1
|
Kinoshita N, Shimizu M, Motegi K, Tsuruta Y, Takakura T, Oguchi H, Kurokawa C. Quantification of uncertainties in reference and relative dose measurements, dose calculations, and patient setup in modern external beam radiotherapy. Radiol Phys Technol 2024:10.1007/s12194-024-00856-0. [PMID: 39541009 DOI: 10.1007/s12194-024-00856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Uncertainties in the steps of external beam radiotherapy (EBRT) affect patient outcomes. However, few studies have investigated major contributors to these uncertainties. This study investigated factors contributing to reducing uncertainty in delivering a dose to a target volume. The EBRT process was classified into four steps: reference dosimetry, relative dosimetry [percentage depth doses (PDDs) and off-center ratios (OCRs)], dose calculations (PDDs and OCRs in a virtual water phantom), and patient setup using an image-guided radiation therapy system. We evaluated the uncertainties for these steps in conventionally fractionated EBRT for intracranial disease using 4-, 6-, and 10-MV flattened photon beams generated from clinical linear accelerators following the Guide to the Expression of Uncertainty in Measurement and an uncertainty evaluation method with uncorrected deflection. The following were the major contributors to these uncertainties: beam quality conversion factors for reference dosimetry; charge measurements, chamber depth, source-to-surface distance, water evaporation, and field size for relative dosimetry; dose calculation accuracy for the dose calculations; image registration, radiation-imaging isocenter coincidence, variation in radiation isocenter due to gantry and couch rotation, and intrafractional motion for the patient setup. Among the four steps, the relative dosimetry and dose calculation (namely, both penumbral OCRs) steps involved an uncertainty of more than 5% with a coverage factor of 1. In the EBRT process evaluated herein, the uncertainties in the relative dosimetry and dose calculations must be reduced.
Collapse
Affiliation(s)
- Naoki Kinoshita
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuoka-Shimoaituki, Eiheiji, Yoshida, Fukui, 910-1193, Japan.
| | | | - Kana Motegi
- Section of Radiation Safety and Quality Assurance, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yusuke Tsuruta
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | | | - Hiroshi Oguchi
- Radiological Technology Department, Iida Municipal Hospital, Iida, Japan
| | - Chie Kurokawa
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, Tokyo, Japan
| |
Collapse
|
2
|
You W, Chen C, Chu H, Yau Y, Liu T, Lai P, Chen Y, Chen N, Tsai C, Hsieh H. Quantifying thermoplastic mask quality for precision radiotherapy in head and neck cancer: A 3D stress test and 6D-axis error analysis. Medicine (Baltimore) 2024; 103:e40365. [PMID: 39496008 PMCID: PMC11537626 DOI: 10.1097/md.0000000000040365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Patients with head and neck cancers often require radiotherapy, where immobilization devices like thermoplastic masks ensure precise radiation delivery by minimizing movement. However, the quality of these masks lacks standard reference data. This study aimed to establish institutional acceptance criteria for thermoplastic mask quality and quantify their effectiveness using a 3 dimensional stress test and verified the setup errors using daily megavoltage computed tomography (MVCT). Between April and June 2022, 30 patients underwent radiotherapy with thermoplastic masks. Four key facial points (forehead, bilateral cheekbones, and chin) were tested for supporting force. Mean forces ranged from 3.97 N to 8.8 N. MVCT was used to assess 6 dimensional-axis errors, with mean translational errors (x, y, z) of 0.32 mm, -1.09 mm, and 2.24 mm, respectively, and rotational errors (yaw, pitch, roll) of -0.12°, 0.22°, and 0.35°, respectively. The results demonstrated that the thermoplastic masks provided precise immobilization, minimizing setup errors in 6 dimensions. Our findings offer a quantifiable method to ensure high-quality immobilization during radiotherapy for patients with head and neck cancers.
Collapse
Affiliation(s)
- Weirchiang You
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chienchih Chen
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsiushan Chu
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yuchen Yau
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tingyang Liu
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Peishuan Lai
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yungcheng Chen
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Niwei Chen
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chefu Tsai
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Heyuan Hsieh
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Villegas F, Dal Bello R, Alvarez-Andres E, Dhont J, Janssen T, Milan L, Robert C, Salagean GAM, Tejedor N, Trnková P, Fusella M, Placidi L, Cusumano D. Challenges and opportunities in the development and clinical implementation of artificial intelligence based synthetic computed tomography for magnetic resonance only radiotherapy. Radiother Oncol 2024; 198:110387. [PMID: 38885905 DOI: 10.1016/j.radonc.2024.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Synthetic computed tomography (sCT) generated from magnetic resonance imaging (MRI) can serve as a substitute for planning CT in radiation therapy (RT), thereby removing registration uncertainties associated with multi-modality imaging pairing, reducing costs and patient radiation exposure. CE/FDA-approved sCT solutions are nowadays available for pelvis, brain, and head and neck, while more complex deep learning (DL) algorithms are under investigation for other anatomic sites. The main challenge in achieving a widespread clinical implementation of sCT lies in the absence of consensus on sCT commissioning and quality assurance (QA), resulting in variation of sCT approaches across different hospitals. To address this issue, a group of experts gathered at the ESTRO Physics Workshop 2022 to discuss the integration of sCT solutions into clinics and report the process and its outcomes. This position paper focuses on aspects of sCT development and commissioning, outlining key elements crucial for the safe implementation of an MRI-only RT workflow.
Collapse
Affiliation(s)
- Fernanda Villegas
- Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden; Radiotherapy Physics and Engineering, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Emilie Alvarez-Andres
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Jennifer Dhont
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Institut Jules Bordet, Department of Medical Physics, Brussels, Belgium; Université Libre De Bruxelles (ULB), Radiophysics and MRI Physics Laboratory, Brussels, Belgium
| | - Tomas Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa Milan
- Medical Physics Unit, Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Charlotte Robert
- UMR 1030 Molecular Radiotherapy and Therapeutic Innovations, ImmunoRadAI, Paris-Saclay University, Institut Gustave Roussy, Inserm, Villejuif, France; Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Ghizela-Ana-Maria Salagean
- Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania; Department of Radiation Oncology, TopMed Medical Centre, Targu Mures, Romania
| | - Natalia Tejedor
- Department of Medical Physics and Radiation Protection, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Petra Trnková
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Marco Fusella
- Department of Radiation Oncology, Abano Terme Hospital, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy.
