1
|
SHIRATO H. Biomedical advances and future prospects of high-precision three-dimensional radiotherapy and four-dimensional radiotherapy. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:389-426. [PMID: 37821390 PMCID: PMC10749389 DOI: 10.2183/pjab.99.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Biomedical advances of external-beam radiotherapy (EBRT) with improvements in physical accuracy are reviewed. High-precision (±1 mm) three-dimensional radiotherapy (3DRT) can utilize respective therapeutic open doors in the tumor control probability curve and in the normal tissue complication probability curve instead of the one single therapeutic window in two-dimensional EBRT. High-precision 3DRT achieved higher tumor control and probable survival rates for patients with small peripheral lung and liver cancers. Four-dimensional radiotherapy (4DRT), which can reduce uncertainties in 3DRT due to organ motion by real-time (every 0.1-1 s) tumor-tracking and immediate (0.1-1 s) irradiation, have achieved reduced adverse effects for prostate and pancreatic tumors near the digestive tract and with similar or better tumor control. Particle beam therapy improved tumor control and probable survival for patients with large liver tumors. The clinical outcomes of locally advanced or multiple tumors located near serial-type organs can theoretically be improved further by integrating the 4DRT concept with particle beams.
Collapse
Affiliation(s)
- Hiroki SHIRATO
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Sprick JD, Jeong J, Sabino-Carvalho JL, Li S, Park J. Neurocirculatory regulation and adaptations to exercise in chronic kidney disease. Am J Physiol Heart Circ Physiol 2023; 324:H843-H855. [PMID: 37000610 PMCID: PMC10191135 DOI: 10.1152/ajpheart.00115.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023]
Abstract
Chronic kidney disease (CKD) is characterized by pronounced exercise intolerance and exaggerated blood pressure reactivity during exercise. Classic mechanisms of exercise intolerance in CKD have been extensively described previously and include uremic myopathy, chronic inflammation, malnutrition, and anemia. We contend that these classic mechanisms only partially explain the exercise intolerance experienced in CKD and that alterations in cardiovascular and autonomic regulation also play a key contributing role. The purpose of this review is to examine the physiological factors that contribute to neurocirculatory dysregulation during exercise and discuss the adaptations that result from regular exercise training in CKD. Key neurocirculatory mechanisms contributing to exercise intolerance in CKD include augmentation of the exercise pressor reflex, aberrations in neurocirculatory control, and increased neurovascular transduction. In addition, we highlight how some contributing factors may be improved through exercise training, with a specific focus on the sympathetic nervous system. Important areas for future work include understanding how the exercise prescription may best be optimized in CKD and how the beneficial effects of exercise training may extend to the brain.
Collapse
Affiliation(s)
- Justin D Sprick
- Department of Kinesiology, Health Promotion and Recreation, University of North Texas, Denton, Texas, United States
| | - Jinhee Jeong
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Jeann L Sabino-Carvalho
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Sabrina Li
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| |
Collapse
|
3
|
Milewski A, Li G. Stability and Reliability of Enhanced External-Internal Motion Correlation via Dynamic Phase-Shift Corrections Over 30-min Timeframe for Respiratory-Gated Radiotherapy. Technol Cancer Res Treat 2022; 21:15330338221111592. [PMID: 35880289 PMCID: PMC9340341 DOI: 10.1177/15330338221111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To assess the stability of patient-specific phase shifts between external- and
internal-respiratory motion waveforms, the reliability of enhanced
external–internal correlation with phase-shift correction, and the feasibility
of guiding respiratory-gated radiotherapy (RGRT) over 30 min. In this clinical
feasibility investigation, external bellows and internal-navigator waveforms
were simultaneously and prospectively acquired along with two four-dimensional
magnetic resonance imaging (4DMRI) scans (6–15 m each) with 15–20 m intervals in
10 volunteers. A bellows was placed 5 cm inferior to the xiphoid to monitor
abdominal motion, and an MR navigator was used to track the diaphragmatic
motion. The mean phase-domain (MPD) method was applied, which combines three
individual phase-calculating methods: phase-space oval fitting, principal
component analysis, and analytic signal analysis, weighted by the reciprocal of
their residual errors (RE) excluding outliers (RE >2σ). The time-domain
cross-correlation (TCC) analysis was applied for comparison. Dynamic phase-shift
correction was performed based on the phase shift detected on the fly within two
10 s moving datasets. Simulating bellows-triggered gating, the median and 95%
confidence interval for the navigator's position at beam-on/beam-off and %harm
(percentage of beam-on time outside the safety margin) were calculated. Averaged
across all subjects, the mean phase shifts are found indistinguishable
(p > .05) between scan 1 (55˚ ± 9˚) and scan 2
(59˚ ± 11˚). Using the MPD method the averaged correlation increases from
0.56 ± 0.22 to 0.85 ± 0.11 for scan 1 and from 0.47 ± 0.30 to 0.84 ± 0.08 for
scan 2. The TCC correction results in similar results. After phase-shift
correction, the number of cases that were suitable for amplitude gating (with
<10%harm) increased from 2 to 17 out of 20 cases. A patient-specific, stable
phase-shift between the external and internal motions was observed and corrected
using the MPD and TCC methods, producing long-lasting enhanced motion
correlation over 30m. Phase-shift correction offers a feasible strategy for
improving the accuracy of tumor-motion prediction during RGRT.
