1
|
Hassert M, Pewe LL, He R, Heidarian M, Phruttiwanichakun P, van de Wall S, Mix MR, Salem AK, Badovinac VP, Harty JT. Regenerating murine CD8+ lung tissue resident memory T cells after targeted radiation exposure. J Exp Med 2024; 221:e20231144. [PMID: 38363548 PMCID: PMC10873130 DOI: 10.1084/jem.20231144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/06/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Radiation exposure occurs during medical procedures, nuclear accidents, or spaceflight, making effective medical countermeasures a public health priority. Naïve T cells are highly sensitive to radiation-induced depletion, although their numbers recover with time. Circulating memory CD8+ T cells are also depleted by radiation; however, their numbers do not recover. Critically, the impact of radiation exposure on tissue-resident memory T cells (TRM) remains unknown. Here, we found that sublethal thorax-targeted radiation resulted in the rapid and prolonged numerical decline of influenza A virus (IAV)-specific lung TRM in mice, but no decline in antigen-matched circulating memory T cells. Prolonged loss of lung TRM was associated with decreased heterosubtypic immunity. Importantly, boosting with IAV-epitope expressing pathogens that replicate in the lungs or peripheral tissues or with a peripherally administered mRNA vaccine regenerated lung TRM that was derived largely from circulating memory CD8+ T cells. Designing effective vaccination strategies to regenerate TRM will be important in combating the immunological effects of radiation exposure.
Collapse
Affiliation(s)
- Mariah Hassert
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lecia L. Pewe
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rui He
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Mohammad Heidarian
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pathology Graduate Programs, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Pornpoj Phruttiwanichakun
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Stephanie van de Wall
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Madison R. Mix
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Vladimir P. Badovinac
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pathology Graduate Programs, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John T. Harty
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pathology Graduate Programs, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
2
|
Deng H, Ge H, Dubey C, Losmanova T, Medová M, Konstantinidou G, Mutlu SM, Birrer FE, Brodie TM, Stroka D, Wang W, Peng RW, Dorn P, Marti TM. An optimized protocol for the generation and monitoring of conditional orthotopic lung cancer in the KP mouse model using an adeno-associated virus vector compatible with biosafety level 1. Cancer Immunol Immunother 2023; 72:4457-4470. [PMID: 37796299 PMCID: PMC10700219 DOI: 10.1007/s00262-023-03542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND The inducible Kras/p53 lung adenocarcinoma mouse model, which faithfully recapitulates human disease, is routinely initiated by the intratracheal instillation of a virus-based Cre recombinase delivery system. Handling virus-based delivery systems requires elevated biosafety levels, e.g., biosafety level 2 (BSL-2). However, in experimental animal research facilities, following exposure to viral vectors in a BSL-2 environment, rodents may not be reclassified to BSL-1 according to standard practice, preventing access to small animal micro-computed tomography (micro-CT) scanners that are typically housed in general access areas such as BSL-1 rooms. Therefore, our goal was to adapt the protocol so that the Cre-induced KP mouse model could be handled under BSL-1 conditions during the entire procedure. RESULTS The Kras-Lox-STOP-Lox-G12D/p53 flox/flox (KP)-based lung adenocarcinoma mouse model was activated by intratracheal instillation of either an adenoviral-based or a gutless, adeno-associated viral-based Cre delivery system. Tumor growth was monitored over time by micro-CT. We have successfully substituted the virus-based Cre delivery system with a commercially available, gutless, adeno-associated, Cre-expressing vector that allows the KP mouse model to be handled and imaged in a BSL-1 facility. By optimizing the anesthesia protocol and switching to a microscope-guided vector instillation procedure, productivity was increased and procedure-related complications were significantly reduced. In addition, repeated micro-CT analysis of individual animals allowed us to monitor tumor growth longitudinally, dramatically reducing the number of animals required per experiment. Finally, we documented the evolution of tumor volume for different doses, which revealed that individual tumor nodules induced by low-titer AAV-Cre transductions can be monitored over time by micro-CT. CONCLUSION Modifications to the anesthesia and instillation protocols increased the productivity of the original KP protocol. In addition, the switch to a gutless, adeno-associated, Cre-expressing vector allowed longitudinal monitoring of tumor growth under BSL-1 conditions, significantly reducing the number of animals required for an experiment, in line with the 3R principles.
Collapse
Affiliation(s)
- Haibin Deng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Thoracic Surgery Department 2, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Huixiang Ge
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Christelle Dubey
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Michaela Medová
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Seyran Mathilde Mutlu
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Esther Birrer
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tess Melinda Brodie
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wenxiang Wang
- Thoracic Surgery Department 2, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Van Court B, Neupert B, Nguyen D, Ross R, Knitz MW, Karam SD. Measurement of mouse head and neck tumors by automated analysis of CBCT images. Sci Rep 2023; 13:12033. [PMID: 37491456 PMCID: PMC10368694 DOI: 10.1038/s41598-023-39159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
Animal experiments are often used to determine effects of drugs and other biological conditions on cancer progression, but poor accuracy and reproducibility of established tumor measurement methods make results unreliable. In orthotopic mouse models of head and neck cancer, tumor volumes approximated from caliper measurements are conventionally used to compare groups, but geometrical challenges make the procedure imprecise. To address this, we developed software to better measure these tumors by automated analysis of cone-beam computed tomography (CBCT) scans. This allows for analyses of tumor shape and growth dynamics that would otherwise be too inaccurate to provide biological insight. Monitoring tumor growth by calipers and imaging in parallel, we find that caliper measurements of small tumors are weakly correlated with actual tumor volume and highly susceptible to experimenter bias. The method presented provides a unique window to sources of error in a foundational aspect of preclinical head and neck cancer research and a valuable tool to mitigate them.
Collapse
Affiliation(s)
- Benjamin Van Court
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Richard Ross
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
4
|
Deep Learning Based Automated Orthotopic Lung Tumor Segmentation in Whole-Body Mouse CT-Scans. Cancers (Basel) 2021; 13:cancers13184585. [PMID: 34572813 PMCID: PMC8471805 DOI: 10.3390/cancers13184585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer related deaths worldwide. The development of orthotopic mouse models of lung cancer, which recapitulates the disease more realistically compared to the widely used subcutaneous tumor models, is expected to critically aid the development of novel therapies to battle lung cancer or related comorbidities such as cachexia. However, follow-up of tumor take, tumor growth and detection of therapeutic effects is difficult, time consuming and requires a vast number of animals in orthotopic models. Here, we describe a solution for the fully automatic segmentation and quantification of orthotopic lung tumor volume and mass in whole-body mouse computed tomography (CT) scans. The goal is to drastically enhance the efficiency of the research process by replacing time-consuming manual procedures with fast, automated ones. A deep learning algorithm was trained on 60 unique manually delineated lung tumors and evaluated by four-fold cross validation. Quantitative performance metrics demonstrated high accuracy and robustness of the deep learning algorithm for automated tumor volume analyses (mean dice similarity coefficient of 0.80), and superior processing time (69 times faster) compared to manual segmentation. Moreover, manual delineations of the tumor volume by three independent annotators was sensitive to bias in human interpretation while the algorithm was less vulnerable to bias. In addition, we showed that besides longitudinal quantification of tumor development, the deep learning algorithm can also be used in parallel with the previously published method for muscle mass quantification and to optimize the experimental design reducing the number of animals needed in preclinical studies. In conclusion, we implemented a method for fast and highly accurate tumor quantification with minimal operator involvement in data analysis. This deep learning algorithm provides a helpful tool for the noninvasive detection and analysis of tumor take, tumor growth and therapeutic effects in mouse orthotopic lung cancer models.
Collapse
|
5
|
Suckert T, Nexhipi S, Dietrich A, Koch R, Kunz-Schughart LA, Bahn E, Beyreuther E. Models for Translational Proton Radiobiology-From Bench to Bedside and Back. Cancers (Basel) 2021; 13:4216. [PMID: 34439370 PMCID: PMC8395028 DOI: 10.3390/cancers13164216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sindi Nexhipi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01309 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robin Koch
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Emanuel Bahn
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, 69120 Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| |
Collapse
|
6
|
Boivin G, Ancey PB, Vuillefroy de Silly R, Kalambaden P, Contat C, Petit B, Ollivier J, Bourhis J, Meylan E, Vozenin MC. Anti-Ly6G binding and trafficking mediate positive neutrophil selection to unleash the anti-tumor efficacy of radiation therapy. Oncoimmunology 2021; 10:1876597. [PMID: 33628622 PMCID: PMC7889163 DOI: 10.1080/2162402x.2021.1876597] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/05/2022] Open
Abstract
The anti-Ly6G antibody is used to deplete Ly6Gpos neutrophils and study their role in diverse pathologies. However, depletion is never absolute, as Ly6Glow neutrophils resistant to depletion rapidly emerge. Studying the functionality of these residual neutrophils is necessary to interpret anti-Ly6G-based experimental designs. In vitro, we found anti-Ly6G binding induced Ly6G internalization, surface Ly6G paucity, and primed the oxidative burst of neutrophils upon TNF α co-stimulation. In vivo, we found neutrophils resistant to anti-Ly6G depletion exhibited anti-neutrophil-cytoplasmic-antibodies. In the pre-clinical KrasLox-STOP-Lox-G12D/WT; Trp53Flox/Flox mouse lung tumor model, abnormal neutrophil accumulation and aging was accompanied with an N2-like SiglecFpos polarization and ly6g downregulation. Consequently, SiglecFpos neutrophils exposed to anti-Ly6G reverted to Ly6Glow and were resistant to depletion. Noting that anti-Ly6G mediated neutrophil depletion alone had no anti-tumor effect, we found a long-lasting rate of tumor regression (50%) by combining anti-Ly6G with radiation-therapy, in this model reputed to be refractory to standard anticancer therapies. Mechanistically, anti-Ly6G regulated neutrophil aging while radiation-therapy enhanced the homing of anti-Ly6G-boundSiglecFneg neutrophils to tumors. This anti-tumor effect was recapitulated by G-CSF administration prior to RT and abrogated with an anti-TNFα antibody co-administration. In summary, we report that incomplete depletion of neutrophils using targeted antibodies can intrinsically promote their oxidative activity. This effect depends on antigen/antibody trafficking and can be harnessed locally using select delivery of radiation-therapy to impair tumor progression. This underutilized aspect of immune physiology may be adapted to expand the scope of neutrophil-related research.
