel preliminary study reports differences in dose-response relationships between patients receiving functional lung avoidance radiation therapy (FLARE-RT) and those receiving conventionally planned radiation therapy (LUNG-RT). Following further validation and testing of these effects in larger patient populations, individualized estimation of regional lung perfusion dose-response may help refine future risk-adaptive strategies to minimize lung function deficits and toxicity incidence.
Collapse
Affiliation(s)
- Hannah Mary T Thomas
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, USA
| | - Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, USA
| | - Howard J Lee, Jr
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, USA
| | | | - Paul E Kinahan
- Department of Radiology, University of Washington School of Medicine, Seattle, USA
| | - Robert S Miyaoka
- Department of Radiology, University of Washington School of Medicine, Seattle, USA
| | - Hubert J. Vesselle
- Department of Radiology, University of Washington School of Medicine, Seattle, USA
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, USA
| | | |
Collapse
|
11
|
Functional lung imaging in radiation therapy for lung cancer: A systematic review and meta-analysis. Radiother Oncol 2018; 129:196-208. [PMID: 30082143 DOI: 10.1016/j.radonc.2018.07.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/14/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022]
Abstract
RATIONALE Advanced imaging techniques allow functional information to be derived and integrated into treatment planning. METHODS A systematic review was conducted with the primary objective to evaluate the ability of functional lung imaging to predict risk of radiation pneumonitis. Secondary objectives were to evaluate dose-response relationships on post treatment functional imaging and assess the utility in including functional lung information into treatment planning. A structured search for publications was performed following PRISMA guidelines and registered on PROSPERO. RESULTS 814 articles were screened against review criteria and 114 publications met criteria. Methods of identifying functional lung included using CT, MRI, SPECT and PET to image ventilation or perfusion. Six studies compared differences between functional and anatomical lung imaging at predicting radiation pneumonitis. These found higher predictive values using functional lung imaging. Twenty-one studies identified a dose-response relationship on post-treatment functional lung imaging. Nineteen planning studies demonstrated the ability of functional lung optimised planning techniques to spare regions of functional lung. Meta-analysis of these studies found that mean (95% CI) functional volume receiving 20 Gy was reduced by 4.2% [95% CI: 2.3: 6.0] and mean lung dose by 2.2 Gy [95% CI: 1.2: 3.3] when plans were optimised to spare functional lung. There was significant variation between publications in the definition of functional lung. CONCLUSION Functional lung imaging may have potential utility in radiation therapy planning and delivery, although significant heterogeneity was identified in approaches and reporting. Recommendations have been made based on the available evidence for future functional lung trials.
Collapse
|
12
|
Tyler Watkins W, Moore JA, Hugo GD, Siebers JV. Dose to mass for evaluation and optimization of lung cancer radiation therapy. Radiother Oncol 2017; 125:344-350. [PMID: 29031611 DOI: 10.1016/j.radonc.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 11/15/2022]
Abstract
PURPOSE To evaluate potential organ at risk dose-sparing by using dose-mass-histogram (DMH) objective functions compared with dose-volume-histogram (DVH) objective functions. METHODS Treatment plans were retrospectively optimized for 10 locally advanced non-small cell lung cancer patients based on DVH and DMH objectives. DMH-objectives were the same as DVH objectives, but with mass replacing volume. Plans were normalized to dose to 95% of the PTV volume (PTV-D95v) or mass (PTV-D95m). For a given optimized dose, DVH and DMH were intercompared to ascertain dose-to-volume vs. dose-to-mass differences. Additionally, the optimized doses were intercompared using DVH and DMH metrics to ascertain differences in optimized plans. Mean dose to volume, Dv‾, mean dose to mass, DM‾, and fluence maps were intercompared. RESULTS For a given dose distribution, DVH and DMH differ by >5% in heterogeneous structures. In homogeneous structures including heart and spinal cord, DVH and DMH are nearly equivalent. At fixed PTV-D95v, DMH-optimization did not significantly reduce dose to OARs but reduced PTV-Dv‾ by 0.20±0.2Gy (p=0.02) and PTV-DM‾ by 0.23±0.3Gy (p=0.02). Plans normalized to PTV-D95m also result in minor PTV dose reductions and esophageal dose sparing (Dv‾ reduced 0.45±0.5Gy, p=0.02 and DM‾ reduced 0.44±0.5Gy, p=0.02) compared to DVH-optimized plans. Optimized fluence map comparisons indicate that DMH optimization reduces dose in the periphery of lung PTVs. CONCLUSIONS DVH- and DMH-dose indices differ by >5% in lung and lung target volumes for fixed dose distributions, but optimizing DMH did not reduce dose to OARs. The primary difference observed in DVH- and DMH-optimized plans were variations in fluence to the periphery of lung target PTVs, where low density lung surrounds tumor.