Collapse
Affiliation(s)
- Andrew Milewski
- Department of Medical Physics, 5803Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guang Li
- Department of Medical Physics, 5803Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Dobelbower MC, Popple RA, Minnich DJ, Nader DA, Zimmerman F, Paris GE, Herth FJ, Gompelmann D, Roeder FF, Parikh PJ, McDonald AM. Anchored Transponder Guided Lung Radiation Therapy. Pract Radiat Oncol 2020; 10:e37-e44. [DOI: 10.1016/j.prro.2019.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
|
5
|
Jaccard M, Champion A, Dubouloz A, Picardi C, Plojoux J, Soccal P, Miralbell R, Dipasquale G, Caparrotti F. Clinical experience with lung-specific electromagnetic transponders for real-time tumor tracking in lung stereotactic body radiotherapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2019; 12:30-37. [PMID: 33458292 PMCID: PMC7807938 DOI: 10.1016/j.phro.2019.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 11/20/2022]
Abstract
7 patients were implanted with lung-specific electromagnetic transponders (EMT). We report no complications from implantation and no migration of the EMT. 7 non-small cell lung cancer patients underwent SBRT using EMT real-time tracking. SBRT was delivered in free-breathing (FB) or in deep inspiration breath-hold (DIBH).
Background and purposes Motion management is crucial for optimal stereotactic body radiotherapy (SBRT) of moving targets. We aimed to describe our clinical experience with real-time tracking of lung-specific electromagnetic transponders (EMTs) for SBRT of early stage non-small cell lung cancer in free-breathing (FB) or deep inspiration breath-hold (DIBH). Material and methods Seven patients were implanted with EMTs. Simulation for SBRT was performed in FB and in DIBH. We prescribed 60 Gy in 3, 5 or 8 fractions to the tumor and delivered SBRT with volumetric modulated arcs and a 6 MV flattening filter free photon beam. Patients’ setup at the linac was performed using EMT positions and cone-beam CT (CBCT) verification. Four patients were treated in DIBH because of a dosimetric benefit. We analysed patient alignment and treatment delivery parameters using DIBH or FB and EMT real-time tracking. Results There were no complications from the EMT implantation. Visual inspection of CBCT before and/or after SBRT revealed good alignment of structures and EMTs. The median setup time was 9.8 min (range: 4.6–34.1 min) and the median session time was 14.7 min (range: 7.3–36.5 min). EMT positions in lungs remained stable during overall treatment and allowed real-time tracking both in FB and in DIBH SBRT. The treatment beam was gated when EMT centroid position exceeded tolerance thresholds ensuring correct delivery of radiation to the tumor. Conclusion Using EMTs for real-time tracking of tumor motion during lung SBRT proved to be safe, accurate and easy to integrate clinically for treatments in FB or DIBH.
Collapse
Affiliation(s)
- Maud Jaccard
- Department of Radiation Oncology, Geneva University Hospital, 53 Av. de la Roseraie, 1205 Geneva, Switzerland
- Corresponding author at: Department of Radiation Oncology, Geneva University Hospital, 53 Av. de la Roseraie, 1205 Geneva, Switzerland.
| | - Ambroise Champion
- Department of Radiation Oncology, Geneva University Hospital, 53 Av. de la Roseraie, 1205 Geneva, Switzerland
| | - Angèle Dubouloz
- Department of Radiation Oncology, Geneva University Hospital, 53 Av. de la Roseraie, 1205 Geneva, Switzerland
| | - Cristina Picardi
- Department of Radiation Oncology, Geneva University Hospital, 53 Av. de la Roseraie, 1205 Geneva, Switzerland
| | - Jérôme Plojoux
- Department of Pneumology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Paola Soccal
- Department of Pneumology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Raymond Miralbell
- Department of Radiation Oncology, Geneva University Hospital, 53 Av. de la Roseraie, 1205 Geneva, Switzerland
- Radiation Oncology, Teknon Oncologic Institute, Carrer de Vilana 12, 08022 Barcelona, Spain
| | - Giovanna Dipasquale
- Department of Radiation Oncology, Geneva University Hospital, 53 Av. de la Roseraie, 1205 Geneva, Switzerland
| | - Francesca Caparrotti
- Department of Radiation Oncology, Geneva University Hospital, 53 Av. de la Roseraie, 1205 Geneva, Switzerland
| |
Collapse
|
6
|
Tahmasebi N, Boulanger P, Noga M, Punithakumar K. A Fully Convolutional Deep Neural Network for Lung Tumor Boundary Tracking in MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:5906-5909. [PMID: 30441680 DOI: 10.1109/embc.2018.8513607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Delineation of lung tumor from adjacent tissue from a series of magnetic resonance images (MRI) poses many difficulties due to the image similarities of the region of interest and surrounding area as well as the influence of respiration. However, accurate segmentation of the tumor region is essential in planning a radiation therapy to prevent healthy tissues from receiving excessive radiation. The manual delineation of the entire MRI sequence is tedious, time-consuming and costly. This study investigates how one can perform automatic tracking of tumor boundaries during radiation therapy using convolutional neural networks. We proposed to use a convolutional neural network architecture with modified Dice metric as the cost function. The proposed approach was evaluated over 600 images in comparison to expert manual contours. The proposed method yielded an average Dice score of $0.91 \pm 0.03$ and Hausdorff distance of $2.88 \pm 0.86$ mm. The proposed approach outperformed recent state-of-the-art methods in terms of accuracy in the delineation of the mobile tumors.