Collapse
Affiliation(s)
- Gaël Boivin
- Radio-Oncology Laboratory, Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Life Sciences Ecole Polytechnique Fédérale De, Lausanne, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- Radio-Oncology Service, Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre-Benoit Ancey
- School of Life Sciences Ecole Polytechnique Fédérale De, Lausanne, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | | | - Pradeep Kalambaden
- Radio-Oncology Laboratory, Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline Contat
- School of Life Sciences Ecole Polytechnique Fédérale De, Lausanne, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Benoit Petit
- Radio-Oncology Laboratory, Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Radio-Oncology Service, Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jonathan Ollivier
- Radio-Oncology Laboratory, Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Radio-Oncology Service, Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean Bourhis
- Radio-Oncology Laboratory, Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Radio-Oncology Service, Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Etienne Meylan
- School of Life Sciences Ecole Polytechnique Fédérale De, Lausanne, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- Radio-Oncology Laboratory, Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Radio-Oncology Service, Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Badea CT. Principles of Micro X-ray Computed Tomography. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Anderson J, Belafsky P, Clayton S, Archard J, Pavlic J, Rao S, Farwell DG, Kuhn M, Deng P, Halmai J, Bauer G, Fink K, Fury B, Perotti N, Walker J, Beliveau A, Birkeland A, Abouyared M, Cary W, Nolta J. Model of radiation-induced ambulatory dysfunction. JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/jmedsci.jmedsci_259_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
van de Worp WRPH, Schols AMWJ, Theys J, van Helvoort A, Langen RCJ. Nutritional Interventions in Cancer Cachexia: Evidence and Perspectives From Experimental Models. Front Nutr 2020; 7:601329. [PMID: 33415123 PMCID: PMC7783418 DOI: 10.3389/fnut.2020.601329] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia is a complex metabolic syndrome characterized by involuntary skeletal muscle loss and is associated with poor clinical outcome, decreased survival and negatively influences cancer therapy. No curative treatments are available for cancer cachexia, but nutritional intervention is recommended as a cornerstone of multimodal therapy. Optimal nutritional care is pivotal in the treatment of cancer cachexia, and the effects of nutrients may extend beyond provision of adequate energy uptake, targeting different mechanisms or metabolic pathways that are affected or deregulated by cachexia. The evidence to support this notion derived from nutritional intervention studies in experimental models of cancer cachexia is systematically discussed in this review. Moreover, experimental variables and readout parameters to determine skeletal muscle wasting and cachexia are methodologically evaluated to allow critical comparison of similar studies. Single- and multinutrient intervention studies including qualitative modulation of dietary protein, dietary fat, and supplementation with specific nutrients, such as carnitine and creatine, were reviewed for their efficacy to counteract muscle mass loss and its underlying mechanisms in experimental cancer cachexia. Numerous studies showed favorable effects on impaired protein turnover and related metabolic abnormalities of nutritional supplementation in parallel with a beneficial impact on cancer-induced muscle wasting. The combination of high quality nutrients in a multitargeted, multinutrient approach appears specifically promising, preferentially as a multimodal intervention, although more studies investigating the optimal quantity and combination of nutrients are needed. During the review process, a wide variation in timing, duration, dosing, and route of supplementation, as well as a wide variation in animal models were observed. Better standardization in dietary design, and the development of experimental models that better recapitulate the etiology of human cachexia, will further facilitate successful translation of experimentally-based multinutrient, multimodal interventions into clinical practice.
Collapse
Affiliation(s)
- Wouter R P H van de Worp
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
10
|
Spiro JE, Rinneburger M, Hedderich DM, Jokic M, Reinhardt HC, Maintz D, Palmowski M, Persigehl T. Monitoring treatment effects in lung cancer-bearing mice: clinical CT and clinical MRI compared to micro-CT. Eur Radiol Exp 2020; 4:31. [PMID: 32399584 PMCID: PMC7218036 DOI: 10.1186/s41747-020-00160-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background Compared to histology-based methods, imaging can reduce animal usage in preclinical studies. However, availability of dedicated scanners is limited. We evaluated clinical computed tomography (CT) and magnetic resonance imaging (MRI) in comparison to dedicated CT (micro-CT) for assessing therapy effects in lung cancer-bearing mice. Methods Animals received cisplatin (n = 10), sham (n = 12), or no treatment (n = 9). All were examined via micro-CT, CT, and MRI before and after treatment. Semiautomated tumour burden (TB) calculation was performed. The Bland-Altman, receiver operating characteristic (ROC), and Spearman statistics were used. Results All modalities always allowed localising and measuring TB. At all modalities, mice treated with cisplatin showed a TB reduction (p ≤ 0.012) while sham-treated and untreated individuals presented tumour growth (p < 0.001). Mean relative difference (limits of agreement) between TB on micro-CT and clinical scanners was 24.7% (21.7–27.7%) for CT and 2.9% (−4.0–9.8%) for MRI. Relative TB changes before/after treatment were not different between micro-CT and CT (p = 0.074) or MRI (p = 0.241). Mice with cisplatin treatment were discriminated from those with sham or no treatment at all modalities (p ≤ 0.001). Using micro-CT as reference standard, ROC areas under the curves were 0.988–1.000 for CT and 0.946–0.957 for MRI. TB changes were highly correlated across modalities (r ≥ 0.900, p < 0.001). Conclusions Clinical CT and MRI are suitable for treatment response evaluation in lung cancer-bearing mice. When dedicated scanners are unavailable, they should be preferred to improve animal welfare.
Collapse
Affiliation(s)
- Judith E Spiro
- Department of Diagnostic and Interventional Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany. .,Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Miriam Rinneburger
- Department of Diagnostic and Interventional Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675, Munich, Germany
| | - Mladen Jokic
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Hans Christian Reinhardt
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany.,Department of Internal Medicine, Division I, Hematology/Oncology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
| | - David Maintz
- Department of Diagnostic and Interventional Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Moritz Palmowski
- Institute of Experimental Molecular Imaging, University Aachen, Forckenbeckstr. 55, 52074, Aachen, Germany.,Radiology Baden-Baden, Beethovenstr. 2, 76530, Baden-Baden, Germany
| | - Thorsten Persigehl
- Department of Diagnostic and Interventional Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| |
Collapse
|
11
|
Rabou MAA, Naga NAAE, Eid FA. Effect of Transplanted Bone Marrow on Kidney Tissue of γ-Irradiated Pregnant Rats and Their Fetuses. Pak J Biol Sci 2020; 23:92-102. [PMID: 31930887 DOI: 10.3923/pjbs.2020.92.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVES The damaging effects of ionizing radiation lead to cell death. The present study was performed to assess the possible ameliorating effects of bone marrow transplantation (BMT) on the histopathological and histochemical changes in the kidney tissue of γ-irradiated pregnant rats and their fetuses. MATERIALS AND METHODS Pregnant rats were divided into 5 sets (6 females in each set): Group C (untreated pregnant rats), group R7 (pregnant rats exposed to 2Gy of γ-rays on the 7th day of pregnancy), group R7+BM (pregnant rats exposed to 2Gy of γ-rays on the 7th day of pregnancy then injected by freshly BMT (75×106±5 cells) intra peritoneally after 1 h of irradiation, group R14 (pregnant rats exposed to 2Gy of γ-rays on the 14th day of pregnancy), group R14+BM (pregnant rats exposed to 2Gy γ-rays on the 14th day of pregnancy and after 1 h received 1 dose of BMT). All pregnant rats were sacrificed on the 20th day of pregnancy and kidney samples of pregnant rats and their fetuses were removed for histopathological and histochemical studies. RESULTS Gamma rays caused many histological and histochemical deviations in the kidney tissue of mothers and their fetuses on day 7 or 14 of gestation, but bone marrow transplantation highly improved the damage were occurred due to γ-rays. CONCLUSION Bone marrow transplantation has the ability to decrease the injury of gamma rays.
Collapse
|
12
|
Blocker SJ, Mowery YM, Holbrook MD, Qi Y, Kirsch DG, Johnson GA, Badea CT. Bridging the translational gap: Implementation of multimodal small animal imaging strategies for tumor burden assessment in a co-clinical trial. PLoS One 2019; 14:e0207555. [PMID: 30958825 PMCID: PMC6453461 DOI: 10.1371/journal.pone.0207555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
In designing co-clinical cancer studies, preclinical imaging brings unique challenges that emphasize the gap between man and mouse. Our group is developing quantitative imaging methods for the preclinical arm of a co-clinical trial studying immunotherapy and radiotherapy in a soft tissue sarcoma model. In line with treatment for patients enrolled in the clinical trial SU2C-SARC032, primary mouse sarcomas are imaged with multi-contrast micro-MRI (T1 weighted, T2 weighted, and T1 with contrast) before and after immune checkpoint inhibition and pre-operative radiation therapy. Similar to the patients, after surgery the mice will be screened for lung metastases with micro-CT using respiratory gating. A systems evaluation was undertaken to establish a quantitative baseline for both the MR and micro-CT systems against which others systems might be compared. We have constructed imaging protocols which provide clinically-relevant resolution and contrast in a genetically engineered mouse model of sarcoma. We have employed tools in 3D Slicer for semi-automated segmentation of both MR and micro-CT images to measure tumor volumes efficiently and reliably in a large number of animals. Assessment of tumor burden in the resulting images was precise, repeatable, and reproducible. Furthermore, we have implemented a publicly accessible platform for sharing imaging data collected during the study, as well as protocols, supporting information, and data analyses. In doing so, we aim to improve the clinical relevance of small animal imaging and begin establishing standards for preclinical imaging of tumors from the perspective of a co-clinical trial.