| | - Davide Cusumano
- Mater Olbia Hospital, Strada Statale Orientale Sarda 125, Olbia, Sassari, Italy
| |
Collapse
|
4
|
May L, Barnes M, Hardcastle N, Hernandez V, Saez J, Rosenfeld A, Poder J. Multi-institutional investigation into the robustness of intra-cranial multi-target stereotactic radiosurgery plans to patient setup errors. Phys Med 2024; 124:103423. [PMID: 38970949 DOI: 10.1016/j.ejmp.2024.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024] Open
Abstract
PURPOSE This study aimed to analyse correlations between planning factors including plan geometry and plan complexity with robustness to patient setup errors. METHODS Multiple-target brain stereotactic radiosurgery (SRS) plans were obtained through the Trans-Tasman Radiation Oncology Group (TROG) international treatment planning challenge (2018). The challenge dataset consisted of five intra-cranial targets with a 20 Gy prescription. Setup error was simulated using an in-house tool. Dose to targets was assessed via dose covering 99 % (D99 %) of gross tumour volume (GTV) and 98 % of planning target volume (PTV). Dose to organs at risk was assessed using volume of normal brain receiving 12 Gy and maximum dose covering 0.03 cc of brainstem. Plan complexity was assessed via edge metric, modulation complexity score, mean multi-leaf collimator (MLC) gap, mean MLC speed and plan modulation. RESULTS Even for small (0.5 mm/°) errors, GTV D99 % was reduced by up to 20 %. The strongest correlation was found between lower complexity plans (larger mean MLC gap and lower edge metric) and higher robustness to setup error. Lower complexity plans had 1 %-20 % fewer targets/scenarios with GTV D99 % falling below the specified tolerance threshold. These complexity metrics correlated with 100 % isodose volume sphericity and dose conformity, though similar conformity was achievable with a range of complexities. CONCLUSIONS A higher level of importance should be directed towards plan complexity when considering plan robustness. It is recommended when planning multi-target SRS, larger MLC gaps and lower MLC aperture irregularity be considered during plan optimisation due to higher robustness should patient positioning errors occur.
Collapse
Affiliation(s)
- Lauren May
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia.
| | - Micah Barnes
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, VIC 3168, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicholas Hardcastle
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Victor Hernandez
- Department of Medical Physics, Hospital Universitari Sant Joan de Reus, IISPV, Tarragona, Spain
| | - Jordi Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, Spain
| | - Anatoly Rosenfeld
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia
| | - Joel Poder
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; St George Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; School of Physics, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
5
|
Keane M, Weitkamp N, Madani I, Day J, Dal Bello R, Zamburlini M, Schiess A, Moreira A, Perryck S, Tomuschat K, Spencer M, Tanadini-Lang S, Guckenberger M, Brown M. Randomized self-controlled study comparing open-face vs. closed immobilization masks in fractionated cranial radiotherapy. Radiother Oncol 2024; 196:110314. [PMID: 38677329 DOI: 10.1016/j.radonc.2024.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE To compare patient discomfort and immobilisation performance of open-face and closed immobilization masks in cranial radiotherapy. MATERIAL AND METHODS This was a single-center randomized self-controlled clinical trial. At CT simulation, an open-face and closed mask was made for each patient and treatment plans with identical dose prescription were generated for each mask. Patients were randomised to start treatment with an open-face or closed mask. Masks were switched halfway through the treatment course; every patient was their own control. Patients self-reported discomfort, anxiety and pain using the visual analogue scale (VAS). Inter- and intrafraction set-up variability was measured with planar kV imaging and a surface guided radiotherapy (SGRT) system for the open-face masks. RESULTS 30 patients with primary or metastatic brain tumors were randomized - 29 completed radiotherapy to a median total dose of 54 Gy (range 30-60 Gy). Mean discomfort VAS score was significantly lower with open-face masks (0.5, standard deviation 1.0) vs. closed masks (3.3, standard deviation 2.9), P < 0.0001. Anxiety and pain VAS scores were significantly lower with open-face masks (P < 0.0001). Closed masks caused more discomfort in infraorbital (P < 0.001) and maxillary (P = 0.02) areas. Two patients and 27 patients preferred closed or open-face masks, respectively. Interfraction longitudinal shifts and roll and yaw rotations were significantly smaller and lateral shifts were significantly larger with closed masks in combination with the laser system (P < 0.05) compared to open masks in combination with a SGRT system. Intrafraction variability did not differ between the masks. CONCLUSIONS Open-face masks are associated with decreased patient discomfort without compromising patient positioning and immobilisation accuracy.
Collapse
Affiliation(s)
- Michèle Keane
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Nienke Weitkamp
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Indira Madani
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Jonathan Day
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Mariangela Zamburlini
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Antonia Schiess
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Amanda Moreira
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Sophie Perryck
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Katja Tomuschat
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Marilyn Spencer
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Michelle Brown
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland.
| |
Collapse
|
6
|
Yang W, Yang Z, Pan W, Li H, Zhao T, Meng Y, Ma G, Ye H, Shang J. Wearing individualized 3D printed oral stent to protect normal tissues in patients with nasopharyngeal carcinoma during radiotherapy. J Appl Clin Med Phys 2023; 24:e14145. [PMID: 37676885 PMCID: PMC10691633 DOI: 10.1002/acm2.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
PURPOSE To demonstrate a new individualized 3D printed oral stent in radiotherapy of nasopharyngeal carcinoma (NPC) patients and carry out a comparative analysis combining with clinical case. MATERIAL AND METHODS Thirty NPC patients treated in our institution from September 2021 to October 2022 were prospectively enrolled. An individualized 3D printed oral stent was designed for each patient, and one set of computed tomography (CT) slices were obtained with /without wearing the oral stent, respectively. After delineation of target volumes and organs at risk (OARs) on the two CT slices, we finished two treatment plans by using the same target objectives, critical constraints and plan setup for each patient. Finally, the dose distribution and other dosimetric parameters of target volumes and OARs between the two plans were compared. RESULTS Tongue volume and tongue length outside of mouth was 10.4 ± 2.5 cm3 and 2.8 ± 0.6 cm, respectively, distance between dorsal surface of oral tongue and plate increased from 0.3 ± 0.3 cm to 2.2 ± 0.5 cm by wearing the oral stent. For the target volume, there was no significant difference. However, Dmax of tongue, tongue tip and periglottis decreased significantly from 6352.6 ± 259.9 cGy to 5994.9 ± 478.9 cGy, 3499.8 ± 250.6 cGy to 3357.7 ± 158.0 cGy and 6345.5 ± 171.0 cGy to 6133.4 ± 263.3 cGy, respectively (p = 0.000); Dmean of tongue, tongue tip and periglottis decreased significantly from 3714.7 ± 204.2 cGy to 3169.7 ± 200.9 cGy, 3060.8 ± 216.2 cGy to 2509.6 ± 196.7 cGy and 3853.3 ± 224.9 cGy to 3079.3 ± 222.0 cGy, respectively (p = 0.000). CONCLUSION The individualized 3D printed oral stent can reduce the dose of oral tissues and organs, so as to reduce the oral adverse reactions and improve the compliance of patients and the quality of their life. The technique can be used in radiotherapy of NPC patients.