Collapse
|
7
|
Tahmasebi N, Boulanger P, Yun J, Fallone BG, Punithakumar K. Tracking tumor boundary using point correspondence for adaptive radio therapy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 165:187-195. [PMID: 30337073 DOI: 10.1016/j.cmpb.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/12/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Tracking mobile tumor regions during the treatment is a crucial part of image-guided radiation therapy because of two main reasons which negatively affect the treatment process: (1) a tiny error will lead to some healthy tissues being irradiated; and (2) some cancerous cells may survive if the beam is not accurately positioned as it may not cover the entire cancerous region. However, tracking or delineation of such a tumor region from magnetic resonance imaging (MRI) is challenging due to photometric similarities of the region of interest and surrounding area as well as the influence of motion in the organs. The purpose of this work is to develop an approach to track the center and boundary of tumor region by auto-contouring the region of interest in moving organs for radiotherapy. METHODS We utilize a nonrigid registration method as well as a publicly available RealTITracker algorithm for MRI to delineate and track tumor regions from a sequence of MRI images. The location and shape of the tumor region in the MRI image sequence varies over time due to breathing. We investigate two approaches: the first one uses manual segmentation of the first frame during the pretreatment stage; and the second one utilizes manual segmentation of all the frames during the pretreatment stage. RESULTS We evaluated the proposed approaches over a sequence of 600 images acquired from 6 patients. The method that utilizes all the frames in the pretreatment stage with moving mesh based registration yielded the best performance with an average Dice Score of 0.89 ± 0.04 and Hausdorff Distance of 3.38 ± 0.10 mm. CONCLUSIONS This study demonstrates a promising boundary tracking tool for delineating the tumor region that can deal with respiratory movement and the constraints of adaptive radiation therapy.
Collapse
Affiliation(s)
- Nazanin Tahmasebi
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada; Servier Virtual Cardiac Centre, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada.
| | - Pierre Boulanger
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada; Servier Virtual Cardiac Centre, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada; Department of Radiology & Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Jihyun Yun
- Department of Oncology, Medical Physics Division, University of Alberta, Alberta, Canada
| | - B Gino Fallone
- Department of Oncology, Medical Physics Division, University of Alberta, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada; Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Kumaradevan Punithakumar
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada; Servier Virtual Cardiac Centre, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada; Department of Radiology & Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
A Prospective Cohort Study of Gated Stereotactic Liver Radiation Therapy Using Continuous Internal Electromagnetic Motion Monitoring. Int J Radiat Oncol Biol Phys 2018; 101:366-375. [DOI: 10.1016/j.ijrobp.2018.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/26/2018] [Accepted: 02/05/2018] [Indexed: 01/12/2023]
|
9
|
Yoganathan SA, Maria Das KJ, Agarwal A, Kumar S. Magnitude, Impact, and Management of Respiration-induced Target Motion in Radiotherapy Treatment: A Comprehensive Review. J Med Phys 2017; 42:101-115. [PMID: 28974854 PMCID: PMC5618455 DOI: 10.4103/jmp.jmp_22_17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/31/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022] Open
Abstract
Tumors in thoracic and upper abdomen regions such as lungs, liver, pancreas, esophagus, and breast move due to respiration. Respiration-induced motion introduces uncertainties in radiotherapy treatments of these sites and is regarded as a significant bottleneck in achieving highly conformal dose distributions. Recent developments in radiation therapy have resulted in (i) motion-encompassing, (ii) respiratory gating, and (iii) tracking methods for adapting the radiation beam aperture to account for the respiration-induced target motion. The purpose of this review is to discuss the magnitude, impact, and management of respiration-induced tumor motion.