Collapse
Affiliation(s)
- William Tyler Watkins
- University of Virginia, Department of Radiation Oncology, Charlottesville, United States.
| | - Joseph A Moore
- Johns Hopkins University, Department of Radiation Oncology and Molecular Radiation Sciences, Baltimore, United States
| | - Geoffrey D Hugo
- Virginia Commonwealth University, Department of Radiation Oncology, Richmond, United States
| | - Jeffrey V Siebers
- University of Virginia, Department of Radiation Oncology, Charlottesville, United States
| |
Collapse
|
13
|
Fried DV, Das SK, Marks LB. Imaging Radiation-Induced Normal Tissue Injury to Quantify Regional Dose Response. Semin Radiat Oncol 2017; 27:325-331. [PMID: 28865515 DOI: 10.1016/j.semradonc.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Noninvasive imaging has and will continue to play a pivotal role in the assessment of radiation-induced normal tissue toxicity. In this review, we will examine key literature regarding the use of anatomic and physiological imaging in relation to radiation-induced normal tissue toxicity. Additionally, this review contains a novel methodology for potentially incorporating dose-response data into treatment planning and normal tissue toxicity modeling.
Collapse
Affiliation(s)
- David V Fried
- UNC Hospitals, Department of Radiation Oncology, Chapel Hill, NC.
| | - Shiva K Das
- UNC Hospitals, Department of Radiation Oncology, Chapel Hill, NC
| | - Lawrence B Marks
- UNC Hospitals, Department of Radiation Oncology, Chapel Hill, NC
| |
Collapse
|
14
|
Moran A, Daly ME, Yip SSF, Yamamoto T. Radiomics-based Assessment of Radiation-induced Lung Injury After Stereotactic Body Radiotherapy. Clin Lung Cancer 2017. [PMID: 28623121 DOI: 10.1016/j.cllc.2017.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Over 50% of patients who receive stereotactic body radiotherapy (SBRT) develop radiographic evidence of radiation-induced lung injury. Radiomics is an emerging approach that extracts quantitative features from image data, which may provide greater value and a better understanding of pulmonary toxicity than conventional approaches. We aimed to investigate the potential of computed tomography-based radiomics in characterizing post-SBRT lung injury. METHODS A total of 48 diagnostic thoracic computed tomography scans (acquired prior to SBRT and at 3, 6, and 9 months post-SBRT) from 14 patients were analyzed. Nine radiomic features (ie, 7 gray level co-occurrence matrix [GLCM] texture features and 2 first-order features) were investigated. The ability of radiomic features to distinguish radiation oncologist-defined moderate/severe lung injury from none/mild lung injury was assessed using logistic regression and area under the receiver operating characteristic curve (AUC). Moreover, dose-response curves (DRCs) for radiomic feature changes were determined as a function of time to investigate whether there was a significant dose-response relationship. RESULTS The GLCM features (logistic regression P-value range, 0.012-0.262; AUC range, 0.643-0.750) outperformed the first-order features (P-value range, 0.100-0.990; AUC range, 0.543-0.661) in distinguishing lung injury severity levels. Eight of 9 radiomic features demonstrated a significant dose-response relationship at 3, 6, and 9 months post-SBRT. Although not statistically significant, the GLCM features showed clear separations between the 3- or 6-month DRC and the 9-month DRC. CONCLUSION Radiomic features significantly correlated with radiation oncologist-scored post-SBRT lung injury and showed a significant dose-response relationship, suggesting the potential for radiomics to provide a quantitative, objective measurement of post-SBRT lung injury.