Collapse
Affiliation(s)
- Wanfu Yang
- Department of Radiation OncologyGeneral Hospital of Ningxia Medical UniversityYinchuanNingxiaChina
| | - Zhihua Yang
- Department of Radiation OncologyGeneral Hospital of Ningxia Medical UniversityYinchuanNingxiaChina
| | - Wenyan Pan
- Department of Radiation OncologyGeneral Hospital of Ningxia Medical UniversityYinchuanNingxiaChina
| | - Hailiang Li
- Department of Radiation OncologyGeneral Hospital of Ningxia Medical UniversityYinchuanNingxiaChina
| | - Ting Zhao
- Department of Radiation OncologyGeneral Hospital of Ningxia Medical UniversityYinchuanNingxiaChina
| | - Yin Meng
- Department of Radiation OncologyGeneral Hospital of Ningxia Medical UniversityYinchuanNingxiaChina
| | - Guofeng Ma
- Department of Radiation OncologyGeneral Hospital of Ningxia Medical UniversityYinchuanNingxiaChina
| | - Hongqiang Ye
- Department of Radiation OncologyGeneral Hospital of Ningxia Medical UniversityYinchuanNingxiaChina
| | - Jun Shang
- Department of Radiation OncologyGeneral Hospital of Ningxia Medical UniversityYinchuanNingxiaChina
| |
Collapse
|
7
|
Lam CHM, Bernstein D, Wells E. Evaluation of PTV margins and plan robustness for single isocentre multiple target stereotactic radiosurgery. Phys Med 2023; 114:103137. [PMID: 37757499 DOI: 10.1016/j.ejmp.2023.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE Robustness to residual setup errors and linac delivery errors of BrainLab Elements single-isocentre-multiple-target stereotactic radiosurgery was evaluated. METHODS Residual setup errors of 13 patients were evaluated. Linac delivery error was quantified through multi-metastases-Winston-Lutz measurements. PTV margins were calculated using the van Herk recipe. Patient scans were translated and rotated by the median and 95th percentile of the combined uncertainties, and plans were recalculated subsequently. Previous patients' plans were then replanned with the derived margins, effects on GTV coverage and normal brain doses were assessed. RESULTS Mean (±stdev) coverage of all targets in the original plans were 99.4% (±0.9%) and 98.9% (±1.0%) for 1 and 3-fraction patients respectively. Median geometrical errors did not result in significant differences. A statistically significant reduction in coverage to 91.4% (±10.4%) and 93.0% (±9.6%) was seen under 95th percentile errors. Applying the derived optimal margin of 0.5 mm resulted in 78% of the GTVs retaining a coverage of 98% or above even in the presence of 95th percentile errors, compared to only 30% if no margins were applied. Replanning with margins also caused no significant increase to local normal brain doses, however global dose increases varied according to the number of metastases. CONCLUSIONS Plans were shown to be robust to average geometrical uncertainties despite targets having no margins, however occurrence of GTV under-coverage increased under 95th percentile scenarios. The margin was proven to substantially improve the target dose coverage with limited change to local normal brain doses, although not all sources of geometrical uncertainty were considered.
Collapse
Affiliation(s)
- Cheuk Him Michael Lam
- Joint Department of Physics, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Fulham Road, London SW3 6JJ, UK.
| | - David Bernstein
- Joint Department of Physics, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Fulham Road, London SW3 6JJ, UK.
| | - Emma Wells
- Joint Department of Physics, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Fulham Road, London SW3 6JJ, UK.
| |
Collapse
|
8
|
Masitho S, Grigo J, Brandt T, Lambrecht U, Szkitsak J, Weiss A, Fietkau R, Putz F, Bert C. Synthetic CTs for MRI-only brain RT treatment: integration of immobilization systems. Strahlenther Onkol 2023; 199:739-748. [PMID: 37285037 PMCID: PMC10361877 DOI: 10.1007/s00066-023-02090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023]
Abstract
PURPOSE Auxiliary devices such as immobilization systems should be considered in synthetic CT (sCT)-based treatment planning (TP) for MRI-only brain radiotherapy (RT). A method for auxiliary device definition in the sCT is introduced, and its dosimetric impact on the sCT-based TP is addressed. METHODS T1-VIBE DIXON was acquired in an RT setup. Ten datasets were retrospectively used for sCT generation. Silicone markers were used to determine the auxiliary devices' relative position. An auxiliary structure template (AST) was created in the TP system and placed manually on the MRI. Various RT mask characteristics were simulated in the sCT and investigated by recalculating the CT-based clinical plan on the sCT. The influence of auxiliary devices was investigated by creating static fields aimed at artificial planning target volumes (PTVs) in the CT and recalculated in the sCT. The dose covering 50% of the PTV (D50) deviation percentage between CT-based/recalculated plan (∆D50[%]) was evaluated. RESULTS Defining an optimal RT mask yielded a ∆D50[%] of 0.2 ± 1.03% for the PTV and between -1.6 ± 3.4% and 1.1 ± 2.0% for OARs. Evaluating each static field, the largest ∆D50[%] was delivered by AST positioning inaccuracy (max: 3.5 ± 2.4%), followed by the RT table (max: 3.6 ± 1.2%) and the RT mask (max: 3.0 ± 0.8% [anterior], 1.6 ± 0.4% [rest]). No correlation between ∆D50[%] and beam depth was found for the sum of opposing beams, except for (45° + 315°). CONCLUSION This study evaluated the integration of auxiliary devices and their dosimetric influence on sCT-based TP. The AST can be easily integrated into the sCT-based TP. Further, we found that the dosimetric impact was within an acceptable range for an MRI-only workflow.