Collapse
Affiliation(s)
- S. A. Yoganathan
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - K. J. Maria Das
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Arpita Agarwal
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Shaleen Kumar
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Kim JH, Nguyen DT, Huang CY, Fuangrod T, Caillet V, O’Brien R, Poulsen P, Booth J, Keall P. Quantifying the accuracy and precision of a novel real-time 6 degree-of-freedom kilovoltage intrafraction monitoring (KIM) target tracking system. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1361-6560/aa6ed7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Tahmasebi N, Boulanger P, Punithakumar K. Lung tumor boundary tracking in MRI with moving mesh correspondences for adaptive radio therapy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:1264-1267. [PMID: 28268555 DOI: 10.1109/embc.2016.7590936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Delineation of lung tumor regions from magnetic resonance imaging (MRI) poses many difficulties due to MR signal similarities of the region of interest and surrounding area as well as the influence of respiration. However, accurate segmentation of the tumor region is of utmost importance in planning a radiation therapy since a small error can result in some healthy tissues to receive excessive radiation. This study presents a semi-automated method to delineate lung tumor regions from a sequence of MRIs. The proposed method uses a non-rigid image registration framework to propagate the boundaries of the tumor region in MRI acquired during a radiation treatment stage, given manual segmentation on frames acquired during pretreatment stage. We investigate two approaches: 1) the first one utilizes manual segmentation of the first frame during the pretreatment stage; and 2) the second one utilizes manual segmentation of all the frames during the pretreatment stage. We evaluated the proposed approaches over a sequence of 400 images acquired from 4 patients. The proposed method based on the utilization of all the frames yielded a Dice score of 0.90 ± 0.04 and a Hausdorff distance of 1.17 ± 0.35 pixels (2.83 ± 0.79 mm) in comparison to expert manual segmentation.
Collapse
|
12
|
James J, Cetnar A, Dunlap NE, Huffaker C, Nguyen VN, Potts M, Wang B. Technical Note: Validation and implementation of a wireless transponder tracking system for gated stereotactic ablative radiotherapy of the liver. Med Phys 2017; 43:2794-2801. [PMID: 27277027 DOI: 10.1118/1.4948669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Tracking soft-tissue targets has recently been cleared as a new application of Calypso, an electromagnetic wireless transponder tracking system, allowing for gated treatment of the liver based on the motion of the target volume itself. The purpose of this study is to describe the details of validating the Calypso system for wireless transponder tracking of the liver and to present the clinical workflow for using it to deliver gated stereotactic ablative radiotherapy (SABR). METHODS A commercial 3D diode array motion system was used to evaluate the dynamic tracking accuracy of Calypso when tracking continuous large amplitude motion. It was then used to perform end-to-end tests to evaluate the dosimetric accuracy of gated beam delivery for liver SABR. In addition, gating limits were investigated to determine how large the gating window can be while still maintaining dosimetric accuracy. The gating latency of the Calypso system was also measured using a customized motion phantom. RESULTS The average absolute difference between the measured and expected positional offset was 0.3 mm. The 2%/2 mm gamma pass rates for the gated treatment delivery were greater than 97%. When increasing the gating limits beyond the known extent of planned motion, the gamma pass rates decreased as expected. The 2%/2 mm gamma pass rate for a 1, 2, and 3 mm increase in gating limits was measured to be 97.8%, 82.9%, and 61.4%, respectively. The average gating latency was measured to be 63.8 ms for beam-hold and 195.8 ms for beam-on. Four liver patients with 17 total fractions have been successfully treated at our institution. CONCLUSIONS Wireless transponder tracking was validated as a dosimetrically accurate way to provide gated SABR of the liver. The dynamic tracking accuracy of the Calypso system met manufacturer's specification, even for continuous large amplitude motion that can be encountered when tracking liver tumors close to the diaphragm. The measured beam-hold gating latency was appropriate for targets that will traverse the gating limit each respiratory cycle causing the beam to be interrupted constantly throughout treatment delivery.
Collapse
Affiliation(s)
- Joshua James
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky 40202
| | - Ashley Cetnar
- Department of Radiation Oncology, Ohio State University, Columbus, Ohio 43210
| | - Neal E Dunlap
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky 40202
| | | | - Vi Nhan Nguyen
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky 40202
| | - Melissa Potts
- Department of Radiology, University of Louisville, Louisville, Kentucky 40202
| | - Brian Wang
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
13
|
Bourque AE, Bedwani S, Filion É, Carrier JF. A particle filter based autocontouring algorithm for lung tumor tracking using dynamic magnetic resonance imaging. Med Phys 2016; 43:5161. [DOI: 10.1118/1.4961403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
14
|
Shiinoki T, Kawamura S, Uehara T, Yuasa Y, Fujimoto K, Koike M, Sera T, Emoto Y, Hanazawa H, Shibuya K. Evaluation of a combined respiratory-gating system comprising the TrueBeam linear accelerator and a new real-time tumor-tracking radiotherapy system: a preliminary study. J Appl Clin Med Phys 2016; 17:202-213. [PMID: 27455483 PMCID: PMC5690064 DOI: 10.1120/jacmp.v17i4.6114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/13/2016] [Accepted: 03/10/2016] [Indexed: 12/31/2022] Open