Collapse
Affiliation(s)
- Angel Moran
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA
| | - Megan E Daly
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA
| | - Stephen S F Yip
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Tokihiro Yamamoto
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA.
| |
Collapse
|
15
|
Ghobadi G, Wiegman EM, Langendijk JA, Widder J, Coppes RP, van Luijk P. A new CT-based method to quantify radiation-induced lung damage in patients. Radiother Oncol 2015; 117:4-8. [DOI: 10.1016/j.radonc.2015.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/16/2015] [Accepted: 07/16/2015] [Indexed: 12/25/2022]
|
16
|
Sharifi H, van Elmpt W, Oberije C, Nalbantov G, Das M, Öllers M, Lambin P, Dingmans AMC, De Ruysscher D. Quantification of CT-assessed radiation-induced lung damage in lung cancer patients treated with or without chemotherapy and cetuximab. Acta Oncol 2015; 55:156-62. [PMID: 26399389 DOI: 10.3109/0284186x.2015.1080856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Prediction models for radiation-induced lung damage (RILD) are still unsatisfactory, with clinical toxicity endpoints that are difficult to quantify objectively. We therefore evaluated RILD more objectively, quantitatively and on a continuous scale measuring the lung tissue density changes per voxel. MATERIAL AND METHODS Patients treated with radiotherapy (RT) alone, sequential and concurrent chemo-RT with and without the addition of cetuximab were studied. Follow-up computed tomography (CT) scans were co-registered using deformable registration to baseline CT scans. CT density changes were correlated to the RT dose delivered in every part of the lungs. RESULTS One hundred and seventeen lung cancer patients were included. Mean dose to tumor was 60 Gy (range 45-79.2 Gy). Dose response curves showed a linear increase in the dose region between 0 and 65 Gy having a slope (based on coefficients of the multilevel model) expressed as a lung density increase per dose of 0.86 (95% CI 0.73-0.99), 1.31 (95% CI 1.19-1.43), 1.39 (95% CI 1.28-1.50) and 2.07 (95% CI 1.93-2.21) for patients treated only with RT (N=19), sequential chemo-RT (N=30), concurrent chemo-RT (N=49), and concurrent chemo-RT with cetuximab (N=19), respectively. CONCLUSIONS CT density changes allow quantitative assessment of lung damage after fractionated RT, giving complementary information to standard used clinical endpoints. Patients receiving cetuximab showed a significantly larger dose response compared with other treatments.
Collapse
Affiliation(s)
- Hoda Sharifi
- a Department of Radiation Oncology (MAASTRO clinic) GROW , School for Oncology and Developmental Biology, Maastricht University Medical Center , Maastricht , The Netherlands
- e Department of Physics , Oakland University , Rochester , Michigan, MI , USA
| | - Wouter van Elmpt
- a Department of Radiation Oncology (MAASTRO clinic) GROW , School for Oncology and Developmental Biology, Maastricht University Medical Center , Maastricht , The Netherlands
| | - Cary Oberije
- a Department of Radiation Oncology (MAASTRO clinic) GROW , School for Oncology and Developmental Biology, Maastricht University Medical Center , Maastricht , The Netherlands
| | - Georgi Nalbantov
- a Department of Radiation Oncology (MAASTRO clinic) GROW , School for Oncology and Developmental Biology, Maastricht University Medical Center , Maastricht , The Netherlands
| | - Marco Das
- a Department of Radiation Oncology (MAASTRO clinic) GROW , School for Oncology and Developmental Biology, Maastricht University Medical Center , Maastricht , The Netherlands
- b Department of Radiology , Maastricht University Medical Center , Maastricht , The Netherlands
| | - Michel Öllers
- a Department of Radiation Oncology (MAASTRO clinic) GROW , School for Oncology and Developmental Biology, Maastricht University Medical Center , Maastricht , The Netherlands
| | - Philippe Lambin
- a Department of Radiation Oncology (MAASTRO clinic) GROW , School for Oncology and Developmental Biology, Maastricht University Medical Center , Maastricht , The Netherlands
| | - Anne-Marie C Dingmans
- d Department of Pulmonology , University Medical Center , Maastricht , The Netherlands , and
| | - Dirk De Ruysscher
- a Department of Radiation Oncology (MAASTRO clinic) GROW , School for Oncology and Developmental Biology, Maastricht University Medical Center , Maastricht , The Netherlands
- c Department of Radiation Oncology , University Hospitals Leuven/KU Leuven , Belgium
| |
Collapse
|
17
|