Collapse
Affiliation(s)
- Siti Masitho
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.
| | - Johanna Grigo
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Tobias Brandt
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Ulrike Lambrecht
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Juliane Szkitsak
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Alexander Weiss
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
9
|
Yamamoto Y, Ohira S, Kanayama N, Inui S, Ueda Y, Koike Y, Miyazaki M, Nishio T, Koizumi M, Konishi K. Comparison of dosimetric parameters and robustness for rotational errors in fractionated stereotactic irradiation using automated noncoplanar volumetric modulated arc therapy for patients with brain metastases: single- versus multi-isocentric technique. Radiol Phys Technol 2023; 16:310-318. [PMID: 37093409 DOI: 10.1007/s12194-023-00720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
To compare the dosimetric parameters of automated noncoplanar volumetric modulated arc therapy plans using single-isocentric (SIC) and multi-isocentric (MIC) techniques for patients with two brain metastases (BMs) in stereotactic irradiation and to evaluate the robustness of rotational errors. The SIC and MIC plans were retrospectively generated (35 Gy/five fractions) for 58 patients. Subsequently, a receiver operating characteristic curve analysis between the tumor surface distance (TSD) and V25Gy was performed to determine the thresholds for the brain tissue. The SIC and MIC plans were recalculated based on the rotational images to evaluate the dosimetric impact of rotational error. The MIC plans showed better brain tissue sparing for TSD > 6.6 cm. The SIC plans provided a significantly better conformity index for TSD ≤ 6.6 cm, while significantly lower gradient index was obtained (3.22 ± 0.56vs. 3.30 ± 0.57, p < 0.05) in the MIC plans with TSD > 6.6 cm. For organs at risk (OARs) (brainstem, chiasm, lens, optic nerves, and retinas), D0.1 cc was significantly lower (p < 0.05) in the MIC plans than in the SIC plans. The prescription dose could be delivered (D99%) to the gross tumor volume (GTV) for patients with TSD ≤ 6.6 cm when the rotational error was < 1°, whereas 31% of the D99% of GTV fell below the prescription dose with TSD > 6.6 cm. MIC plans can be an optimal approach for reducing doses to OARs and providing robustness against rotational errors in BMs with TSD > 6.6 cm.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 537-8567, Japan.
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 537-8567, Japan
| | - Shoki Inui
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 537-8567, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 537-8567, Japan
| | - Yuhei Koike
- Department of Radiology, Kansai Medical University, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 537-8567, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 537-8567, Japan
| |
Collapse
|
10
|
Shirata R, Inoue T, Sugimoto S, Saito AI, Omura M, Minagawa Y, Sasai K. Dosimetric investigation of whole-brain radiotherapy with helical intensity modulated radiation therapy and volumetric modulated arc therapy for scalp sparing. BJR Open 2023; 5:20220037. [PMID: 37035770 PMCID: PMC10077410 DOI: 10.1259/bjro.20220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/08/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Objective: Intensity-modulated radiotherapy (IMRT) is a well-established radiotherapy technique for delivering radiation to cancer with high conformity while sparing the surrounding normal tissue. Two main purposes of this study are: (1) to investigate dose calculation accuracy of helical IMRT (HIMRT) and volumetric-modulated arc therapy (VMAT) on surface region and (2) to evaluate the dosimetric efficacy of HIMRT and VMAT for scalp-sparing in whole brain radiotherapy (WBRT). Methods: First, using a radiochromic film and water-equivalent phantom with three types of boluses (1, 3, 5 mm), calculation/measurement dose agreement at the surface region in the VMAT and HIMRT plans were examined. Then, HIMRT, 6MV-VMAT and 10MV-VMAT with scalp-sparing, and two conventional three-dimensional conformal radiotherapy plans (6MV-3DCRT and 10MV-3DCRT; as reference data) were created for 30 patients with brain metastasis (30 Gy/10 fractions). The mean dose to the scalp and the scalp volume receiving 24 and 30 Gy were compared. Results: The percentage dose differences between the calculation and measurement were within 7%, except for the HIMRT plan at a depth of 1 mm. The averaged mean scalp doses [Gy], V24Gy [%], and V30Gy [%] (1SD) for 6MV-3DCRT, 10MV-3DCRT, HIMRT, 6MV-VMAT, and 10MV-VMAT were [26.6 (1.1), 86.4 (7.3), 13.2 (4.2)], [25.4 (1.0), 77.8 (7.5), 13.2 (4.2)], [23.2 (1.5), 42.8 (19.2), 0.2 (0.5)], [23.6 (1.6), 47.5 (17.9), 1.2 (1.8)], and [22.7 (1.7), 36.4 (17.6), 0.7 (1.1)], respectively. Conclusion: Regarding the dose parameters, HIMRT achieved a lower scalp dose compared with 6MV-VMAT. However, the highest ability to reduce the mean scalp dose was showed in 10MV-VMAT. Advances in knowledge: Scalp-sparing WBRT using HIMRT or VMAT may prevent radiation-induced alopecia in patients with BM.
Collapse
|
11
|
Church C, MacDonald RL, Parsons D, Syme A. Evaluation of plan quality and treatment efficiency in cranial stereotactic radiosurgery treatment plans with a variable source-to-axis distance. Med Phys 2023; 50:3039-3054. [PMID: 36774531 DOI: 10.1002/mp.16288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/03/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
INTRODUCTION Radiotherapy deliveries with dynamic couch motions that shorten the source-to-axis distance (SAD) on a C-arm linac have the potential to increase treatment efficiency through the increase of the effective dose rate. In this investigation, we convert clinically deliverable volumetric modulated arc therapy (VMAT) and dynamic conformal arc (DCA) plans for cranial radiosurgery into virtual isocenter plans through implementation of couch trajectories that maintain the target at a shortened but variable SAD throughout treatment. MATERIALS AND METHODS A randomly sampled population of patients treated with cranial radiosurgery from within the last three years were separated into groups with one, two, and three lesions. All plans had a single isocenter (regardless of number of targets), and a single prescription dose. Patient treatment plans were converted from their original delivery at a standard isocenter to a dynamic virtual isocenter in MATLAB. The virtual isocenter plan featured a variable isocenter position based upon the closest achievable source-to-target distance (referred to herein as a virtual source-to-axis distance [vSAD]) which avoided collision zones on a TrueBeam STx platform. Apertures were magnified according to the vSAD and monitor units at a given control point were scaled based on the inverse square law. Doses were calculated for the plans with a virtual isocenter in the Eclipse (v13.6.23) treatment planning system (TPS) and were compared with the clinical plans. Plan metrics (MU, Paddick conformity index, gradient index, and the volume receiving 12 Gy or more), normal brain dose-volume differences, as well as maximum doses received by organs at risk (OARs) were assessed. The values were compared between standard and virtual isocenter plans with Wilcoxon Sign Ranked tests to determine significance. A subset of the plans were mapped to the MAX-HD anthropomorphic phantom which contained an insert housing EBT3 GafChromic film and a PTW 31010 microion chamber for dose verification on a linac. RESULTS Delivering plans at a virtual isocenter resulted in an average reduction of 20.9% (p = 3×10-6 ) and 20.6% (p = 3.0×10-6 ) of MUs across all VMAT and all DCA plans, respectively. There was no significant change in OAR max doses received by plans delivered at a virtual isocenter. The low dose wash (1.0-2.0 Gy or 5-11% of the prescription dose) was increased (by approximately 20 cc) for plans with three lesions. This was equivalent to a 2.7%-3.8% volumetric increase in normal tissue receiving the respective dose level when comparing the plan with a virtual isocenter to a plan with a standard isocenter. Gamma pass rates with a 5%/1mm analysis criteria were 96.40% ± 2.90% and 95.07% ± 3.10% for deliveries at standard and virtual isocenter, respectively. Absolute point dose agreements were within -0.36% ± 3.45% and -0.55% ± 3.39% for deliveries at a standard and virtual isocenter, respectively. Potential time savings per arc were found to have linear relationship with the monitor units delivered per arc (savings of 0.009 s/MU with an r2 = 0.866 when fit to plans with a single lesion). CONCLUSIONS Converting clinical plans at standard isocenter to a virtual isocenter design did not show any losses to plan quality while simultaneously improving treatment efficiency through MU reductions.