Collapse
Affiliation(s)
- S. J. Blocker
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Y. M. Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - M. D. Holbrook
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Y. Qi
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - D. G. Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - G. A. Johnson
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - C. T. Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
13
|
Aktar R, Dietrich A, Tillner F, Kotb S, Löck S, Willers H, Baumann M, Krause M, Bütof R. Pre-clinical imaging for establishment and comparison of orthotopic non-small cell lung carcinoma: in search for models reflecting clinical scenarios. Br J Radiol 2019; 92:20180539. [PMID: 30215546 PMCID: PMC6541193 DOI: 10.1259/bjr.20180539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE: Clinically relevant animal models of non-small cell lung carcinoma (NSCLC) are required for the validation of novel treatments. We compared two different orthotopic transplantation techniques as well as imaging modalities to identify suitable mouse models mimicking clinical scenarios. METHODS: We used three genomically diverse NSCLC cell lines [National Cancer Institute (NCI)-H1703 adenosquamous cell carcinoma, NCI-H23 adenocarcinoma and A549 adenocarcinoma) for implanting tumour cells either as spheroids or cell suspension into lung parenchyma. Bioluminescence imaging (BLI) and contrast-enhanced cone beam CT (CBCT) were performed twice weekly to monitor tumour growth. Tumour histological data and microenvironmental parameters were determined. RESULTS: Tumour development after spheroid-based transplantation differs probably due to the integrity of spheroids, as H1703 developed single localised nodules, whereas H23 showed diffuse metastatic spread starting early after transplantation. A549 transplantation as cell suspension with the help of a stereotactic system was associated with initial single localised tumour growth and eventual metastatic spread. Imaging techniques were successfully applied to monitor longitudinal tumour growth: BLI revealed highly sensitive qualitative data, whereas CBCT was associated with less sensitive quantitative data. Histology revealed significant model-dependent heterogeneity in proliferation, hypoxia, perfusion and necrosis. CONCLUSION: Our developed orthotopic NSCLC tumours have similarity with biological growth behaviour comparable to that seen in the clinic and could therefore be used as attractive models to study tumour biology and evaluate new therapeutic strategies. The use of human cancer cell lines facilitates testing of different genomic tumour profiles that may affect treatment outcomes. ADVANCES IN KNOWLEDGE: The combination of different imaging modalities to identify tumour growth with subsequent use in treatment planning and orthotopic transplantation techniques to develop initially single lesions to ultimate metastases pave the way towards representative pre-clinical NSCLC models for experimental testing of novel therapeutic options in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
14
|
Rakhit CP, Trigg RM, Le Quesne J, Kelly M, Shaw JA, Pritchard C, Martins LM. Early detection of pre-malignant lesions in a KRAS G12D-driven mouse lung cancer model by monitoring circulating free DNA. Dis Model Mech 2019; 12:dmm036863. [PMID: 30760495 PMCID: PMC6398498 DOI: 10.1242/dmm.036863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death. Two-thirds of cases are diagnosed at an advanced stage that is refractory to curative treatment. Therefore, strategies for the early detection of lung cancer are urgently sought. Total circulating free DNA (cfDNA) and tumour-derived circulating tumour DNA (ctDNA) are emerging as important biomarkers within a 'liquid biopsy' for monitoring human disease progression and response to therapy. Owing to the late clinical diagnosis of lung adenocarcinoma, the potential for cfDNA and ctDNA as early detection biomarkers remains unexplored. Here, using a Cre-regulated genetically engineered mouse model of lung adenocarcinoma development, driven by KrasG12D (the KrasLSL-G12D mouse), we serially tracked the release of cfDNA/ctDNA and compared this with tumour burden as determined by micro-computed tomography (CT). To monitor ctDNA, a droplet digital PCR assay was developed to permit discrimination of the KrasLox-G12D allele from the KrasLSL-G12D and KrasWT alleles. We show that micro-CT correlates with endpoint histology and is able to detect pre-malignant tumours with a combined volume larger than 7 mm3 Changes in cfDNA/ctDNA levels correlate with micro-CT measurements in longitudinal sampling and are able to monitor the emergence of lesions before the adenoma-adenocarcinoma transition. Potentially, this work has implications for the early detection of human lung adenocarcinoma using ctDNA/cfDNA profiling.A video abstract for this article is available at https://youtu.be/Ku8xJJyGs3UThis article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Callum P Rakhit
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE1 9HN, UK
| | - Ricky M Trigg
- Leicester Cancer Research Centre, University of Leicester, Leicester LE2 7LX, UK
| | - John Le Quesne
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE1 9HN, UK
- Leicester Cancer Research Centre, University of Leicester, Leicester LE2 7LX, UK
| | - Michael Kelly
- Core Biotechnology Services, University of Leicester, Leicester LE1 7RH, UK
| | - Jacqueline A Shaw
- Leicester Cancer Research Centre, University of Leicester, Leicester LE2 7LX, UK
| | - Catrin Pritchard
- Leicester Cancer Research Centre, University of Leicester, Leicester LE2 7LX, UK
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
15
|
A step towards valid detection and quantification of lung cancer volume in experimental mice with contrast agent-based X-ray microtomography. Sci Rep 2019; 9:1325. [PMID: 30718557 PMCID: PMC6362109 DOI: 10.1038/s41598-018-37394-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
Tumor volume is a parameter used to evaluate the performance of new therapies in lung cancer research. Conventional methods that are used to estimate tumor size in mouse models fail to provide fast and reliable volumetric data for tumors grown non-subcutaneously. Here, we evaluated the use of iodine-staining combined with micro-computed tomography (micro-CT) to estimate the tumor volume of ex vivo tumor-burdened lungs. We obtained fast high spatial resolution three-dimensional information of the lungs, and we demonstrated that iodine-staining highlights tumors and unhealthy tissue. We processed iodine-stained lungs for histopathological analysis with routine hematoxylin and eosin (H&E) staining. We compared the traditional tumor burden estimation performed manually with H&E histological slices with a semi-automated method using micro-CT datasets. In mouse models that develop lung tumors with well precise boundaries, the method that we describe here enables to perform a quick estimation of tumorous tissue volume in micro-CT images. Our method overestimates the tumor burden in tumors surrounded by abnormal tissue, while traditional histopathological analysis underestimates tumor volume. We propose to embed micro-CT imaging to the traditional workflow of tumorous lung analyses in preclinical cancer research as a strategy to obtain a more accurate estimation of the total lung tumor burden.
Collapse
|
16
|
Gallastegui A, Cheung J, Southard T, Hume KR. Volumetric and linear measurements of lung tumor burden from non-gated micro-CT imaging correlate with histological analysis in a genetically engineered mouse model of non-small cell lung cancer. Lab Anim 2018; 52:457-469. [PMID: 29436921 DOI: 10.1177/0023677218756457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In vivo micro-computed tomography (CT) imaging allows longitudinal studies of pulmonary neoplasms in genetically engineered mouse models. Respiratory gating increases the accuracy of lung tumor measurements but lengthens anesthesia time in animals that may be at increased risk for complications. We hypothesized that semiautomated, volumetric, and linear tumor measurements performed in micro-CT images from non-gated scans would have correlation with histological findings. Primary lung tumors were induced in eight FVB mice with two transgenes (FVB/N-Tg(tetO-Kras2)12Hev/J; FVB.Cg-Tg(Scgb1a1-rtTA)1Jaw/J). Non-gated micro-CT scans were performed and the lungs were subsequently harvested. In the acquired micro-CT scans, measurements of all identified tumors were determined using the following methods: semiautomated three-dimensional (3D) volume, ellipsoid volume, Response Evaluation Criteria in Solid Tumors (RECIST; sum of largest axial (i.e., transverse) diameter from five tumors), sum of largest axial diameters from all tumors (modified RECIST), and average axial diameter. For histological analysis, all five lung lobes were analyzed and the tumor area was summed from measurements made on five histological sections that were 300 µm apart from each other (covering a total depth of 1200 µm). All micro-CT measurement methods had very strong correlation with histological tumor burden (Pearson's correlation coefficient, 0.87 ( p = 0.0053) -0.98 ( p < 0.0001)). The only methods found to have different correlations were the semiautomated 3D method and the RECIST method (Williams' test for dependent overlapping correlations, p = 0.013). Our results suggest quantification of lung tumor burden from non-gated micro-CT imaging will reflect histological differences between mice and can therefore be used for between-group comparisons or when concerns about systemic health of research animals may limit lengthy anesthetic procedures.
Collapse
Affiliation(s)
- Aitor Gallastegui
- 1 Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, USA
| | - James Cheung
- 2 Department of Clinical Sciences, Cornell University College of Veterinary Medicine, USA
| | - Teresa Southard
- 3 Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, USA
| | - Kelly R Hume
- 2 Department of Clinical Sciences, Cornell University College of Veterinary Medicine, USA
| |
Collapse
|
17
|
Wang YA, Sun Y, Le Blanc JM, Solomides C, Zhan T, Lu B. Nitrilase 1 modulates lung tumor progression in vitro and in vivo. Oncotarget 2017; 7:21381-92. [PMID: 26967383 PMCID: PMC5008292 DOI: 10.18632/oncotarget.7820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/23/2016] [Indexed: 12/11/2022] Open
Abstract
Uncovering novel growth modulators for non-small cell lung cancer (NSCLC) may lead to new therapies for these patients. Previous studies suggest Nit1 suppresses chemically induced carcinogenesis of the foregut in a mouse model. In this study we aimed to determine the role of Nit1 in a transgenic mouse lung cancer model driven by a G12D Kras mutation. Nit1 knockout mice (Nit1−/−) were crossed with KrasG12D/+ mice to investigate whether a G12D Kras mutation and Nit1 inactivation interact to promote or inhibit the development of NSCLC. We found that lung tumorigenesis was suppressed in the Nit1-null background (Nit1−/−:KrasG12D/+). Micro-CT scans and gross tumor measurements demonstrated a 5-fold reduction in total tumor volumes compared to Nit1+/+KrasG12D/+ (p<0.01). Furthermore, we found that Nit1 is highly expressed in human lung cancer tissues and cell lines and use of siRNA against Nit1 decreased overall cell survival of lung cancer cells in culture. In addition, cisplatin response was enhanced in human lung cancer cells when Nit1 was knocked down and Nit1−/−:KrasG12D/+ tumors showed increased sensitivity to cisplatin in vivo. Together, our data indicate that Nit1 may play a supportive role in the modulation of lung tumorigenesis and represent a novel target for NSCLCs treatment.