Farr KP, Møller DS, Khalil AA, Kramer S, Morsing A, Grau C. Loss of lung function after chemo-radiotherapy for NSCLC measured by perfusion SPECT/CT: Correlation with radiation dose and clinical morbidity. Acta Oncol 2015. [PMID: 26203930 DOI: 10.3109/0284186x.2015.1061695] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The purpose of the study was to assess dose and time dependence of radiotherapy (RT)-induced changes in regional lung function measured with single photon emission computed tomography (SPECT) of the lung and relate these changes to the symptomatic endpoint of radiation pneumonitis (RP) in patients treated for non-small cell lung cancer (NSCLC). MATERIAL AND METHODS NSCLC patients scheduled to receive curative RT of minimum 60 Gy were included prospectively in the study. Lung perfusion SPECT/CT was performed before and three months after RT. Reconstructed SPECT/CT data were registered to treatment planning CT. Dose to the lung was segmented into regions corresponding to 0-5, 6-20, 21-40, 41-60 and > 60 Gy. Changes (%) in regional lung perfusion before and after RT were correlated with regional dose and symptomatic RP (CTC grade 2-5) outcome. RESULTS A total of 58 patients were included, of which 45 had three-month follow-up SPECT/CT scans. Analysis showed a statistically significant dose-dependent reduction in regional perfusion at three-month follow-up. The largest population composite perfusion loss was in 41-60 Gy (42.2%) and > 60 Gy (41.7%) dose bins. Lung regions receiving low dose of 0-5 Gy and 6-20 Gy had corresponding perfusion increase (-7.2% and -6.1%, respectively). Regional perfusion reduction was different in patients with and without RP with the largest difference in 21-40 Gy bin (p = 0.02), while for other bins the difference did not reach statistical significance. The risk of symptomatic RP was higher for the patients with perfusion reduction after RT (p = 0.02), with the relative risk estimate of 3.6 (95% CI 1.1-12). CONCLUSION Perfusion lung function changes in a dose-dependent manner after RT. The severity of radiation-induced lung symptoms is significantly correlated with SPECT perfusion changes. Perfusion reduction early after RT is associated with a high risk of later development of symptomatic RP.
Collapse
Affiliation(s)
- Katherina P Farr
- a Department of Oncology , Aarhus University Hospital , Aarhus C , Denmark
| | - Ditte S Møller
- b Department of Medical Physics , Aarhus University Hospital , Aarhus C , Denmark
| | - Azza A Khalil
- a Department of Oncology , Aarhus University Hospital , Aarhus C , Denmark
| | - Stine Kramer
- c Department of Nuclear Medicine and PET Centre , Aarhus University Hospital , Aarhus C , Denmark
| | - Anni Morsing
- c Department of Nuclear Medicine and PET Centre , Aarhus University Hospital , Aarhus C , Denmark
| | - Cai Grau
- a Department of Oncology , Aarhus University Hospital , Aarhus C , Denmark
| |
Collapse
|
18
|
Siva S, Hardcastle N, Kron T, Bressel M, Callahan J, MacManus MP, Shaw M, Plumridge N, Hicks RJ, Steinfort D, Ball DL, Hofman MS. Ventilation/Perfusion Positron Emission Tomography--Based Assessment of Radiation Injury to Lung. Int J Radiat Oncol Biol Phys 2015; 93:408-17. [PMID: 26275510 DOI: 10.1016/j.ijrobp.2015.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/11/2015] [Accepted: 06/02/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate (68)Ga-ventilation/perfusion (V/Q) positron emission tomography (PET)/computed tomography (CT) as a novel imaging modality for assessment of perfusion, ventilation, and lung density changes in the context of radiation therapy (RT). METHODS AND MATERIALS In a prospective clinical trial, 20 patients underwent 4-dimensional (4D)-V/Q PET/CT before, midway through, and 3 months after definitive lung RT. Eligible patients were prescribed 60 Gy in 30 fractions with or without concurrent chemotherapy. Functional images were registered to the RT planning 4D-CT, and isodose volumes were averaged into 10-Gy bins. Within each dose bin, relative loss in standardized uptake value (SUV) was recorded for ventilation and perfusion, and loss in air-filled fraction was recorded to assess RT-induced lung fibrosis. A dose-effect relationship was described using both linear and 2-parameter logistic fit models, and goodness of fit was assessed with Akaike Information Criterion (AIC). RESULTS A total of 179 imaging datasets were available for analysis (1 scan was unrecoverable). An almost perfectly linear negative dose-response relationship was observed for perfusion and air-filled fraction (r(2)=0.99, P<.01), with ventilation strongly negatively linear (r(2)=0.95, P<.01). Logistic models did not provide a better fit as evaluated by AIC. Perfusion, ventilation, and the air-filled fraction decreased 0.75 ± 0.03%, 0.71 ± 0.06%, and 0.49 ± 0.02%/Gy, respectively. Within high-dose regions, higher baseline perfusion SUV was associated with greater rate of loss. At 50 Gy and 60 Gy, the rate of loss was 1.35% (P=.07) and 1.73% (P=.05) per SUV, respectively. Of 8/20 patients with peritumoral reperfusion/reventilation during treatment, 7/8 did not sustain this effect after treatment. CONCLUSIONS Radiation-induced regional lung functional deficits occur in a dose-dependent manner and can be estimated by simple linear models with 4D-V/Q PET/CT imaging. These findings may inform future studies of functional lung avoidance using V/Q PET/CT.