Collapse
Affiliation(s)
- Cody Church
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - R Lee MacDonald
- Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David Parsons
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, Texas, USA
| | - Alasdair Syme
- Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
12
|
Masitho S, Szkitsak J, Grigo J, Fietkau R, Putz F, Bert C. Feasibility of artificial-intelligence-based synthetic computed tomography in a magnetic resonance-only radiotherapy workflow for brain radiotherapy: two-way dose validation and 2D/2D kV-image-based positioning. Phys Imaging Radiat Oncol 2022; 24:111-117. [DOI: 10.1016/j.phro.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
|
13
|
Sakamoto M, Konishi K, Ohira K, Hirata M, Wakabayashi K, Aramaki S, Kokubo R, Nakamura K. A newly developed patient fixation system using a dedicated mouthpiece and dental impression materials for head and neck radiotherapy: a preliminary study. JOURNAL OF RADIATION RESEARCH 2022; 63:749-757. [PMID: 35818301 PMCID: PMC9494543 DOI: 10.1093/jrr/rrac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/21/2022] [Indexed: 06/15/2023]
Abstract
We evaluated the basic characteristics and efficacy of our newly developed patient fixation system for head and neck radiotherapy that uses a dedicated mouthpiece and dental impression materials. The present investigation demonstrated that with this system, the changes in the absorbed dose to water depending on the material of the mouthpiece were small, with a maximum of 0.32% for a 10-MV photon beam. For the dental impression material, we selected a silicone material with the lowest Hounsfield unit (HU) value that had little effect on the generation of artifacts and the quality of the X-ray beam. Multiphase magnetic resonance imaging (MRI) revealed that the head-up and -down motions in the thermoplastic shell without the mouthpiece were 5.76 ± 1.54 mm, whereas the motion with the mouthpiece decreased significantly to 1.72 ± 0.92 mm (P = 0.006). Similarly, the head-left and -right motion displacement decreased from 6.32 ± 1.86 mm without the mouthpiece to 1.80 ± 0.42 mm with the mouthpiece (P = 0.003). Regarding the tongue depressor function of the mouthpiece, the median distance from the hard palate to the surface of the tongue was 28.42 mm. The present results indicate that the new immobilization device developed herein that uses a mouthpiece and a thermoplastic shell is useful for suppressing patients' head motions and tongue positions.
Collapse
Affiliation(s)
- Masataka Sakamoto
- Corresponding author. Department of Radiology, Hamamatsu University Hospital, Handayama 120-1, Higashi-ku, Hamamatsu 431-3192, JAPAN. Tel: +81-053-435-2111; E-mail:
| | - Kenta Konishi
- Department of Radiation Oncology, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Keiichi Ohira
- Department of Radiation Oncology, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Masanori Hirata
- Department of Radiation Oncology, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kohei Wakabayashi
- Department of Radiation Oncology, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Shuhei Aramaki
- Department of Radiation Oncology, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Ryo Kokubo
- Department of Radiation Oncology, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Katsumasa Nakamura
- Department of Radiology, Hamamatsu University Hospital, Handayama 1-20-1, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Radiation Oncology, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
14
|
Aoyama T, Shimizu H, Kitagawa T, Ishiguro Y, Kodaira T. Development of a device that remotely removes a mask in the head and neck immobilization system: a prototype and demonstration experiment. Radiol Phys Technol 2022; 15:249-254. [PMID: 35790662 DOI: 10.1007/s12194-022-00663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
In this study, a prototype device was developed to quickly remove the mask used to immobilize the head and neck by remotely releasing the quick fasteners. As a first step in investigating the usefulness of this prototype, we performed repeated removal tests and examined the accuracy of dose calculation. The results showed that the quick-release fasteners of a Type-S system (CIVCO Medical Solutions, Iowa, USA) could be removed remotely and accurately (success rate: 100%). Additionally, the dose errors in treatment planning were negligible (< 1.0%), and the gamma pass rate was equivalent (99.9%). Therefore, this prototype device with a remote system would help manage patient safety in emergencies, such as a disaster or a sudden change in the patient's condition. However, age-related deterioration with long-term clinical use or its ability to link with beam-off still requires further exploration.
Collapse
Affiliation(s)
- Takahiro Aoyama
- Department of Radiation Oncology, Aichi Cancer Centre, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan.
- Graduate School of Medicine, Aichi Medical University, 1-1 Yazako-karimata, Nagakute, Aichi, 480-1195, Japan.