Collapse
Affiliation(s)
- Yong Antican Wang
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Yunguang Sun
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.,Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Justin M Le Blanc
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | | | - Tingting Zhan
- Department of Pharmacology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Bo Lu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
18
|
Castle KD, Chen M, Wisdom AJ, Kirsch DG. Genetically engineered mouse models for studying radiation biology. Transl Cancer Res 2017; 6:S900-S913. [PMID: 30733931 PMCID: PMC6363345 DOI: 10.21037/tcr.2017.06.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetically engineered mouse models (GEMMs) are valuable research tools that have transformed our understanding of cancer. The first GEMMs generated in the 1980s and 1990s were knock-in and knock-out models of single oncogenes or tumor suppressors. The advances that made these models possible catalyzed both technological and conceptual shifts in the way cancer research was conducted. As a result, dozens of mouse models of cancer exist today, covering nearly every tissue type. The advantages inherent to GEMMs compared to in vitro and in vivo transplant models are compounded in preclinical radiobiology research for several reasons. First, they accurately and robustly recapitulate primary cancers anatomically, histopathologically, and genetically. Reliable models are a prerequisite for predictive preclinical studies. Second, they preserve the tumor microenvironment, including the immune, vascular, and stromal compartments, which enables the study of radiobiology at a systems biology level. Third, they provide exquisite control over the genetics and kinetics of tumor initiation, which enables the study of specific gene mutations on radiation response and functional genomics in vivo. Taken together, these facets allow researchers to utilize GEMMs for rigorous and reproducible preclinical research. In the three decades since the generation of the first GEMMs of cancer, advancements in modeling approaches have rapidly progressed and expanded the mouse modeling toolbox with techniques such as in vivo short hairpin RNA (shRNA) knockdown, inducible gene expression, site-specific recombinases, and dual recombinase systems. Our lab and many others have utilized these tools to study cancer and radiobiology. Recent advances in genome engineering with CRISPR/Cas9 technology have made GEMMs even more accessible to researchers. Here, we review current and future approaches to mouse modeling with a focus on applications in preclinical radiobiology research.
Collapse
Affiliation(s)
- Katherine D. Castle
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Mark Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
- Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA
| | - Amy J. Wisdom
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
- Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA
| | - David G. Kirsch
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
19
|
Müller A, Jagoda P, Fries P, Gräber S, Bals R, Buecker A, Jungnickel C, Beisswenger C. Three-dimensional ultrashort echo time MRI and Short T 2 images generated from subtraction for determination of tumor burden in lung cancer: Preclinical investigation in transgenic mice. Magn Reson Med 2017; 79:1052-1060. [PMID: 28497643 DOI: 10.1002/mrm.26741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the potential of 3D ultrashort echo time MRI and short T2 images generated by subtraction for determination of total tumor burden in lung cancer. METHODS As an animal model of spontaneously developing non-small cell lung cancer, the K-rasLA1 transgenic mouse was used. Three-dimensional MR imaging was performed with radial k-space acquisition and echo times of 20 µs and 1 ms. For investigation of the short T2 component in the recorded signal, subtraction images were generated from these data sets and used for consensus identification of tumors. Next, manual segmentation was performed on all MR images by two independent investigators. MRI data were compared with the results from histologic investigations and among the investigators. RESULTS Tumor number and total tumor burden from imaging experiments correlated strongly with the results of histologic investigations. Intra- and interuser comparison showed highest correlations between the individual measurements for ultra-short TE MRI. CONCLUSIONS Three-dimensional MRI protocols facilitate accurate tumor identification in mice harboring lung tumors. Ultrashort TE MRI is the superior imaging strategy when investigating lung tumors of miscellaneous size with 3D MR imaging strategies. Magn Reson Med 79:1052-1060, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Andreas Müller
- Clinic for Diagnostic and Interventional Radiology, Saarland University Hospital, Homburg, Germany
| | - Philippe Jagoda
- Clinic for Diagnostic and Interventional Radiology, Saarland University Hospital, Homburg, Germany
| | - Peter Fries
- Clinic for Diagnostic and Interventional Radiology, Saarland University Hospital, Homburg, Germany
| | - Stefan Gräber
- Department of Internal Medicine V-Pulmonology, Allergology, and Respiratory Critical Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Robert Bals
- Department of Biostatistics and Medical Informatics, Institute for Epidemiology, Saarland University Hospital, Homburg, Germany
| | - Arno Buecker
- Clinic for Diagnostic and Interventional Radiology, Saarland University Hospital, Homburg, Germany
| | - Christopher Jungnickel
- Department of Internal Medicine V-Pulmonology, Allergology, and Respiratory Critical Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V-Pulmonology, Allergology, and Respiratory Critical Care Medicine, Saarland University Hospital, Homburg, Germany
| |
Collapse
|
20
|
Wang YA, Sun Y, Palmer J, Solomides C, Huang LC, Shyr Y, Dicker AP, Lu B. IGFBP3 Modulates Lung Tumorigenesis and Cell Growth through IGF1 Signaling. Mol Cancer Res 2017; 15:896-904. [PMID: 28330997 DOI: 10.1158/1541-7786.mcr-16-0390] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/03/2016] [Accepted: 03/16/2017] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factor binding protein 3 (IGFBP3) modulates cell growth through IGF-dependent and -independent mechanisms. Reports suggest that the serum levels of IGFBP3 are associated with various cancers and that IGFBP3 expression is significantly decreased in cisplatin (CDDP)-resistant lung cancer cells. Based on these findings, we investigated whether Igfbp3 deficiency accelerates mouse lung tumorigenesis and if expression of IGFBP3 enhances CDDP response by focusing on the IGF1 signaling cascade. To this end, an Igfbp3-null mouse model was generated in combination with KrasG12D to compare the tumor burden. Then, IGF-dependent signaling was assessed after expressing wild-type or a mutant IGFBP3 without IGF binding capacity in non-small cell lung cancer (NSCLC) cells. Finally, the treatment response to CDDP chemotherapy was evaluated under conditions of IGFBP3 overexpression. Igfbp3-null mice had increased lung tumor burden (>2-fold) and only half of human lung cancer cells survived after expression of IGFBP3, which corresponded to increased cleaved caspase-3 (10-fold), inactivation of IGF1 and MAPK signaling. In addition, overexpression of IGFBP3 increased susceptibility to CDDP treatment in lung cancer cells. These results, for the first time, demonstrate that IGFBP3 mediates lung cancer progression in a KrasG12D mouse model. Furthermore, overexpression of IGFBP3 induced apoptosis and enhanced cisplatin response in vitro and confirmed that the suppression is in part by blocking IGF1 signaling.Implications: These findings reveal that IGFBP3 is effective in lung cancer cells with high IGF1 signaling activity and imply that relevant biomarkers are essential in selecting lung cancer patients for IGF1-targeted therapy. Mol Cancer Res; 15(7); 896-904. ©2017 AACR.
Collapse
Affiliation(s)
- Yong Antican Wang
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yunguang Sun
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joshua Palmer
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Li-Ching Huang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adam P Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Bo Lu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
21
|
Ford E, Deye J. Current Instrumentation and Technologies in Modern Radiobiology Research—Opportunities and Challenges. Semin Radiat Oncol 2016; 26:349-55. [DOI: 10.1016/j.semradonc.2016.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Abstract
Metastasis is often modeled by xenotransplantation of cell lines in immunodeficient mice. A wealth of information about tumor cell behavior in the new environment is obtained from these efforts. Yet by design, this approach is "tumor-centric," as it focuses on cell-autonomous determinants of human tumor dissemination in mouse tissues, in effect using the animal body as a sophisticated "Petri dish" providing nutrients and support for tumor growth. Transgenic or gene knockout mouse models of cancer allow the study of tumor spread as a systemic disease and offer a complimentary approach for studying the natural history of cancer. This introduction is aimed at describing the overall methodological approach to studying metastasis in genetically modified mice, with a particular focus on using animals with regulated expression of potent human oncogenes in the breast.
Collapse
|
23
|
Ashton JR, West JL, Badea CT. In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol 2015; 6:256. [PMID: 26581654 PMCID: PMC4631946 DOI: 10.3389/fphar.2015.00256] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research.
Collapse
Affiliation(s)
- Jeffrey R Ashton
- Department of Biomedical Engineering, Duke University, Durham NC, USA ; Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Cristian T Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
24
|
Barck KH, Bou-Reslan H, Rastogi U, Sakhuja T, Long JE, Molina R, Lima A, Hamilton P, Junttila MR, Johnson L, Carano RAD. Quantification of Tumor Burden in a Genetically Engineered Mouse Model of Lung Cancer by Micro-CT and Automated Analysis. Transl Oncol 2015; 8:126-35. [PMID: 25926079 PMCID: PMC4415142 DOI: 10.1016/j.tranon.2015.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/06/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
Genetically engineered mouse models (GEMMs) of lung cancer closely recapitulate the human disease but suffer from the difficulty of evaluating tumor growth by conventional methods. Herein, a novel automated image analysis method for estimating the lung tumor burden from in vivo micro-computed tomography (micro-CT) data is described. The proposed tumor burden metric is the segmented soft tissue volume contained within a chest space region of interest, excluding an estimate of the heart volume. The method was validated by comparison with previously published manual analysis methods and applied in two therapeutic studies in a mutant K-ras GEMM of non-small cell lung carcinoma. Mice were imaged by micro-CT pre-treatment and stratified into four treatment groups: an antibody inhibiting vascular endothelial growth factor (anti-VEGF), chemotherapy, combination of anti-VEGF and chemotherapy, or control antibody. In the first study, post-treatment imaging was performed 4 weeks later. In the second study, mice were scanned serially on a high-throughput scanner every 2 weeks for 8 weeks during treatment. In both studies, the automated tumor burden estimates were well correlated with manual metrics (r value range: 0.83-0.93, P < .0001) and showed a similar, significant reduction in tumor growth in mice treated with anti-VEGF alone or in combination with chemotherapy. Given the fully automated nature of this technique, the proposed analysis method can provide a valuable tool in preclinical drug research for screening and randomizing animals into treatment groups and evaluating treatment efficacy in mouse models of lung cancer in a highly robust and efficient manner.
Collapse
Affiliation(s)
- Kai H Barck
- Department of Biomedical Imaging, Genentech, Inc, South San Francisco, CA, USA
| | - Hani Bou-Reslan
- Department of Biomedical Imaging, Genentech, Inc, South San Francisco, CA, USA
| | - Ujjawal Rastogi
- Department of Biomedical Imaging, Genentech, Inc, South San Francisco, CA, USA
| | - Timothy Sakhuja
- Department of Biomedical Imaging, Genentech, Inc, South San Francisco, CA, USA
| | - Jason E Long
- Department of Translational Oncology, Genentech, Inc, South San Francisco, CA, USA
| | - Rafael Molina
- Department of Translational Oncology, Genentech, Inc, South San Francisco, CA, USA
| | - Anthony Lima
- Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA, USA
| | - Patricia Hamilton
- Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA, USA
| | - Melissa R Junttila
- Department of Translational Oncology, Genentech, Inc, South San Francisco, CA, USA
| | - Leisa Johnson
- Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA, USA
| | - Richard A D Carano
- Department of Biomedical Imaging, Genentech, Inc, South San Francisco, CA, USA.
| |
Collapse
|
25
|
Image-guided radiotherapy platform using single nodule conditional lung cancer mouse models. Nat Commun 2014; 5:5870. [PMID: 25519892 PMCID: PMC4271540 DOI: 10.1038/ncomms6870] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/14/2014] [Indexed: 12/14/2022] Open
Abstract
Close resemblance of murine and human trials is essential to achieve the best predictive value of animal-based translational cancer research. Kras-driven genetically engineered mouse models of non-small-cell lung cancer faithfully predict the response of human lung cancers to systemic chemotherapy. Owing to development of multifocal disease, however, these models have not been usable in studies of outcomes following focal radiotherapy (RT). We report the development of a preclinical platform to deliver state-of-the-art image-guided RT in these models. Presence of a single tumour as usually diagnosed in patients is modelled by confined injection of adenoviral Cre recombinase. Furthermore, three-dimensional conformal planning and state-of-the-art image-guided dose delivery are performed as in humans. We evaluate treatment efficacies of two different radiation regimens and find that Kras-driven tumours can temporarily be stabilized upon RT, whereas additional loss of either Lkb1 or p53 renders these lesions less responsive to RT.