Collapse
Affiliation(s)
- Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Mathias Bressel
- Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Jason Callahan
- Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Michael P MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Mark Shaw
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Nikki Plumridge
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Rodney J Hicks
- Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Daniel Steinfort
- Department of Medicine, University of Melbourne, Parkville, Australia; Department of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - David L Ball
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Michael S Hofman
- Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| |
Collapse
|
19
|
Abstract
In the past decade, several different radiotherapy treatment plan evaluation and optimization schemes have been proposed as viable approaches, aiming for dose escalation or an increase of healthy tissue sparing. In particular, it has been argued that dose-mass plan evaluation and treatment plan optimization might be viable alternatives to the standard of care, which is realized through dose-volume evaluation and optimization. The purpose of this investigation is to apply dose-mass optimization to a cohort of lung cancer patients and compare the achievable healthy tissue sparing to that one achievable through dose-volume optimization. Fourteen non-small cell lung cancer (NSCLC) patient plans were studied retrospectively. The range of tumor motion was less than 0.5 cm and motion management in the treatment planning process was not considered. For each case, dose-volume (DV)-based and dose-mass (DM)-based optimization was performed. Nine-field step-and-shoot IMRT was used, with all of the optimization parameters kept the same between DV and DM optimizations. Commonly used dosimetric indices (DIs) such as dose to 1% the spinal cord volume, dose to 50% of the esophageal volume, and doses to 20 and 30% of healthy lung volumes were used for cross-comparison. Similarly, mass-based indices (MIs), such as doses to 20 and 30% of healthy lung masses, 1% of spinal cord mass, and 33% of heart mass, were also tallied. Statistical equivalence tests were performed to quantify the findings for the entire patient cohort. Both DV and DM plans for each case were normalized such that 95% of the planning target volume received the prescribed dose. DM optimization resulted in more organs at risk (OAR) sparing than DV optimization. The average sparing of cord, heart, and esophagus was 23, 4, and 6%, respectively. For the majority of the DIs, DM optimization resulted in lower lung doses. On average, the doses to 20 and 30% of healthy lung were lower by approximately 3 and 4%, whereas lung volumes receiving 2000 and 3000 cGy were lower by 3 and 2%, respectively. The behavior of MIs was very similar. The statistical analyses of the results again indicated better healthy anatomical structure sparing with DM optimization. The presented findings indicate that dose-mass-based optimization results in statistically significant OAR sparing as compared to dose-volume-based optimization for NSCLC. However, the sparing is case-dependent and it is not observed for all tallied dosimetric endpoints.
Collapse
Affiliation(s)
- Ivaylo B. Mihaylov
- Department of Radiation Oncology, University of Miami, 1475 NW 12th Ave, Suite 1500, Miami, FL 33136
| | - Eduardo G. Moros
- Radiation Oncology and Cancer Imaging, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612
| |
Collapse
|
20
|
Senthi S, Dahele M, van de Ven PM, Slotman BJ, Senan S. Late radiologic changes after stereotactic ablative radiotherapy for early stage lung cancer: A comparison of fixed-beam versus arc delivery techniques. Radiother Oncol 2013; 109:77-81. [DOI: 10.1016/j.radonc.2013.08.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/11/2013] [Accepted: 08/16/2013] [Indexed: 12/14/2022]
|
21
|
Exercise tolerance in breast cancer patients during radiotherapy after aerobic training. Contemp Oncol (Pozn) 2013; 17:205-9. [PMID: 23788992 PMCID: PMC3685380 DOI: 10.5114/wo.2013.34453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/08/2013] [Accepted: 03/28/2013] [Indexed: 11/21/2022] Open
Abstract
Aim of the study In spite of the introduction of dose constraints based on patient individual assessment techniques for radiation therapy (RT), some side effects from the heart and lungs are observed. Regular physical exercises improve efficiency, which was confirmed in clinical trials. The aim of this study was to evaluate endurance exercise tolerance and the impact of aerobic training (AT) on selected clinical parameters in breast cancer patients during RT. Material and methods This study involved 46 women with breast cancer who were irradiated using conformal technique (3DCRT) to a total dose of 50 Gray during a 5-week course of RT. In this period 25 patients (group A) simultaneously performed AT, and the rest of the patients, without rehabilitation (group B), undertook irregular physical activity on their own. The exercise tolerance was assessed through the 6-minute walk test (6MWT) using: oxygen saturation (SO2), heart rate (HR), blood pressure (BP), 6-minute walk distance (6MWD) and dyspnea scale. Results After AT in group A, a statistically significant (p < 0.05) decrease was observed in average diastolic BP before 6MWT and in HR parameters before and after 6MWT (p > 0.05), and 6MWD was increased (p < 0.05). In group B, after RT, an increase (p < 0.05) in HR was observed after the test as well as dyspnea. Oxygen saturation in both groups was not significantly changed. Conclusions The results of our study showed that regular AT after just 6 weeks caused an improvement in exercise tolerance parameters with a substantial decline in dyspnea in breast cancer patients receiving RT.