| | - Hidetoshi Shimizu
- Department of Radiation Oncology, Aichi Cancer Centre, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Tomoki Kitagawa
- Department of Radiation Oncology, Aichi Cancer Centre, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Yasunori Ishiguro
- Department of Radiation Oncology, Aichi Cancer Centre, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Takeshi Kodaira
- Department of Radiation Oncology, Aichi Cancer Centre, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| |
Collapse
|
15
|
Tomihara J, Takatsu J, Hara N, Sugimoto S, Shikama N, Sasai K. Intracranial stereotactic radiotherapy in off-isocenter target with SyncTraX FX4. Phys Med 2022; 100:105-111. [DOI: 10.1016/j.ejmp.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
|
16
|
Kim TH, Cho MS, Shin DS, Shin DH, Kim S. Development of a Real-Time Thermoplastic Mask Compression Force Monitoring System Using Capacitive Force Sensor. Front Robot AI 2022; 9:778594. [PMID: 35875702 PMCID: PMC9298856 DOI: 10.3389/frobt.2022.778594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Thermoplastic masks keep patients in an appropriate position to ensure accurate radiation delivery. For a thermoplastic mask to maintain clinical efficacy, the mask should wrap the patient's surface properly and provide uniform pressure to all areas. However, to our best knowledge, no explicit method for achieving such a goal currently exists. Therefore, in this study, we intended to develop a real-time thermoplastic mask compression force (TMCF) monitoring system to measure compression force quantitatively. A prototype system was fabricated, and the feasibility of the proposed method was evaluated. Methods: The real-time TMCF monitoring system basically consists of four force sensor units, a microcontroller board (Arduino Bluno Mega 2560), a control PC, and an in-house software program. To evaluate the reproducibility of the TMCF monitoring system, both a reproducibility test using a micrometer and a setup reproducibility test using a head phantom were performed. Additionally, the reproducibility tests of mask setup and motion detection tests were carried out with a cohort of six volunteers. Results: The system provided stable pressure readings in all 10 trials during the sensor unit reproducibility test. The largest standard deviation (SD) among trials was about 36 gf/cm2 (∼2.4% of the full-scale range). For five repeated mask setups on the phantom, the compression force variation of the mask was less than 39 gf/cm2 (2.6% of the full-scale range). We were successful in making masks together with the monitoring system connected and demonstrated feasible utilization of the system. Compression force variations were observed among the volunteers and according to the location of the sensor (among forehead, both cheekbones, and chin). The TMCF monitoring system provided the information in real time on whether the mask was properly pressing the human subject as an immobilization tool. Conclusion: With the developed system, it is possible to monitor the effectiveness of the mask in real time by continuously measuring the compression force between the mask and patient during the treatment. The graphical user interface (GUI) of the monitoring system developed provides a warning signal when the compression force of the mask is insufficient. Although the number of volunteers participated in the study was small, the obtained preliminary results suggest that the system could ostensibly improve the setup accuracy of a thermoplastic mask.
Collapse
Affiliation(s)
- Tae-Ho Kim
- Proton Therapy Center, National Cancer Center, Goyang, South Korea
| | - Min-Seok Cho
- Department of Radiation Oncology, Yongin Severance Hospital, Yongin, South Korea
| | - Dong-Seok Shin
- Proton Therapy Center, National Cancer Center, Goyang, South Korea
| | - Dong Ho Shin
- Proton Therapy Center, National Cancer Center, Goyang, South Korea
| | - Siyong Kim
- Department of Radiation Oncology, Virginia Commonwealth University, Virginia, VA, United States
| |
Collapse
|
17
|
Miron VM, Etzelstorfer T, Kleiser R, Raffelsberger T, Major Z, Geinitz H. Evaluation of novel 3D-printed and conventional thermoplastic stereotactic high-precision patient fixation masks for radiotherapy. Strahlenther Onkol 2022; 198:1032-1041. [PMID: 35697775 PMCID: PMC9581856 DOI: 10.1007/s00066-022-01963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022]
Abstract
Purpose For stereotactic radiation therapy of intracranial malignancies, a patient’s head needs to be immobilized with high accuracy. Fixation devices such as invasive stereotactic head frames or non-invasive thermoplastic mask systems are often used. However, especially stereotactic high-precision masks often cause discomfort for patients due to a long manufacturing time during which the patient is required to lie still and because the face is covered, including the mouth, nose, eyes, and ears. To avoid these issues, the target was to develop a non-invasive 3D-printable mask system with at least the accuracy of the high-precision masks, for producing masks which can be manufactured in the absence of patients and which allow the eyes, mouth, and nose to be uncovered during therapy. Methods For four volunteers, a personalized 3D-printed mask based on magnetic resonance imaging (MRI) data was designed and manufactured using fused filament fabrication (FFF). Additionally, for each of the volunteers, a conventional thermoplastic stereotactic high-precision mask from Brainlab AG (Munich, Germany) was fabricated. The intra-fractional fixation accuracy for each mask and volunteer was evaluated using the motion-correction algorithm of functional MRI measurements with and without guided motion. Results The average values for the translations and rotations of the volunteers’ heads lie in the range between ±1 mm and ±1° for both masks. Interestingly, the standard deviations and the relative and absolute 3D displacements are lower for the 3D-printed masks compared to the Brainlab masks. Conclusion It could be shown that the intra-fractional fixation accuracy of the 3D-printed masks was higher than for the conventional stereotactic high-precision masks.
Collapse
Affiliation(s)
- Veronika M Miron
- Institute of Polymer Product Engineering, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria.
| | - Tanja Etzelstorfer
- Abteilung für Radioonkologie, Ordensklinikum Linz Barmherzige Schwestern, Seilerstätte 4, 4010, Linz, Austria
| | - Raimund Kleiser
- Department of Neuroradiology, Johannes Kepler University Clinic, Wagner-Jauregg-Weg 15, 4020, Linz, Austria
| | - Tobias Raffelsberger
- Department of Neuroradiology, Johannes Kepler University Clinic, Wagner-Jauregg-Weg 15, 4020, Linz, Austria
| | - Zoltan Major
- Institute of Polymer Product Engineering, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
| | - Hans Geinitz
- Abteilung für Radioonkologie, Ordensklinikum Linz Barmherzige Schwestern, Seilerstätte 4, 4010, Linz, Austria
| |
Collapse
|
18
|
Masitho S, Putz F, Mengling V, Reißig L, Voigt R, Bäuerle T, Janka R, Fietkau R, Bert C. Accuracy of MRI-CT registration in brain stereotactic radiotherapy: Impact of MRI acquisition setup and registration method. Z Med Phys 2022; 32:477-487. [PMID: 35643799 PMCID: PMC9948832 DOI: 10.1016/j.zemedi.2022.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND In MR-based radiotherapy (RT), MRI images are co-registered to the planning CT to leverage MR image information for RT planning. Especially in brain stereotactic RT, where typical CTV-PTV margins are 1-2 mm, high registration accuracy is critical. Several factors influence the registration accuracy, including the acquisition setup during MR simulation and the registration methods. PURPOSE In this work, the impact of the MRI acquisition setup and registration method was evaluated in the context of brain RT, both geometrically and dosimetrically. METHODS AND MATERIALS MRI of 20 brain radiotherapy patients was acquired in two MRI acquisition setups (RT and diagnostic). Three different automatic registration tools provided by three treatment planning systems were used to rigidly register both MRIs and CT in addition to the clinical registration. Segmentation-based evaluation using Hausdorff Distance (HD)/Dice Similarity Coefficient and landmark-based evaluation were used as evaluation metrics. Dose-volume-histograms were evaluated for target volumes and various organs at risks. RESULTS MRI acquisition in the RT setup provided a similar head extension as compared to the planning CT. The registration method had a more significant influence than the acquisition setup (Wilcoxon signed-rank test, p<0.05). When registering using a less optimal registration method, the RT setup improved the registration accuracy compared to the diagnostic setup (Difference: ΔMHD = 0.16 mm, ΔHDP95 = 0.64 mm, mean Euclidean distance (ΔmEuD) = 2.65 mm). Different registration methods and acquisition setups lead to the variation of the clinical DVH. Acquiring MRI in the RT setup can improve PTV and GTV coverage compared to the diagnostic setup. CONCLUSIONS Both MRI acquisition setup and registration method influence the MRI-CT registration accuracy in brain RT patients geometrically and dosimetrically. MR-simulation in the RT setup assures optimal registration accuracy if automatic registration is impaired, and therefore recommended for brain RT.