Abstract
A combined system comprising the TrueBeam linear accelerator and a new real‐time, tumor‐tracking radiotherapy system, SyncTraX, was installed in our institution. The goals of this study were to assess the capability of SyncTraX in measuring the position of a fiducial marker using color fluoroscopic images, and to evaluate the dosimetric and geometric accuracy of respiratory‐gated radiotherapy using this combined system for the simple geometry. For the fundamental evaluation of respiratory‐gated radiotherapy using SyncTraX, the following were performed: 1) determination of dosimetric and positional characteristics of sinusoidal patterns using a motor‐driven base for several gating windows; 2) measurement of time delay using an oscilloscope; 3) positional verification of sinusoidal patterns and the pattern in the case of a lung cancer patient; 4) measurement of the half‐value layer (HVL in mm AL), effective kVp, and air kerma, using a solid‐state detector for each fluoroscopic condition, to determine the patient dose. The dose profile in a moving phantom with gated radiotherapy having a gating window ≤4 mm was in good agreement with that under static conditions for each photon beam. The total time delay between TrueBeam and SyncTraX was <227 ms for each photon beam. The mean of the positional tracking error was <0.4 mm for sinusoidal patterns and for the pattern in the case of a lung cancer patient. The air‐kerma rates from one fluoroscopy direction were 1.93±0.01, 2.86±0.01, 3.92±0.04, 5.28±0.03, and 6.60±0.05 mGy/min for 70, 80, 90, 100, and 110 kV X‐ray beams at 80 mA, respectively. The combined system comprising TrueBeam and SyncTraX could track the motion of the fiducial marker and control radiation delivery with reasonable accuracy; therefore, this system provides significant dosimetric improvement. However, patient exposure dose from fluoroscopy was not clinically negligible. PACS number(s): 87.53.Bn, 87.55.km, 87.55.Qr
Collapse
|
15
|
Chugh BP, Quirk S, Conroy L, Smith WL. Measurement of time delays in gated radiotherapy for realistic respiratory motions. Med Phys 2015; 41:091702. [PMID: 25186377 DOI: 10.1118/1.4890604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. METHODS Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. RESULTS For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. CONCLUSIONS Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients with highly irregular patterns of motion is not advised due to large beam-on and beam-off time delays.
Collapse
Affiliation(s)
- Brige P Chugh
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2, Canada
| | - Sarah Quirk
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2, Canada
| | - Leigh Conroy
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2, Canada
| | - Wendy L Smith
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2, Canada
| |
Collapse
|
16
|
Freislederer P, Reiner M, Hoischen W, Quanz A, Heinz C, Walter F, Belka C, Soehn M. Characteristics of gated treatment using an optical surface imaging and gating system on an Elekta linac. Radiat Oncol 2015; 10:68. [PMID: 25881018 PMCID: PMC4387684 DOI: 10.1186/s13014-015-0376-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/08/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Knowing the technical characteristics of gated radiotherapy equipment is crucial for ensuring precise and accurate treatment when using techniques such as Deep-Inspiration Breath-Hold and gating under free breathing. With one of the first installations of the novel surface imaging system Catalyst™ (C-RAD AB, Sweden) in connection with an Elekta Synergy linear accelerator (Elekta AB, Sweden) via the Elekta Response Interface, characteristics like dose delivery accuracy and time delay were investigated prior to clinical implementation of gated treatments in our institution. METHODS In this study a moving phantom was used to simulate respiratory motion which was registered by the Catalyst™ system. The gating level was set manually. Within this gating window a trigger signal is automatically sent to the linac initiating treatment delivery. Dose measurements of gated linac treatment beams with different gating levels were recorded with a static 2D-Diode Array (MapCheck2, Sun Nuclear Co., USA) and compared to ungated reference measurements for different field sizes. In addition, the time delay of gated treatment beams was measured using radiographic film. RESULTS The difference in dose delivery between gated and ungated treatment decreases with the size of the chosen gating level. For clinically relevant gating levels of about 30%, the differences in dose delivery accuracy remain below 1%. In comparison with other system configurations in literature, the beam-on time delay shows a large deviation of 851 ms ± 100 ms. CONCLUSIONS When performing gated treatment, especially for free-breathing gating, factors as time delay and dose delivery have to be evaluated regularly in terms of a quality assurance process. Once these parameters are known they can be accounted and compensated for, e.g. by adjusting the pre-selected gating level or the internal target volume margins and by using prediction algorithms for breathing curves. The usage of prediction algorithms becomes inevitable with the high beam-on time delay which is reported here.
Collapse
Affiliation(s)
- Philipp Freislederer
- Department of Radiation Oncology, LMU University Hospital, D-81377, Munich, Germany.
| | - Michael Reiner
- Department of Radiation Oncology, LMU University Hospital, D-81377, Munich, Germany.
| | - Winfried Hoischen
- Department of Radiation Oncology, LMU University Hospital, D-81377, Munich, Germany.
| | - Anton Quanz
- Department of Radiation Oncology, LMU University Hospital, D-81377, Munich, Germany.
| | - Christian Heinz
- Department of Radiation Oncology, LMU University Hospital, D-81377, Munich, Germany.
| | - Franziska Walter
- Department of Radiation Oncology, LMU University Hospital, D-81377, Munich, Germany.