Collapse
|
26
|
Kobayashi N, Idiyatullin D, Corum C, Weber J, Garwood M, Sachdev D. SWIFT MRI enhances detection of breast cancer metastasis to the lung. Magn Reson Med 2014; 73:1812-9. [PMID: 24919566 DOI: 10.1002/mrm.25301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/11/2014] [Accepted: 05/02/2014] [Indexed: 01/19/2023]
Abstract
PURPOSE To evaluate the capability of longitudinal MR scans using sweep imaging with Fourier transformation (SWIFT) to detect breast cancer metastasis to the lung in mice. METHODS Mice with breast cancer metastatic to the lung were generated by tail vein injection of MDA-MB-231-LM2 cells. Thereafter, MR imaging was performed every week using three different pulse sequences: SWIFT [echo time (TE) ∼3 μs], concurrent dephasing and excitation (CODE; TE ∼300 μs), and three-dimensional (3D) gradient echo (GRE; TE = 2.2 ms). Motion during the long SWIFT MR scans was compensated for by rigid-body motion correction. Maximum intensity projection (MIP) images were generated to visualize changes in lung vascular structures during the development and growth of metastases. RESULTS SWIFT MRI was more sensitive to signals from the lung parenchyma than CODE or 3D GRE MRI. Metastatic tumor growth in the lungs induced a progressive increase in intensity of parenchymal signals in SWIFT images. MIP images from SWIFT clearly visualized lung vascular structures and their disruption due to progression of breast cancer metastases in the lung. CONCLUSION SWIFT MRI's sensitivity to fast-decaying signals and tolerance of magnetic susceptibility enhances its effectiveness at detecting structural changes in lung parenchyma and vasculature due to breast cancer metastases in the lung.
Collapse
Affiliation(s)
- Naoharu Kobayashi
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
27
|
Wang F, Akashi K, Murakami Y, Inoue Y, Furuta T, Yamada H, Ohtomo K, Kiryu S. Detection of lung tumors in mice using a 1-tesla compact magnetic resonance imaging system. PLoS One 2014; 9:e94945. [PMID: 24743153 PMCID: PMC3990561 DOI: 10.1371/journal.pone.0094945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/20/2014] [Indexed: 11/18/2022] Open
Abstract
Due to their small size, lung tumors in rodents are typically investigated using high-field magnetic resonance (MR) systems (4.7 T or higher) to achieve higher signal-to-noise ratios, although low-field MR systems are less sensitive to susceptibility artifacts caused by air in the lung. We investigated the feasibility of detecting lung tumors in living, freely breathing mice with a 1-T compact permanent magnet MR system. In total, 4 mice were used, and MR images of mouse lungs were acquired using a T1-weighted three-dimensional fast low-angle shot sequence without cardiac or respiratory gating. The delineation and size of lung tumors were assessed and compared with histopathological findings. Submillimeter lesions were demonstrated as hyperintense, relative to the surrounding lung parenchyma, and were delineated clearly. Among the 13 lesions validated in histopathological sections, 11 were detected in MR images; the MR detection rate was thus 84.6%. A strong correlation was obtained in size measurements between MR images and histological sections. Thus, a dedicated low-field MR system can be used to detect lung tumors in living mice noninvasively without gating.
Collapse
Affiliation(s)
- Fang Wang
- Department of Radiology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Radiology, Qi Lu Hospital of Shandong University, Jinan, China
| | - Ken Akashi
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Toshihiro Furuta
- Department of Radiology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Haruyasu Yamada
- Department of Radiology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kuni Ohtomo
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigeru Kiryu
- Department of Radiology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
28
|
Rodriguez E, Mannion L, D'Santos P, Griffiths M, Arends MJ, Brindle KM, Lyons SK. Versatile and enhanced tumour modelling in mice via somatic cell transduction. J Pathol 2014; 232:449-57. [PMID: 24307564 PMCID: PMC4288983 DOI: 10.1002/path.4313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/16/2013] [Accepted: 11/29/2013] [Indexed: 01/22/2023]
Abstract
Genetically engineered mouse (GEM) models of cancer currently comprise the most accurate way to experimentally recapitulate the human disease in the laboratory. Given recent advances in genomics and genetic screens, however, as well as an increasing urgency for the translation of effective preclinical treatments into the clinic, there is a pressing need to make these models easier and more efficient to work with. Accordingly, we have developed a versatile lentivirus-based approach to induce tumours from somatic cells of GEMs, add or subtract gene expression and render the tumours imageable from a simple breeding stock. The vectors deliver a tamoxifen-inducible and self-inactivating Cre recombinase, conditional bioluminescent and fluorescent proteins and an shRNA component. Following the transduction of somatic cells, tumours are initiated by Cre-mediated recombination of the inherited floxed alleles. Self-inactivation of Cre expression switches on the expression of luciferase, thereby rendering the recombined cells and resulting tumours bioluminescent. We demonstrate proof of concept of this approach by inducing bioluminescent lung tumours in conditional Kras and p53 mice. We also show that a variant vector expressing shRNA alters tumour growth dynamics and the histological grade associated with the inherited genotype. This approach comprises a versatile means to induce imageable and spontaneous tumour burden in mice. The vectors can be readily customized at the bench to modify reporter readout or tumour phenotype without additional transgenic strain development or breeding. They should also be useful for inducing imageable tumours in organs other than the lung, provided that the inherited conditional genotype is sufficiently penetrant.
Collapse
MESH Headings
- Animals
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Genetic Predisposition to Disease
- Genetic Vectors
- HEK293 Cells
- Humans
- Integrases/genetics
- Integrases/metabolism
- Lentivirus/genetics
- Luciferases/genetics
- Luciferases/metabolism
- Luminescent Measurements
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Grading
- Phenotype
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Reproducibility of Results
- Time Factors
- Transduction, Genetic
- Tumor Burden
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Esther Rodriguez
- Department of Molecular Imaging, CRUK Cambridge Institute, University of CambridgeUK
| | - Liz Mannion
- Department of Molecular Imaging, CRUK Cambridge Institute, University of CambridgeUK
| | - Paula D'Santos
- Department of Molecular Imaging, CRUK Cambridge Institute, University of CambridgeUK
| | - Meryl Griffiths
- Histopathology Department, Addenbrookes HospitalCambridge, UK
| | | | - Kevin M Brindle
- Department of Molecular Imaging, CRUK Cambridge Institute, University of CambridgeUK
| | - Scott K Lyons
- Department of Molecular Imaging, CRUK Cambridge Institute, University of CambridgeUK
| |
Collapse
|
29
|
Ashton JR, Clark DP, Moding EJ, Ghaghada K, Kirsch DG, West JL, Badea CT. Dual-energy micro-CT functional imaging of primary lung cancer in mice using gold and iodine nanoparticle contrast agents: a validation study. PLoS One 2014; 9:e88129. [PMID: 24520351 PMCID: PMC3919743 DOI: 10.1371/journal.pone.0088129] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
Purpose To provide additional functional information for tumor characterization, we investigated the use of dual-energy computed tomography for imaging murine lung tumors. Tumor blood volume and vascular permeability were quantified using gold and iodine nanoparticles. This approach was compared with a single contrast agent/single-energy CT method. Ex vivo validation studies were performed to demonstrate the accuracy of in vivo contrast agent quantification by CT. Methods Primary lung tumors were generated in LSL-KrasG12D; p53FL/FL mice. Gold nanoparticles were injected, followed by iodine nanoparticles two days later. The gold accumulated in tumors, while the iodine provided intravascular contrast. Three dual-energy CT scans were performed–two for the single contrast agent method and one for the dual contrast agent method. Gold and iodine concentrations in each scan were calculated using a dual-energy decomposition. For each method, the tumor fractional blood volume was calculated based on iodine concentration, and tumor vascular permeability was estimated based on accumulated gold concentration. For validation, the CT-derived measurements were compared with histology and inductively-coupled plasma optical emission spectroscopy measurements of gold concentrations in tissues. Results Dual-energy CT enabled in vivo separation of gold and iodine contrast agents and showed uptake of gold nanoparticles in the spleen, liver, and tumors. The tumor fractional blood volume measurements determined from the two imaging methods were in agreement, and a high correlation (R2 = 0.81) was found between measured fractional blood volume and histology-derived microvascular density. Vascular permeability measurements obtained from the two imaging methods agreed well with ex vivo measurements. Conclusions Dual-energy CT using two types of nanoparticles is equivalent to the single nanoparticle method, but allows for measurement of fractional blood volume and permeability with a single scan. As confirmed by ex vivo methods, CT-derived nanoparticle concentrations are accurate. This method could play an important role in lung tumor characterization by CT.