Collapse
Affiliation(s)
- Siti Masitho
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Veit Mengling
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Lisa Reißig
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Raphaela Voigt
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Tobias Bäuerle
- Department of Radiology. Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rolf Janka
- Department of Radiology. Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
19
|
Ohira S, Komiyama R, Kanayama N, Ueda Y, Inui S, Miyazaki M, Koizumi M, Konishi K. Intra‐fractional motion error during HyperArc stereotactic radiosurgery on patients with brain metastases: Comparison of open and full‐face clamshell‐style immobilization devices. J Appl Clin Med Phys 2022; 23:e13536. [PMID: 35049125 PMCID: PMC8992945 DOI: 10.1002/acm2.13536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/14/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To compare the intrafractional motion error (IME) during stereotactic irradiation (STI) in patients with brain metastases immobilized using open‐ (Encompass) and full‐face (DSPS) clamshell‐style immobilization devices. Methods Encompass (38 patients) and DSPS (38 patients) were used for patient immobilization, and HyperArc plans with three to four non‐coplanar beams were generated to deliver 25 to 35 Gy in three to five fractions. Cone‐beam computed tomography (CBCT) was performed on patients before and after the treatment. Moreover, the difference in patient position between the two CBCT images was considered as the IME. The margins to compensate for IME were calculated using the van Herk margin formula. Results For Encompass, the mean values of IME in the translational setup were 0.1, 0.2, and 0.0 mm in the anterior–posterior, superior–inferior, and left–right directions, respectively, and the mean values of IME about rotational axes were −0.1, 0.0, and 0.0° for the Pitch, Roll, and Yaw rotations, respectively. For DSPS, the mean values of IME in the translational setup were 0.2, 0.2, and 0.0 mm in the anterior–posterior, superior–inferior, and left–right directions, respectively, and the mean values of IME about rotational axes were −0.1, −0.1, and 0.0° for the Pitch, Roll, and Yaw rotations, respectively. No statistically significant difference was observed between the IME of the two immobilization systems except in the anterior–posterior direction (p = 0.02). Moreover, no statistically significant correlation was observed between three‐dimensional IME and treatment time. The margin compensation for IME was less than 1 mm for both immobilization devices. Conclusions The IME during STI using open‐ and full‐face clamshell‐style immobilization devices is approximately equal considering the adequate accuracy in patient positioning.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Radiation Oncology Osaka International Cancer Institute Osaka Japan
- Department of Medical Physics and Engineering Osaka University Graduate School of Medicine Suita Japan
| | - Riho Komiyama
- Department of Radiation Oncology Osaka International Cancer Institute Osaka Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology Osaka International Cancer Institute Osaka Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology Osaka International Cancer Institute Osaka Japan
| | - Shoki Inui
- Department of Radiation Oncology Osaka International Cancer Institute Osaka Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology Osaka International Cancer Institute Osaka Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering Osaka University Graduate School of Medicine Suita Japan
| | - Koji Konishi
- Department of Radiation Oncology Osaka International Cancer Institute Osaka Japan
| |
Collapse
|
20
|
Tsui SSW, Wu VWC, Cheung JSC. Comparison of dosimetric impact of intra-fractional setup discrepancy between multiple- and single-isocenter approaches in linac-based stereotactic radiotherapy of multiple brain metastases. J Appl Clin Med Phys 2021; 23:e13484. [PMID: 34931447 PMCID: PMC8833285 DOI: 10.1002/acm2.13484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/23/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022] Open
Abstract
Introduction Treatment of multiple brain metastases by linac‐based stereotactic radiotherapy (SRT) can employ either a multiple‐isocenter (MI) or single‐isocenter (SI) approach. The purposes of this study were to evaluate the dosimetric results of MI and SI approaches and compare the impacts of intra‐fractional setup discrepancies on the robustness of respective approaches using isocenter shifts, whether the same magnitude of translational and rotational effects could lead to a significant difference between the two approaches. Methods Twenty‐two patients with multiple brain metastases treated by linac‐based SRT were recruited. Treatment plans were computed with both the MI and SI approaches. For the MI approach, the isocenter was located at the geometric center of each planning target volumes (PTVs), whereas the isocenter of the SI approach was located midway between the PTV centroids. To simulate the intra‐fractional errors, isocenter displacements including translational and rotational shifts were hypothetically applied. Apart from the dosimetric outcomes of the two approaches, the impact of the isocenter shifts on PTVs and organs at risk (OARs) were recorded in terms of the differences (δ) in dose parameters relative to the reference plan and was then compared between the MI and SI approaches. Results Both MI and SI plans met the plan acceptance criteria. The mean Paddick conformity index (Paddick CI) and Dmax of most OARs between MI and SI plans did not show a significant difference, except that higher doses to the left optic nerve and optic chiasm were found in SI plans (p = 0.03). After the application of the isocenter shifts, δCI increased with an increase in the magnitude of the isocenter shift. When comparing between MI and SI plans, the δCIs were similar (p > 0.05) for all extents of translational shifts, but δCIs were significantly higher in SI plans after application of all rotations particularly ±1.5° and ±2.0° shifts. Despite the result that the majority of δDMax of OARs were higher in the SI plans, only the differences in the left optic nerve and chiasm showed generally consistent significance after both translational ≥±1 mm and rotational shifts of ≥±1∘. Conclusion Both MI and SI approaches could produce clinically acceptable plans. However, isocenter shifts brought dosimetric impacts to both MI and SI approaches and the effects increased with the increase of the shift magnitude. Although similar impacts were shown in plans of both approaches after translational isocenter shift, SI plans were relatively more vulnerable than MI plans to rotational shifts.