Collapse
|
22
|
Enache I, Noel G, Jeung MY, Meyer N, Oswald-Mammosser M, Pistea C, Jung GM, Mennecier B, Quoix E, Charloux A. Impact of 3D Conformal Radiotherapy on Lung Function of Patients with Lung Cancer: A Prospective Study. Respiration 2013; 86:100-8. [DOI: 10.1159/000342371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/02/2012] [Indexed: 11/19/2022] Open
|
23
|
Agarwal R, Saluja P, Pham A, Ledbetter K, Bains S, Varghese S, Clements J, Kim YH. The effect of CyberKnife therapy on pulmonary function tests used for treating non-small cell lung cancer: a retrospective, observational cohort pilot study. Cancer Manag Res 2012; 4:347-50. [PMID: 23091397 PMCID: PMC3474144 DOI: 10.2147/cmar.s34194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction The current standard for treating operable early stage non-small cell lung cancer is surgical resection and for inoperable cases it is external beam radiotherapy. Lung functions are adversely affected with both the above treatments. CyberKnife treatment limits radiation damage by tracking targets moving with each breath. The effect of CyberKnife treatment on pulmonary function tests has not been well documented. Methods Lung cancer patients who underwent CyberKnife treatment and had pre- and post-treatment pulmonary function tests were included. Paired t-tests were conducted. We also conducted subgroup analysis. Results Thirty-seven patients were included. Median age was 73 years. No statistical difference between mean pre- and post-CyberKnife pulmonary function tests was found. Discussion We observed that CyberKnife better preserves lung function status compared to current standards of care. It has shown to have very minimal side effects.
Collapse
Affiliation(s)
- Rishi Agarwal
- Synergy Medical Education Alliance, Michigan State University College of Human Medicine, Saginaw, Michigan, USA ; MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
A Polymorphism Within the Promoter of the TGFβ1 Gene Is Associated With Radiation Sensitivity Using an Objective Radiologic Endpoint. Int J Radiat Oncol Biol Phys 2012; 82:e247-55. [DOI: 10.1016/j.ijrobp.2011.02.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 01/07/2011] [Accepted: 02/25/2011] [Indexed: 12/23/2022]
|
25
|
Rampinelli C, Bellomi M, Ivaldi GB, Intra M, Raimondi S, Meroni S, Orecchia R, Veronesi U. Assessment of pulmonary fibrosis after radiotherapy (RT) in breast conserving surgery: comparison between conventional external beam RT (EBRT) and intraoperative RT with electrons (ELIOT). Technol Cancer Res Treat 2012; 10:323-9. [PMID: 21728389 DOI: 10.7785/tcrt.2012.500209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to assess the frequency and the grade of RT-induced pulmonary fibrosis in patients who underwent EBRT compared to patients who underwent ELIOT. One-hundred-seventy-eight patients enrolled in a prospective randomized phase III trial to compare the efficacy of ELIOT (a single dose of 21 Gy prescribed at the 90% isodose) versus EBRT (50 Gy to the whole breast plus a 10 Gy boost to the tumour bed), underwent a spiral 16-detector row Computed Tomography (CT) examination to assess RT-induced pulmonary fibrosis: 83 patients in the EBRT arm and 95 in the ELIOT arm. All patients (age range 48-75 years) were affected by unicentric infiltrating carcinoma of the breast with diameter < 2.5 cm. This study was approved by our Institutional Ethical Committee and informed consent was obtained from each patient. Two observers, blinded to patient's randomization, independently evaluated each CT examination and assigned a fibrosis score (Grades 0 to 3). Inter-observer agreement for the fibrosis score was evaluated and a consensus between observers was obtained. Differences in fibrosis score between the two arms were evaluated by Chi Square test and Odds Ratio (OR) with 95% Confidence Intervals (CI). Pulmonary fibrosis was diagnosed in 42 patients (23.6%): 38 (90%) were in the EBRT arm and 4 (10%) in the ELIOT arm (p < 0.0001); twenty-six of them were Grade 1 (one ELIOT), fifteen were Grade 2 (three ELIOT) and one was Grade 3. The post-radiotherapy risk in the EBRT arm to develop at least Grade 1 fibrosis was 19 times higher than in the ELIOT one (OR: 19.20; 95%CI: 6.46-57.14) and 6 times higher to develop at least Grade 2 (OR: 5.70; 95%CI: 1.56-20.76). In conclusion, CT detected pulmonary fibrosis in patients treated with ELIOT is significantly less frequent compared to patients treated with EBRT.