Collapse
Affiliation(s)
- Jeffrey R. Ashton
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Darin P. Clark
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Everett J. Moding
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ketan Ghaghada
- The Edward B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - David G. Kirsch
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Cristian T. Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
30
|
Rankine LJ, Newton J, Bache ST, Das SK, Adamovics J, Kirsch DG, Oldham M. Investigating end-to-end accuracy of image guided radiation treatment delivery using a micro-irradiator. Phys Med Biol 2013; 58:7791-801. [PMID: 24140983 DOI: 10.1088/0031-9155/58/21/7791] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is significant interest in delivering precisely targeted small-volume radiation treatments, in the pre-clinical setting, to study dose-volume relationships with tumour control and normal tissue damage. For these studies it is vital that image guidance systems and target positioning are accurately aligned (IGRT), in order to deliver dose precisely and accurately according to the treatment plan. In this work we investigate the IGRT targeting accuracy of the X-RAD 225 Cx system from Precision X-Ray using high-resolution 3D dosimetry techniques. Small cylindrical PRESAGE® dosimeters were used with optical-CT readout (DMOS) to verify the accuracy of 2.5, 1.0, and 5.0 mm X-RAD cone attachments. The dosimeters were equipped with four target points, visible on both CBCT and optical-CT, at which a 7-field coplanar treatment plan was delivered with the respective cone. Targeting accuracy (distance to agreement between the target point and delivery isocenter) and cone alignment (isocenter precision under gantry rotation) were measured using the optical-CT images. Optical-CT readout of the first 2.5 mm cone dosimeter revealed a significant targeting error of 2.1 ± 0.6 mm and a cone misalignment of 1.3 ± 0.1 mm. After the IGRT hardware and software had been recalibrated, these errors were reduced to 0.5 ± 0.1 and 0.18 ± 0.04 mm respectively, within the manufacturer specified 0.5 mm. Results from the 1.0 mm cone were 0.5 ± 0.3 mm targeting accuracy and 0.4 ± 0.1 mm cone misalignment, within the 0.5 mm specification. The results from the 5.0 mm cone were 1.0 ± 0.2 mm targeting accuracy and 0.18 ± 0.06 mm cone misalignment, outside of accuracy specifications. Quality assurance of small field IGRT targeting and delivery accuracy is a challenging task. The use of a 3D dosimetry technique, where targets are visible on both CBCT and optical-CT, enabled identification and quantification of a targeting error in 3D. After correction, the targeting accuracy of the irradiator was verified to be within 0.5 mm (or 1.0 mm for the 5.0 mm cone) and the cone alignment was verified to be within 0.2 mm (or 0.4 mm for the 1.0 mm cone). The PRESAGE®/DMOS system proved valuable for end-to-end verification of small field IGRT capabilities.
Collapse
Affiliation(s)
- L J Rankine
- Medical Physics Graduate Program, Duke University, Durham, NC, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Liu FF, Okunieff P, Bernhard EJ, Stone HB, Yoo S, Coleman CN, Vikram B, Brown M, Buatti J, Guha C. Lessons learned from radiation oncology clinical trials. Clin Cancer Res 2013; 19:6089-100. [PMID: 24043463 DOI: 10.1158/1078-0432.ccr-13-1116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A workshop entitled "Lessons Learned from Radiation Oncology Trials" was held on December 7-8, 2011, in Bethesda, MD, to present and discuss some of the recently conducted radiation oncology clinical trials with a focus on those that failed to refute the null hypothesis. The objectives of this workshop were to summarize and examine the questions that these trials provoked, to assess the quality and limitations of the preclinical data that supported the hypotheses underlying these trials, and to consider possible solutions to these challenges for the design of future clinical trials. Several themes emerged from the discussions: (i) opportunities to learn from null-hypothesis trials through tissue and imaging studies; (ii) value of preclinical data supporting the design of combinatorial therapies; (iii) significance of validated biomarkers; (iv) necessity of quality assurance in radiotherapy delivery; (v) conduct of sufficiently powered studies to address the central hypotheses; and (vi) importance of publishing results of the trials regardless of the outcome. The fact that well-designed hypothesis-driven clinical trials produce null or negative results is expected given the limitations of trial design and complexities of cancer biology. It is important to understand the reasons underlying such null results, however, to effectively merge the technologic innovations with the rapidly evolving biology for maximal patient benefit through the design of future clinical trials.
Collapse
Affiliation(s)
- Fei-Fei Liu
- Authors' Affiliations: Department of Radiation Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Florida Shands Cancer Center, Gainesville, Florida; Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda; Molecular Radiation Therapeutics Branch, Division of Cancer Treatment and Diagnosis, and Clinical Radiation Oncology Branch, National Cancer Institute, Rockville, Maryland; Department of Radiation Oncology, Stanford University, Palo Alto, California; Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa; and Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Anayama T, Nakajima T, Dunne M, Zheng J, Allen C, Driscoll B, Vines D, Keshavjee S, Jaffray D, Yasufuku K. A novel minimally invasive technique to create a rabbit VX2 lung tumor model for nano-sized image contrast and interventional studies. PLoS One 2013; 8:e67355. [PMID: 23840673 PMCID: PMC3696117 DOI: 10.1371/journal.pone.0067355] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/16/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The rabbit VX2 lung cancer model is a large animal model useful for preclinical lung cancer imaging and interventional studies. However, previously reported models had issues in terms of invasiveness of tumor inoculation, control of tumor aggressiveness and incidence of complications. PURPOSE We aimed to develop a minimally invasive rabbit VX2 lung cancer model suitable for imaging and transbronchial interventional studies. METHODS New Zealand white rabbits and VX2 tumors were used in the study. An ultra-thin bronchoscope was inserted through a miniature laryngeal mask airway into the bronchus. Different numbers of VX2 tumor cells were selectively inoculated into the lung parenchyma or subcarinal mediastinum to create a uniform tumor with low incidence of complications. The model was characterized by CT, FDG-PET, and endobronchial ultrasound (EBUS). Liposomal dual-modality contrast agent was used to evaluate liposome drug delivery system in this model. RESULTS Both peripheral and mediastinal lung tumor models were created. The tumor making success rate was 75.8% (25/33) in the peripheral lung tumor model and 60% (3/5) in the mediastinal tumor model. The group of 1.0×10(6) of VX2 tumor cells inoculation showed a linear growth curve with less incidence of complications. Radial probe EBUS visualized the internal structure of the tumor and the size measurement correlated well with CT measurements (r(2) = 0.98). Over 7 days of continuous enhancement of the lung tumor by liposomal contrast in the lung tumor was confirmed both CT and fluorescence imaging. CONCLUSION Our minimally invasive bronchoscopic rabbit VX2 lung cancer model is an ideal platform for lung cancer imaging and preclinical bronchoscopic interventional studies.
Collapse
Affiliation(s)
- Takashi Anayama
- Division of Thoracic Surgery, Department of Surgery, Toronto General Hospital, University of Toronto, University Health Network, Toronto, Canada
| | - Takahiro Nakajima
- Division of Thoracic Surgery, Department of Surgery, Toronto General Hospital, University of Toronto, University Health Network, Toronto, Canada
| | - Michael Dunne
- Department of Radiation Physics, Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Jinzi Zheng
- Department of Radiation Physics, Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Brandon Driscoll
- Department of Radiation Physics, Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Canada
| | - Douglass Vines
- Department of Radiation Physics, Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Canada
| | - Shaf Keshavjee
- Division of Thoracic Surgery, Department of Surgery, Toronto General Hospital, University of Toronto, University Health Network, Toronto, Canada
| | - David Jaffray
- Department of Radiation Physics, Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Canada
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Department of Surgery, Toronto General Hospital, University of Toronto, University Health Network, Toronto, Canada
- * E-mail:
| |
Collapse
|
33
|
Perez BA, Ghafoori AP, Lee CL, Johnston SM, Li Y, Moroshek JG, Ma Y, Mukherjee S, Kim Y, Badea CT, Kirsch DG. Assessing the radiation response of lung cancer with different gene mutations using genetically engineered mice. Front Oncol 2013; 3:72. [PMID: 23565506 PMCID: PMC3613757 DOI: 10.3389/fonc.2013.00072] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/19/2013] [Indexed: 11/25/2022] Open
Abstract
Purpose: Non-small cell lung cancers (NSCLC) are a heterogeneous group of carcinomas harboring a variety of different gene mutations. We have utilized two distinct genetically engineered mouse models of human NSCLC (adenocarcinoma) to investigate how genetic factors within tumor parenchymal cells influence the in vivo tumor growth delay after one or two fractions of radiation therapy (RT). Materials and Methods: Primary lung adenocarcinomas were generated in vivo in mice by intranasal delivery of an adenovirus expressing Cre-recombinase. Lung cancers expressed oncogenic KrasG12D and were also deficient in one of two tumor suppressor genes: p53 or Ink4a/ARF. Mice received no radiation treatment or whole lung irradiation in a single fraction (11.6 Gy) or in two 7.3 Gy fractions (14.6 Gy total) separated by 24 h. In each case, the biologically effective dose (BED) equaled 25 Gy10. Response to RT was assessed by micro-CT 2 weeks after treatment. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical staining were performed to assess the integrity of the p53 pathway, the G1 cell-cycle checkpoint, and apoptosis. Results: Tumor growth rates prior to RT were similar for the two genetic variants of lung adenocarcinoma. Lung cancers with wild-type (WT) p53 (LSL-Kras; Ink4a/ARFFL/FL mice) responded better to two daily fractions of 7.3 Gy compared to a single fraction of 11.6 Gy (P = 0.002). There was no statistically significant difference in the response of lung cancers deficient in p53 (LSL-Kras; p53FL/FL mice) to a single fraction (11.6 Gy) compared to 7.3 Gy × 2 (P = 0.23). Expression of the p53 target genes p21 and PUMA were higher and bromodeoxyuridine uptake was lower after RT in tumors with WT p53. Conclusion: Using an in vivo model of malignant lung cancer in mice, we demonstrate that the response of primary lung cancers to one or two fractions of RT can be influenced by specific gene mutations.
Collapse
Affiliation(s)
- Bradford A Perez
- Department of Radiation Oncology, Duke University Medical Center Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lalwani K, Giddabasappa A, Li D, Olson P, Simmons B, Shojaei F, Arsdale TV, Christensen J, Jackson-Fisher A, Wong A, Lappin PB, Eswaraka J. Contrast agents for quantitative microCT of lung tumors in mice. Comp Med 2013; 63:482-490. [PMID: 24326223 PMCID: PMC3866987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/26/2013] [Accepted: 05/28/2013] [Indexed: 06/03/2023]
Abstract
The identification and quantitative evaluation of lung tumors in mouse models is challenging and an unmet need in preclinical arena. In this study, we developed a noninvasive contrast-enhanced microCT (μCT) method to longitudinally evaluate and quantitate lung tumors in mice. Commercially available μCT contrast agents were compared to determine the optimal agent for visualization of thoracic blood vessels and lung tumors in naïve mice and in non-small-cell lung cancer models. Compared with the saline control, iopamidol and iodinated lipid agents provided only marginal increases in contrast resolution. The inorganic nanoparticulate agent provided the best contrast and visualization of thoracic vascular structures; the density contrast was highest at 15 min after injection and was stable for more than 4 h. Differential contrast of the tumors, vascular structures, and thoracic air space by the nanoparticulate agent enabled identification of tumor margins and accurate quantification. μCT data correlated closely with traditional histologic measurements (Pearson correlation coefficient, 0.995). Treatment of ELM4-ALK mice with crizotinib yielded 65% reduction in tumor size and thus demonstrated the utility of quantitative μCT in longitudinal preclinical trials. Overall and among the 3 agents we tested, the inorganic nanoparticulate product was the best commercially available contrast agent for visualization of thoracic blood vessels and lung tumors. Contrast-enhanced μCT imaging is an excellent noninvasive method for longitudinal evaluation during preclinical lung tumor studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Anthony Wong
- Drug Safety Research and Development, Pfizer, San Diego, California
| | - Patrick B Lappin
- Drug Safety Research and Development, Pfizer, San Diego, California
| | | |
Collapse
|
35
|
[The mouse as preclinical models of lung cancer]. Bull Cancer 2012; 99:1017-27. [PMID: 23131302 DOI: 10.1684/bdc.2012.1657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The high incidence and poor prognosis of lung cancer represent a major health problem. Currently, about 20% of lung cancer patients can benefit from targeted therapy after identification of EGFR, ALK or HER2 somatic mutations or rearrangements. Other mutations, such as KRas oncogenic mutation, are still orphans of validated targeted therapy. In this review, we describe the different mouse models of lung carcinoma. We then illustrate the interests of such models for the identification and validation of new therapeutic targets, for the study of secondary resistance and for their use as preclinical models and for new therapeutic strategy tests.