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, D-81377, Munich, Germany.
| | - Matthias Soehn
- Department of Radiation Oncology, LMU University Hospital, D-81377, Munich, Germany.
| |
Collapse
|
17
|
García-Vázquez V, Marinetto E, Santos-Miranda JA, Calvo FA, Desco M, Pascau J. Feasibility of integrating a multi-camera optical tracking system in intra-operative electron radiation therapy scenarios. Phys Med Biol 2013; 58:8769-82. [PMID: 24301181 DOI: 10.1088/0031-9155/58/24/8769] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Intra-operative electron radiation therapy (IOERT) combines surgery and ionizing radiation applied directly to an exposed unresected tumour mass or to a post-resection tumour bed. The radiation is collimated and conducted by a specific applicator docked to the linear accelerator. The dose distribution in tissues to be irradiated and in organs at risk can be planned through a pre-operative computed tomography (CT) study. However, surgical retraction of structures and resection of a tumour affecting normal tissues significantly modify the patient's geometry. Therefore, the treatment parameters (applicator dimension, pose (position and orientation), bevel angle, and beam energy) may require the original IOERT treatment plan to be modified depending on the actual surgical scenario. We propose the use of a multi-camera optical tracking system to reliably record the actual pose of the IOERT applicator in relation to the patient's anatomy in an environment prone to occlusion problems. This information can be integrated in the radio-surgical treatment planning system in order to generate a real-time accurate description of the IOERT scenario. We assessed the accuracy of the applicator pose by performing a phantom-based study that resembled three real clinical IOERT scenarios. The error obtained (2 mm) was below the acceptance threshold for external radiotherapy practice, thus encouraging future implementation of this approach in real clinical IOERT scenarios.
Collapse
Affiliation(s)
- V García-Vázquez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Yun J, Yip E, Wachowicz K, Rathee S, Mackenzie M, Robinson D, Fallone BG. Evaluation of a lung tumor autocontouring algorithm for intrafractional tumor tracking using low-field MRI: a phantom study. Med Phys 2013; 39:1481-94. [PMID: 22380381 DOI: 10.1118/1.3685578] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The first aim of this study is to investigate the feasibility of online autocontouring of tumor in low field MR images (0.2 and 0.5 T) by means of a phantom and simulation study for tumor-tracking in linac-MR systems. The second aim of this study is to develop an MR compatible, lung tumor motion phantom. METHODS An autocontouring algorithm was developed to determine both the position and shape of a lung tumor from each intra fractional MR image. To initiate the algorithm, an expert user contours the tumor and its maximum anticipated range of motion (herein termed the Background) using pretreatment scan data. During treatment, the algorithm processes each intrafractional MR image and automatically contours the tumor. To evaluate this algorithm, the authors built a phantom that replicates the low field contrast parameters (proton density, T(1), T(2)) of lung tumors and healthy lung parenchyma. This phantom allows simulation of MR images with the expected lung tumor CNR at 0.2 and 0.5 T by using a single 3 T scanner. Dynamic bSSFP images (approximately 4 images per second) are acquired while the phantom undergoes a series of preprogrammed motions based on patient lung tumor motion data. These images are autocontoured off-line using our algorithm. The fidelity of autocontouring is assessed by comparing autocontoured tumor shape and its centroid position to the actual tumor shape and its position. RESULTS The algorithm successfully contoured the shape of a moving tumor model from dynamic MR images acquired every 275 ms. Dice's coefficients of > 0.96 and > 0.93 are achieved in 0.5 and 0.2 T equivalent images, respectively. Also, the algorithm tracked tumor position during dynamic studies, with root mean squared error (RMSE) values of < 0.55 and < 0.92 mm for 0.5 and 0.2 T equivalent images, respectively. Autocontouring speed is approximately 5 ms for each image. CONCLUSIONS Dice's coefficients of > 0.96 and > 0.93 are achieved between autocontoured and real tumor shapes, and the position of a tumor can be tracked with RMSE values of < 0.55 and < 0.92 mm in 0.5 and 0.2 T equivalent images, respectively. These results demonstrate the feasibility of lung tumor autocontouring in low field MR images, and, by extension, intrafractional lung tumor tracking with our laboratory's linac-MR system.