Collapse
Affiliation(s)
- C Rampinelli
- Division of Radiology, European Institute of Oncology, 20141 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Palma DA, van Sörnsen de Koste JR, Verbakel WFAR, Senan S. A new approach to quantifying lung damage after stereotactic body radiation therapy. Acta Oncol 2011; 50:509-17. [PMID: 21174519 DOI: 10.3109/0284186x.2010.541934] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Radiological pneumonitis and fibrosis are common after stereotactic body radiotherapy (SBRT) but current scoring systems are qualitative and subjective. We evaluated the use of CT density measurements and a deformable registration tool to quantitatively measure lung changes post-SBRT. Material and methods. Four-dimensional CT datasets from 25 patients were imported into an image analysis program. Deformable registration was done using a B-spline algorithm (VelocityAI) and evaluated by landmark matching. The effects of respiration, contrast, and CT scanner on density measurements were evaluated. The relationship between density and clinician-scored radiological pneumonitis was assessed. Results. Deformable registration resulted in more accurate image matching than rigid registration. CT lung density was maximal at end-expiration, and most deformation with breathing occurred in the lower thorax. Use of contrast increased mean lung density by 18 HU (range 16-20 HU; p = 0.004). Diagnostic scans had a lower mean lung density than planning scans (mean difference 57 HU in lung contralateral to tumor; p = 0.048). Post-treatment CT density measurements correlated strongly with clinician-scored radiological pneumonitis (r = 0.75; p < 0.001). Conclusions. Quantitative analysis of changes in lung density correlated strongly with physician-assigned radiologic pneumonitis scores. Deformable registration and CT density measurements permit objective assessment of treatment toxicity.
Collapse
Affiliation(s)
- David A Palma
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Partridge M, Yamamoto T, Grau C, Høyer M, Muren LP. Imaging of normal lung, liver and parotid gland function for radiotherapy. Acta Oncol 2010; 49:997-1011. [PMID: 20831488 DOI: 10.3109/0284186x.2010.504735] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is growing clinical evidence that functional imaging is useful for target volume definition and early assessment of tumour response to external beam radiotherapy. A subject that has perhaps received less attention, but is no less promising, is the application of functional imaging to the prediction or measurement of radiation adverse effects in normal tissues. In this manuscript, we review the current published literature describing the use of positron emission tomography (PET), four-dimensional computed tomography (4D-CT), single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) to study normal tissue function in the context of radiotherapy to the lung, liver and head & neck. Published results to date demonstrate that functional imaging can be used to preferentially avoid normal tissues not easily identifiable on solely anatomical images. It is also a potentially very powerful tool for the early detection of radiotherapy-induced normal tissue adverse effects and could provide valuable data for building predictive models of outcome. However, one of the major challenges to building useful predictive models is that, to date, there are very little data available with combined images of normal function, 3D delivered radiation dose and clinical outcomes. Prospective data collection through well-constructed studies which use established morbidity scores is clearly a priority if significant progress is to be made in this area.