Collapse
|
36
|
Bell RC, Rogith D, Johnson CW, Badea CT, Athreya KK, Espinosa G, Clark D, Ghafoori AP, Li Y, Kirsch DG, Annapragada A, Ghaghada K. Data analysis: evaluation of nanoscale contrast agent enhanced CT scan to differentiate between benign and malignant lung cancer in mouse model. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2012; 2012:27-35. [PMID: 23304269 PMCID: PMC3540499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Proposed is a method for statistical analysis for a small sample size, repeated measure experiment with nesting factors. In the original experiment the Student t-test was used for analysis. Using the same data, we modeled the experiment into two groups of mice with benign and malignant primary lung tumors. 4 tumor nodules were selected from each mouse (N= 36). The dependent variables are the volume, diameter, and signal attenuation measured using computed tomography (CT). The measurements are made before injecting the contrast and at 0, 72, and 168 hours after injection. The contrast agent enhances tumor nodule volume and volume differences between benign and malignant tumor nodules measured across time (p < 0.05). The signal attenuation measured across time differentiates between benign and malignant groups (p < 0.05). There is significant correlation between rate of change of volume and diameter of tumor. The advantages of this statistical method are discussed.
Collapse
Affiliation(s)
- Robert C Bell
- School of Biomedical Informatics, The University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rodt T, Luepke M, Boehm C, Hueper K, Halter R, Glage S, Hoy L, Wacker F, Borlak J, von Falck C. Combined micro-PET/micro-CT imaging of lung tumours in SPC-raf and SPC-myc transgenic mice. PLoS One 2012; 7:e44427. [PMID: 23028537 PMCID: PMC3448619 DOI: 10.1371/journal.pone.0044427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/02/2012] [Indexed: 01/21/2023] Open
Abstract
Introduction SPC-raf and SPC-myc transgenic mice develop disseminated and circumscribed lung adenocarcinoma respectively, allowing for assessment of carcinogenesis and treatment strategies. The purpose of this study was to investigate the technical feasibility, the correlation of initial findings to histology and the administered radiation dose of combined micro-PET/micro-CT in these animal models. Material and Methods 14 C57BL/6 mice (4 nontransgenic, 4 SPC-raf transgenic, 6 SPC-myc transgenic) were examined using micro-CT and 18F-Fluoro-deoxyglucose micro-PET in-vivo. Micro-PET data was corrected for random events and scatter prior to reconstruction with a 3D-FORE/2D-OSEM iterative algorithm. Rigid micro-PET/micro-CT registration was performed. Tumour-to-non-tumour ratios were calculated for different lung regions and focal lesions. Diffuse tumour growth was quantified using a semiautomated micro-CT segmentation routine reported earlier. Regional histologic tumour load was assessed using a 4-point rating scale. Gamma radiation dose was determined using thermoluminescence dosimeters. Results Micro-CT allowed visualisation of diffuse and circumscribed tumours in SPC-raf and SPC-myc transgenic animals along with morphology, while micro-PET provided information on metabolism, but lacked morphologic detail. Mean tumour-to-non-tumour ratio was 2.47 for circumscribed lesions. No significant correlation could be shown between histological tumour load and tumour-to-nontumour ratio for diffuse tumours in SPC-raf transgenic animals. Calculation of the expected dose based on gamma dosimetry yielded approximately 140 mGy/micro-PET examination additional to approximately 200 mGy due to micro-CT. Conclusions Combined micro-PET/micro-CT imaging allows for in-vivo assessment of lung tumours in SPC-raf and SPC-myc transgenic mice. The technique has potential for the evaluation of carcinogenesis and treatment strategies in circumscribed lung tumours.
Collapse
Affiliation(s)
- Thomas Rodt
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu X, Liu J, Guan Y, Li H, Huang L, Tang H, He J. Establishment of an orthotopic lung cancer model in nude mice and its evaluation by spiral CT. J Thorac Dis 2012; 4:141-5. [PMID: 22833819 DOI: 10.3978/j.issn.2072-1439.2012.03.04] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To establish a simple and highly efficient orthotopic animal model of lung cancer cell line A549 and evaluate the growth pattern of intrathoracic tumors by spiral CT. METHODS A549 cells (5×10(6) mL(-1)) were suspended and inoculated into the right lung of BALB/c nude mice via intrathoracic injection. Nude mice were scanned three times each week by spiral CT after inoculation of lung cancer cell line A549. The survival time and body weight of nude mice as well as tumor invasion and metastasis were examined. Tissue was collected for subsequent histological assay after autopsia of mice. RESULTS The tumor-forming rate of the orthotopic lung cancer model was 90%. The median survival time was 30.7 (range, 20-41) days. The incidence of tumor metastasis was 100%. The mean tumor diameter and the average CT value gradually increased in a time-dependent manner. CONCLUSIONS The method of establishing the orthotopic lung cancer model through transplanting A549 cells into the lung of nude mice is simple and highly successful. Spiral CT can be used to evaluate intrathoracic tumor growth in nude mice vividly and dynamically.
Collapse
|
39
|
James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 2012; 92:897-965. [PMID: 22535898 DOI: 10.1152/physrev.00049.2010] [Citation(s) in RCA: 736] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular imaging is revolutionizing the way we study the inner workings of the human body, diagnose diseases, approach drug design, and assess therapies. The field as a whole is making possible the visualization of complex biochemical processes involved in normal physiology and disease states, in real time, in living cells, tissues, and intact subjects. In this review, we focus specifically on molecular imaging of intact living subjects. We provide a basic primer for those who are new to molecular imaging, and a resource for those involved in the field. We begin by describing classical molecular imaging techniques together with their key strengths and limitations, after which we introduce some of the latest emerging imaging modalities. We provide an overview of the main classes of molecular imaging agents (i.e., small molecules, peptides, aptamers, engineered proteins, and nanoparticles) and cite examples of how molecular imaging is being applied in oncology, neuroscience, cardiology, gene therapy, cell tracking, and theranostics (therapy combined with diagnostics). A step-by-step guide to answering biological and/or clinical questions using the tools of molecular imaging is also provided. We conclude by discussing the grand challenges of the field, its future directions, and enormous potential for further impacting how we approach research and medicine.
Collapse
Affiliation(s)
- Michelle L James
- Molecular Imaging Program, Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | | |
Collapse
|
40
|
Badea CT, Athreya KK, Espinosa G, Clark D, Ghafoori AP, Li Y, Kirsch DG, Johnson GA, Annapragada A, Ghaghada KB. Computed tomography imaging of primary lung cancer in mice using a liposomal-iodinated contrast agent. PLoS One 2012; 7:e34496. [PMID: 22485175 PMCID: PMC3317632 DOI: 10.1371/journal.pone.0034496] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/01/2012] [Indexed: 12/21/2022] Open
Abstract
Purpose To investigate the utility of a liposomal-iodinated nanoparticle contrast agent and computed tomography (CT) imaging for characterization of primary nodules in genetically engineered mouse models of non-small cell lung cancer. Methods Primary lung cancers with mutations in K-ras alone (KrasLA1) or in combination with p53 (LSL-KrasG12D;p53FL/FL) were generated. A liposomal-iodine contrast agent containing 120 mg Iodine/mL was administered systemically at a dose of 16 µl/gm body weight. Longitudinal micro-CT imaging with cardio-respiratory gating was performed pre-contrast and at 0 hr, day 3, and day 7 post-contrast administration. CT-derived nodule sizes were used to assess tumor growth. Signal attenuation was measured in individual nodules to study dynamic enhancement of lung nodules. Results A good correlation was seen between volume and diameter-based assessment of nodules (R2>0.8) for both lung cancer models. The LSL-KrasG12D;p53FL/FL model showed rapid growth as demonstrated by systemically higher volume changes compared to the lung nodules in KrasLA1 mice (p<0.05). Early phase imaging using the nanoparticle contrast agent enabled visualization of nodule blood supply. Delayed-phase imaging demonstrated significant differential signal enhancement in the lung nodules of LSL-KrasG12D;p53FL/FL mice compared to nodules in KrasLA1 mice (p<0.05) indicating higher uptake and accumulation of the nanoparticle contrast agent in rapidly growing nodules. Conclusions The nanoparticle iodinated contrast agent enabled visualization of blood supply to the nodules during the early-phase imaging. Delayed-phase imaging enabled characterization of slow growing and rapidly growing nodules based on signal enhancement. The use of this agent could facilitate early detection and diagnosis of pulmonary lesions as well as have implications on treatment response and monitoring.