Collapse
Affiliation(s)
- Jihyun Yun
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Zou W, Betancourt R, Yin L, Metz J, Avery S, Kassaee A. Effects on the photon beam from an electromagnetic array used for patient localization and tumor tracking. J Appl Clin Med Phys 2013; 14:4138. [PMID: 23652247 PMCID: PMC5714422 DOI: 10.1120/jacmp.v14i3.4138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/08/2013] [Indexed: 11/23/2022] Open
Abstract
One of the main components in a Calypso 4D localization and tracking system is an electromagnetic array placed above patients that is used for target monitoring during radiation treatment. The beam attenuation and beam spoiling properties of the Calypso electromagnetic array at various beam angles were investigated. Measurements were performed on a Varian Clinac iX linear accelerator with 6 MV and 15 MV photon beams. The narrow beam attenuation properties were measured under a field size of 1 cm × 1 cm, with a photon diode placed in a cylindrical graphite buildup cap. The broad beam attenuation properties were measured under a field size of 10 cm × 10 cm, with a 0.6 cc cylindrical Farmer chamber placed in a polystyrene buildup cap. Beam spoiling properties of the array were studied by measuring depth-dose change from the array under a field size of 10 cm × 10 cm in a water-equivalent plastic phantom with an embedded Markus parallel plate chamber. Change in depth doses were measured with the array placed at distances of 2, 5, and 10 cm from the phantom surface. Narrow beam attenuation and broad beam attenuation from the array were found to be less than 2%-3% for both 6 MV and 15 MV beams at angles less than 40°, and were more pronounced at more oblique angles. Spoiling effects are appreciable at beam buildup region, but are insignificant at depths beyond dmax. Dose measurements in a QA phantom using patient IMRT and VMAT treatment plans were shown to have less than 2.5% dose difference with the Calypso array. The results indicate that the dose difference due to the placement of Calypso array is clinically insignificant.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Betancourt R, Zou W, Plastaras JP, Metz JM, Teo BK, Kassaee A. Abdominal and pancreatic motion correlation using 4D CT, 4D transponders, and a gating belt. J Appl Clin Med Phys 2013; 14:4060. [PMID: 23652242 PMCID: PMC5714426 DOI: 10.1120/jacmp.v14i3.4060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 12/24/2012] [Accepted: 12/26/2012] [Indexed: 12/03/2022] Open
Abstract
The correlation between the pancreatic and external abdominal motion due to respiration was investigated on two patients. These studies utilized four dimensional computer tomography (4D CT), a four dimensional (4D) electromagnetic transponder system, and a gating belt system. One 4D CT study was performed during simulation to quantify the pancreatic motion using computer tomography images at eight breathing phases. The motion under free breathing and breath‐hold were analyzed for the 4D electromagnetic transponder system and the gating belt system during treatment. A linear curve was fitted for all data sets and correlation factors were evaluated between the 4D electromagnetic transponder system and the gating belt system data. The 4D CT study demonstrated a modest correlation between the external marker and the pancreatic motion with R‐square values larger than 0.8 for the inferior–superior (inf‐sup). Then, the relative pressure from the belt gating system correlated well with the 4D electromagnetic transponder system's motion in the anterior–posterior (ant‐post) and the inf–post directions. These directions have a correlation value of −0.93 and 0.76, while the lateral only had a 0.03 correlation coefficient. Based on our limited study, external surrogates can be used as predictors of the pancreatic motion in the inf–sup and the ant–post directions. Although there is a low correlation on the lateral direction, its motion is significantly shorter. In conclusion, an appropriate treatment delivery can be used for pancreatic cancer when an internal tracking system, such as the 4D electromagnetic transponder system, is unavailable. PACS number: 87.55.kh
Collapse
Affiliation(s)
- Ricardo Betancourt
- Radiation Oncology, University of PennsylvaniaMedical Center, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Shah AP, Kupelian PA, Waghorn BJ, Willoughby TR, Rineer JM, Mañon RR, Vollenweider MA, Meeks SL. Real-time tumor tracking in the lung using an electromagnetic tracking system. Int J Radiat Oncol Biol Phys 2013; 86:477-83. [PMID: 23523325 DOI: 10.1016/j.ijrobp.2012.12.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE To describe the first use of the commercially available Calypso 4D Localization System in the lung. METHODS AND MATERIALS Under an institutional review board-approved protocol and an investigational device exemption from the US Food and Drug Administration, the Calypso system was used with nonclinical methods to acquire real-time 4-dimensional lung tumor tracks for 7 lung cancer patients. The aims of the study were to investigate (1) the potential for bronchoscopic implantation; (2) the stability of smooth-surface beacon transponders (transponders) after implantation; and (3) the ability to acquire tracking information within the lung. Electromagnetic tracking was not used for any clinical decision making and could only be performed before any radiation delivery in a research setting. All motion tracks for each patient were reviewed, and values of the average displacement, amplitude of motion, period, and associated correlation to a sinusoidal model (R(2)) were tabulated for all 42 tracks. RESULTS For all 7 patients at least 1 transponder was successfully implanted. To assist in securing the transponder at the tumor site, it was necessary to implant a secondary fiducial for most transponders owing to the transponder's smooth surface. For 3 patients, insertion into the lung proved difficult, with only 1 transponder remaining fixed during implantation. One patient developed a pneumothorax after implantation of the secondary fiducial. Once implanted, 13 of 14 transponders remained stable within the lung and were successfully tracked with the tracking system. CONCLUSIONS Our initial experience with electromagnetic guidance within the lung demonstrates that transponder implantation and tracking is achievable though not clinically available. This research investigation proved that lung tumor motion exhibits large variations from fraction to fraction within a single patient and that improvements to both transponder and tracking system are still necessary to create a clinical daily-use system to assist with actual lung radiation therapy.