Collapse
Affiliation(s)
- Mike Partridge
- Joint Department of Physics, The Royal Mardsen NHS Foundation Trust & The Institute of Cancer Research, Sutton, UK.
| | | | | | | | | |
Collapse
|
28
|
Ireland RH, Din OS, Swinscoe JA, Woodhouse N, van Beek EJR, Wild JM, Hatton MQ. Detection of radiation-induced lung injury in non-small cell lung cancer patients using hyperpolarized helium-3 magnetic resonance imaging. Radiother Oncol 2010; 97:244-8. [PMID: 20724011 DOI: 10.1016/j.radonc.2010.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 07/01/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE To compare hyperpolarized helium-3 magnetic resonance imaging ((3)He-MRI) acquired from non-small cell lung cancer (NSCLC) patients before and after external beam radiotherapy (EBRT). METHODS AND MATERIALS In an Ethics Committee-approved prospective study, five patients with histologically confirmed NSCLC gave written informed consent to undergo computed tomography (CT) and (3)He-MR ventilation imaging 1 week prior to and 3 months after radiotherapy. Images were registered to pre-treatment CT using anatomical landmark-based rigid registration to enable comparison. Emphysema was graded from examination of the CT. MRI-defined ventilation was calculated as the intersection of (3)He-MRI and CT lung volume as a percentage of the CT lung volume for the whole lung and regions of CT-defined pneumonitis. RESULTS On pre-treatment images, there was a significant correlation between the degree of CT-defined emphysema and (3)He-MRI whole lung ventilation (Spearman's rho=0.90, p=0.04). After radiation therapy, pneumonitis was evident on CT for 3/5 patients. For these cases, (3)He-MRI ventilation was significantly reduced within the regions of pneumonitis (pre: 94.1±2.2%, post: 73.7±4.7%; matched pairs Student's t-test, p=0.02, mean difference=20.4%, 95% confidence interval 6.3-34.6%). CONCLUSIONS This work demonstrates the feasibility of detecting ventilation changes between pre- and post-treatment using hyperpolarized helium-3 MRI for patients with NSCLC. Pre-treatment, the degree of emphysema and (3)He-MRI ventilation were correlated. For three cases of radiation pneumonitis, (3)He-MRI ventilation changes between pre- and post-treatment imaging were consistent with CT evidence of radiation-induced lung injury.
Collapse
Affiliation(s)
- Rob H Ireland
- Academic Unit of Clinical Oncology, University of Sheffield, UK.
| | | | | | | | | | | | | |
Collapse
|
29
|
Palma DA, Senan S, Haasbeek CJA, Verbakel WFAR, Vincent A, Lagerwaard F. Radiological and clinical pneumonitis after stereotactic lung radiotherapy: a matched analysis of three-dimensional conformal and volumetric-modulated arc therapy techniques. Int J Radiat Oncol Biol Phys 2010; 80:506-13. [PMID: 20584582 DOI: 10.1016/j.ijrobp.2010.02.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/05/2010] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Lung fibrosis is common after stereotactic body radiotherapy (SBRT) for lung tumors, but the influence of treatment technique on rates of clinical and radiological pneumonitis is not well described. After implementing volumetric modulated arc therapy (RapidArc [RA]; Varian Medical Systems, Palo Alto, CA) for SBRT, we scored the early pulmonary changes seen with arc and conventional three-dimensional SBRT (3D-CRT). METHODS AND MATERIALS Twenty-five SBRT patients treated with RA were matched 1:2 with 50 SBRT patients treated with 3D-CRT. Dose fractionations were based on a risk-adapted strategy. Clinical pneumonitis was scored using Common Terminology Criteria for Adverse Events version 3.0. Acute radiological changes 3 months posttreatment were scored by three blinded observers. Relationships among treatment type, baseline factors, and outcomes were assessed using Spearman's correlation, Cochran-Mantel-Haenszel tests, and logistic regression. RESULTS The RA and 3D-CRT groups were well matched. Forty-three patients (57%) had radiological pneumonitis 3 months after treatment. Twenty-eight patients (37%) had computed tomography (CT) findings of patchy or diffuse consolidation, and 15 patients (20%) had ground-glass opacities only. Clinical pneumonitis was uncommon, and no differences were seen between 3D-CRT vs. RA patients in rates of grade 2/3 clinical pneumonitis (6% vs. 4%, respectively; p = 0.99), moderate/severe radiological changes (24% vs. 36%, respectively, p = 0.28), or patterns of CT changes (p = 0.47). Radiological severity scores were associated with larger planning target volumes (p = 0.09) and extended fractionation (p = 0.03). CONCLUSIONS Radiological changes after lung SBRT are common with both approaches, but no differences in early clinical or radiological findings were observed after RA. Longer follow-up will be required to exclude late changes.
Collapse
Affiliation(s)
- David A Palma
- Department of Radiation Oncology, VU Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|