Collapse
Affiliation(s)
- Cristian T. Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (CTB); (KBG)
| | - Khannan K. Athreya
- University of Texas Medical School at Houston, The University of Texas Health Sciences Center at Houston, Houston, Texas, United States of America
| | - Gabriela Espinosa
- The Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas, United States of America
- School of Biomedical Informatics, The University of Texas Health Sciences Center at Houston, Houston, Texas, United States of America
| | - Darin Clark
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - A. Paiman Ghafoori
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yifan Li
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David G. Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - G. Allan Johnson
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ananth Annapragada
- The Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas, United States of America
| | - Ketan B. Ghaghada
- The Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas, United States of America
- * E-mail: (CTB); (KBG)
| |
Collapse
|
41
|
Newton J, Oldham M, Thomas A, Li Y, Adamovics J, Kirsch DG, Das S. Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques. Med Phys 2012; 38:6754-62. [PMID: 22149857 DOI: 10.1118/1.3663675] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. METHODS Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS∕PRESAGE®). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to ∼13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS∕PRESAGE® system which generated isotropic 0.2 mm data, in scan times of 20 min. RESULTS Surface output factors determined by ion-chamber were observed to gradually drop by ∼9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT∼18% and ∼42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE® and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%-4%). PDD values at 2 cm depth varied from ∼72% for the 40 mm field, down to ∼55% for the 1 mm field. EBT and PRESAGE® PDDs agreed within ∼3% in the typical therapy region (1-4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm). These results indicate good overall consistency between ion-chamber, EBT2 and PRESAGE® measured OFs, PDDs, and profiles. CONCLUSIONS The combination of independent 2D and 3D measurements was found to be valuable to ensure accurate and comprehensive commissioning. Film measurements were time consuming and challenging due to the difficulty of film alignment in small fields. PRESAGE® 3D measurements were comprehensive and efficient, because alignment errors are negligible, and all parameters for multiple fields could be obtained from a single dosimeter and scan. However, achieving accurate superficial data (within 4 mm) is not yet feasible due to optical surface artifacts.
Collapse
Affiliation(s)
- Joseph Newton
- Department of Radiation Oncology, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Rodt T, von Falck C, Dettmer S, Hueper K, Halter R, Hoy L, Luepke M, Borlak J, Wacker F. Lung tumour growth kinetics in SPC-c-Raf-1-BB transgenic mice assessed by longitudinal in-vivo micro-CT quantification. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:15. [PMID: 22348342 PMCID: PMC3308131 DOI: 10.1186/1756-9966-31-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/20/2012] [Indexed: 01/21/2023]
Abstract
Background SPC-c-Raf-1-BxB transgenic mice develop genetically induced disseminated lung adenocarcinoma allowing examination of carcinogenesis and evaluation of novel treatment strategies. We report on assessment of lung tumour growth kinetics using a semiautomated region growing segmentation algorithm. Methods 156 non contrast-enhanced respiratory gated micro-CT of the lungs were obtained in 12 SPC-raf transgenic (n = 9) and normal (n = 3) mice at different time points. Region-growing segmentation of the aerated lung areas was obtained as an inverse surrogate for tumour burden. Time course of segmentation volumes was assessed to demonstrate the potential of the method for follow-up studies. Results Micro-CT allowed assessment of tumour growth kinetics and semiautomated region growing enabled quantitative analysis. Significant changes of the segmented lung volumes over time could be shown (p = 0.009). Significant group differences could be detected between transgenic and normal animals for time points 8 to 13 months (p = 0.043), when marked tumour progression occurred. Conclusion The presented region-growing segmentation algorithm allows in-vivo quantification of multifocal lung adenocarcinoma in SPC-raf transgenic mice. This enables the assessment of tumour load and progress for the study of carcinogenesis and the evaluation of novel treatment strategies.
Collapse
Affiliation(s)
- Thomas Rodt
- Dept. of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Primary lung cancer remains the leading cause of cancer-related death in the Western world, and the lung is a common site for recurrence of extrathoracic malignancies. Small-animal (rodent) models of cancer can have a very valuable role in the development of improved therapeutic strategies. However, detection of mouse pulmonary tumors and their subsequent response to therapy in situ is challenging. We have recently described MRI as a reliable, reproducible and nondestructive modality for the detection and serial monitoring of pulmonary tumors. By combining respiratory-gated data acquisition methods with manual and automated segmentation algorithms described by our laboratory, pulmonary tumor burden can be quantitatively measured in approximately 1 h (data acquisition plus analysis) per mouse. Quantitative, analytical methods are described for measuring tumor burden in both primary (discrete tumors) and metastatic (diffuse tumors) disease. Thus, small-animal MRI represents a novel and unique research tool for preclinical investigation of therapeutic strategies for treatment of pulmonary malignancies, and it may be valuable in evaluating new compounds targeting lung cancer in vivo.
Collapse
|
44
|
Lee CL, Moding EJ, Huang X, Li Y, Woodlief LZ, Rodrigues RC, Ma Y, Kirsch DG. Generation of primary tumors with Flp recombinase in FRT-flanked p53 mice. Dis Model Mech 2011; 5:397-402. [PMID: 22228755 PMCID: PMC3339833 DOI: 10.1242/dmm.009084] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The site-specific recombinases Cre and Flp can mutate genes in a spatially and temporally restricted manner in mice. Conditional recombination of the tumor suppressor gene p53 using the Cre-loxP system has led to the development of multiple genetically engineered mouse models of human cancer. However, the use of Cre recombinase to initiate tumors in mouse models limits the utilization of Cre to genetically modify other genes in tumor stromal cells in these models. To overcome this limitation, we inserted FRT (flippase recognition target) sites flanking exons 2-6 of the endogenous p53 gene in mice to generate a p53(FRT) allele that can be deleted by Flp recombinase. We show that FlpO-mediated deletion of p53 in mouse embryonic fibroblasts impairs the p53-dependent response to genotoxic stress in vitro. In addition, using FSF-Kras(G12D/+); p53(FRT/FRT) mice, we demonstrate that an adenovirus expressing FlpO recombinase can initiate primary lung cancers and sarcomas in mice. p53(FRT) mice will enable dual recombinase technology to study cancer biology because Cre is available to modify genes specifically in stromal cells to investigate their role in tumor development, progression and response to therapy.
Collapse
Affiliation(s)
- Chang-Lung Lee
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 91006, Durham, NC 27708, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The laboratory mouse has been used for many decades as a model system for radiation research. Recent advances in genetic engineering now allow scientists to delete genes in specific cell types at different stages of development. The ability to manipulate genes in the mouse with spatial and temporal control opens new opportunities to investigate the role of genes in regulating the response of normal tissues and tumors to radiation. Currently, we are using the Cre-loxP system to delete genes, such as p53, in a cell-type specific manner in mice to study mechanisms of acute radiation injury and late effects of radiation. Our results demonstrate that p53 is required in the gastrointestinal (GI) epithelium to prevent radiation-induced GI syndrome and in endothelial and/or hematopoietic cells to prevent late effects of radiation. We have also used these genetic tools to generate primary tumors in mice to study tumor response to radiation therapy. These advances in genetic engineering provide a powerful model system to dissect both the mechanisms of normal tissue injury after irradiation and the mechanisms by which radiation cures cancer.
Collapse
Affiliation(s)
- David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
46
|
Tidwell VK, Garbow JR, Krupnick AS, Engelbach JA, Nehorai A. Quantitative analysis of tumor burden in mouse lung via MRI. Magn Reson Med 2011; 67:572-9. [PMID: 21954021 DOI: 10.1002/mrm.22951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/15/2011] [Accepted: 03/11/2011] [Indexed: 11/08/2022]
Abstract
Lung cancer is the leading cause of cancer death in the United States. Despite recent advances in screening protocols, the majority of patients still present with advanced or disseminated disease. Preclinical rodent models provide a unique opportunity to test novel therapeutic drugs for targeting lung cancer. Respiratory-gated MRI is a key tool for quantitatively measuring lung-tumor burden and monitoring the time-course progression of individual tumors in mouse models of primary and metastatic lung cancer. However, quantitative analysis of lung-tumor burden in mice by MRI presents significant challenges. Herein, a method for measuring tumor burden based upon average lung-image intensity is described and validated. The method requires accurate lung segmentation; its efficiency and throughput would be greatly aided by the ability to automatically segment the lungs. A technique for automated lung segmentation in the presence of varying tumor burden levels is presented. The method includes development of a new, two-dimensional parametric model of the mouse lungs and a multi-faceted cost function to optimally fit the model parameters to each image. Results demonstrate a strong correlation (0.93), comparable with that of fully manual expert segmentation, between the automated method's tumor-burden metric and the tumor burden measured by lung weight.
Collapse
Affiliation(s)
- Vanessa K Tidwell
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA.
| | | | | | | | | |
Collapse
|
47
|
Xue W, Meylan E, Oliver TG, Feldser DM, Winslow MM, Bronson R, Jacks T. Response and resistance to NF-κB inhibitors in mouse models of lung adenocarcinoma. Cancer Discov 2011; 1:236-47. [PMID: 21874163 DOI: 10.1158/2159-8290.cd-11-0073] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Lung adenocarcinoma is a leading cause of cancer death worldwide. We recently showed that genetic inhibition of the NF-κB pathway affects both the initiation and the maintenance of lung cancer, identifying this pathway as a promising therapeutic target. In this investigation, we tested the efficacy of small-molecule NF-κB inhibitors in mouse models of lung cancer. In murine lung adenocarcinoma cell lines with high NF-κB activity, the proteasome inhibitor bortezomib efficiently reduced nuclear p65, repressed NF-κB target genes, and rapidly induced apoptosis. Bortezomib also induced lung tumor regression and prolonged survival in tumor-bearing Kras(LSL-G12D/wt);p53(flox/flox) mice but not in Kras(LSL-G12D/wt) mice. After repeated treatment, initially sensitive lung tumors became resistant to bortezomib. A second NF-κB inhibitor, Bay-117082, showed similar therapeutic efficacy and acquired resistance in mice. Our results using preclinical mouse models support the NF-κB pathway as a potential therapeutic target for a defined subset of lung adenocarcinoma. SIGNIFICANCE Using small-molecule compounds that inhibit NF-κB activity, we provide evidence that NF-κB inhibition has therapeutic efficacy in the treatment of lung cancer. Our results also illustrate the value of mouse models in validating new drug targets in vivo and indicate that acquired chemoresistance may later influence bortezomib treatment in lung cancer.
Collapse
Affiliation(s)
- Wen Xue
- Koch Institute for Integrative Cancer Research, Department of Biology, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Garbow JR, Ackerman JJH. Imaging primary lung cancers in mice to study radiation biology: in regard to Kirsch et al. (Int J Radiat Oncol Biol Phys 2010;76:973-977). Int J Radiat Oncol Biol Phys 2011; 79:959; author reply 959. [PMID: 21281903 DOI: 10.1016/j.ijrobp.2010.10.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
49
|
Kirsch DG, Grimm J, Guimaraes AR, Weissleder R. In Response to Dr. Garbow and Colleagues. Int J Radiat Oncol Biol Phys 2011. [DOI: 10.1016/j.ijrobp.2010.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|