Collapse
Affiliation(s)
- Amish P Shah
- Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, FL 32806, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Shah AP, Kupelian PA, Willoughby TR, Meeks SL. Expanding the use of real-time electromagnetic tracking in radiation oncology. J Appl Clin Med Phys 2011; 12:3590. [PMID: 22089017 PMCID: PMC5718735 DOI: 10.1120/jacmp.v12i4.3590] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 06/15/2011] [Accepted: 06/14/2011] [Indexed: 12/02/2022] Open
Abstract
In the past 10 years, techniques to improve radiotherapy delivery, such as intensity‐modulated radiation therapy (IMRT), image‐guided radiation therapy (IGRT) for both inter‐ and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery. PACS number: 87.63.‐d
Collapse
Affiliation(s)
- Amish P Shah
- Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, Florida 32806, USA.
| | | | | | | |
Collapse
|
23
|
Smith RL, Yang D, Lee A, Mayse ML, Low DA, Parikh PJ. The correlation of tissue motion within the lung: implications on fiducial based treatments. Med Phys 2011; 38:5992-7. [PMID: 22047363 PMCID: PMC3298561 DOI: 10.1118/1.3643028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 08/24/2011] [Accepted: 09/03/2011] [Indexed: 11/07/2022] Open
Abstract
In radiation therapy many motion management and alignment techniques rely on the accuracy of an internal fiducial acting as a surrogate for target motion within the lung. Although fiducials are routinely used as surrogates for tumor motion, the extent to which varying spatial locations in the lung move similarly to other locations has yet to be quantitatively analyzed. In an attempt to analyze the motion correlation throughout the lung, ten primary lung cancer patients underwent IRB-approved 4DCT scans in the supine position. Deformable registration produced motion vectors for each voxel between exhalation and inhalation. Modeling was performed for each vector and all surrounding vectors within the lung in order to determine the mean 3D Euclidean distance necessary for an implanted fiducial to correlate with surrounding tissue motion to within 3 mm (left lower: 1.7 cm, left upper: 2.1 cm, right lower 1.6 cm, and right upper 2.9 cm). No general implantation rule of where to position a fiducial with respect to the tumor was found as the motion is highly patient and lobe specific. Correlation maps are presented showcasing spatial anisotropy of the motion of tissue surrounding the tumor.
Collapse
Affiliation(s)
- Ryan L Smith
- Washington University Medical School, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
24
|
Kim B, Chen J, Kron T, Battista J. Feasibility study of multi-pass respiratory-gated helical tomotherapy of a moving target via binary MLC closure. Phys Med Biol 2010; 55:6673-94. [PMID: 21030749 DOI: 10.1088/0031-9155/55/22/006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gated radiotherapy of lung lesions is particularly complex for helical tomotherapy, due to the simultaneous motions of its three subsystems (gantry, couch and collimator). We propose a new way to implement gating for helical tomotherapy, namely multi-pass respiratory gating. In this method, gating is achieved by delivering only the beam projections that occur within a respiratory gating window, while blocking the rest of the beam projections by fully closing all collimator leaves. Due to the continuous couch motion, the planned beam projections must be delivered over multiple passes of radiation deliveries. After each pass, the patient couch is reset to its starting position, and the treatment recommences at a different phase of tumour motion to 'fill in' the previously blocked beam projections. The gating process may be repeated until the plan dose is delivered (full gating), or halted after a certain number of passes, with the entire remaining dose delivered in a final pass without gating (partial gating). The feasibility of the full gating approach was first tested for sinusoidal target motion, through experimental measurements with film and computer simulation. The optimal gating parameters for full and partial gating methods were then determined for various fractionation schemes through computer simulation, using a patient respiratory waveform. For sinusoidal motion, the PTV dose deviations of -29 to 5% observed without gating were reduced to range from -1 to 3% for a single fraction, with a 4 pass full gating. For a patient waveform, partial gating required fewer passes than full gating for all fractionation schemes. For a single fraction, the maximum allowed residual motion was only 4 mm, requiring large numbers of passes for both full (12) and partial (7 + 1) gating methods. The number of required passes decreased significantly for 3 and 30 fractions, allowing residual motion up to 7 mm. Overall, the multi-pass gating technique was shown to be a promising way to reduce the impact of lung tumour motion during helical tomotherapy.
Collapse
Affiliation(s)
- Bryan Kim
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.
| | | | | | | |
Collapse
|
25
|
Pepin EW, Wu H, Sandison GA, Langer M, Shirato H. Site-specific volumetric analysis of lung tumour motion. Phys Med Biol 2010; 55:3325-37. [DOI: 10.1088/0031-9155/55/12/005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Wu X, Dieterich S, Orton CG. Point/counterpoint. Only a single implanted marker is needed for tracking lung cancers for IGRT. Med Phys 2010; 36:4845-7. [PMID: 19994491 DOI: 10.1118/1.3218765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Xiaodong Wu
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida 33101, USA.
| | | | | |
Collapse
|