Collapse
Affiliation(s)
- Sylvia S W Tsui
- Department of Clinical Oncology, Prince of Wales Hospital, Shatin, Hong Kong
| | - Vincent W C Wu
- Department of Health Technology & Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Jerry S C Cheung
- Department of Clinical Oncology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| |
Collapse
|
21
|
De Ornelas M, Diwanji T, Monterroso I, Bossart E, Yechieli R, Dogan N, Mellon EA. Assessment of intra-fraction motion during automated linac-based SRS treatment delivery with an open face mask system. Phys Med 2021; 92:69-74. [PMID: 34871889 DOI: 10.1016/j.ejmp.2021.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE/OBJECTIVE To evaluate intra-fraction target shift during automated mono-isocentric linac-based stereotactic radiosurgery with open-face mask system and optical real-time tracking. MATERIALS/METHODS Ninety-five patients were treated using automated linac-based stereotactic radiosurgery in 1-5 fractions with single isocenter for a total of 195 fractions. During treatment, patient positioning was tracked real-time with optical surface guidance and immobilized with a rigid open-face mask. Patients were re-positioned if optical surface guidance error exceeded 1 mm magnitude or 1°. Translational and rotational intra-fractional changes were determined by post-treatment CBCT matched to the planning CT. Target specific error was calculated by translation and rotation matrices applied to isocenter and target spatial coordinates. RESULTS For 132 fractions with isocenter within a single target, the median shift magnitude was 0.40 mm with a maximum shift of 1.17 mm. A total of 398 targets treated for plans having multiple or single targets that lied outside isocenter, resulted in a median shift magnitude of 0.46 mm, with median translational shifts of 0.20 mm and 0.20° rotational shifts. A 1 mm PTV margin was insufficient in 18% of targets at a distance greater than 6 cm away from isocenter, but sufficient for 96% of targets within 6 cm. CONCLUSIONS The findings of this study support 1 mm PTV expansion due to intra-fraction motion to ensure target coverage for plans with isocenter placement less than 6 cm away from the targets.
Collapse
Affiliation(s)
- Mariluz De Ornelas
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| | - Tejan Diwanji
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Irene Monterroso
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Elizabeth Bossart
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Raphael Yechieli
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Nesrin Dogan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
22
|
Stopping-power ratio of mouthpiece materials for charged-particle therapy in head and neck cancer. Radiol Phys Technol 2021; 15:83-88. [PMID: 34822100 PMCID: PMC8888382 DOI: 10.1007/s12194-021-00643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022]
Abstract
In this study, the stopping-power ratios (SPRs) of mouthpiece materials were measured and the errors in the predicted SPRs based on conversion table values were further investigated. The SPRs of the five mouthpiece materials were predicted from their computed tomography (CT) numbers using a calibrated conversion table. Independently, the SPRs of the materials were measured from the Bragg peak shift of a carbon-ion beam passing through the materials. The errors in the SPRs of the materials were determined as the difference between the predicted and measured values. The measured SPRs (errors) of the Nipoflex 710™ and Bioplast™ ethylene–vinyl acetate copolymers (EVAs) were 0.997 (0.023) and 0.982 (0.007), respectively. The SPRs of the vinyl silicon impression material, light-curable resin, and bis-acrylic resin were 1.517 (0.134), 1.161 (0.068), and 1.26 (0.101), respectively. Among the five tested materials, the EVAs had the lowest SPR errors, indicating the highest human-tissue equivalency.
Collapse
|
23
|
Tomihara J, Takatsu J, Sugimoto S, Shikama N, Sasai K. Intrafraction stability using full head mask for brain stereotactic radiotherapy. J Appl Clin Med Phys 2021; 22:360-370. [PMID: 34347933 PMCID: PMC8425876 DOI: 10.1002/acm2.13382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 11/11/2022] Open
Abstract
Purpose We investigated the immobilization accuracy of a new type of thermoplastic mask—the Double Shell Positioning System (DSPS)—in terms of geometry and dose delivery. Methods Thirty‐one consecutive patients with 1–5 brain metastases treated with stereotactic radiotherapy (SRT) were selected and divided into two groups. Patients were divided into two groups. One group of patients was immobilized by the DSPS (n = 9). Another group of patients was immobilized by a combination of the DSPS and a mouthpiece (n = 22). Patient repositioning was performed with cone beam computed tomography (CBCT) and six‐degree of freedom couch. Additionally, CBCT images were acquired before and after treatment. Registration errors were analyzed with off‐line review. The inter‐ and intrafractional setup errors, and planning target volume (PTV) margin were also calculated. Delivered doses were calculated by shifting the isocenter according to inter‐ and intrafractional setup errors. Dose differences of GTV D99% were compared between planned and delivered doses against the modified PTV margin of 1 mm. Results Interfractional setup errors associated with the mouthpiece group were significantly smaller than the translation errors in another group (p = 0.03). Intrafractional setup errors for the two groups were almost the same in all directions. PTV margins were 0.89 mm, 0.75 mm, and 0.90 mm for the DSPS combined with the mouthpiece in lateral, vertical, and longitudinal directions, respectively. Similarly, PTV margins were 1.20 mm, 0.72 mm, and 1.37 mm for the DSPS in the lateral, vertical, and longitudinal directions, respectively. Dose differences between planned and delivered doses were small enough to be within 1% for both groups. Conclusions The geometric and dosimetric assessments revealed that the DSPS provides sufficient immobilization accuracy. Higher accuracy can be expected when the immobilization is combined with the use of a mouthpiece.
Collapse
Affiliation(s)
- Jun Tomihara
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Radiology, Juntendo University Hospital, Tokyo, Japan
| | - Jun Takatsu
- Department of Radiation Oncology, Juntendo University, Tokyo, Japan
| | - Satoru Sugimoto
- Department of Radiation Oncology, Juntendo University, Tokyo, Japan
| | - Naoto Shikama
- Department of Radiation Oncology, Juntendo University, Tokyo, Japan
| | - Keisuke Sasai
- Department of Radiation Oncology, Juntendo University, Tokyo, Japan
| |
Collapse
|
24
|
Church C, Parsons D, Syme A. Investigating the impacts of intrafraction motion on dosimetric outcomes when treating small targets with virtual cones. J Appl Clin Med Phys 2021; 22:60-71. [PMID: 34272811 PMCID: PMC8364282 DOI: 10.1002/acm2.13285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Intrafraction patient motion is a well‐documented phenomenon in radiation therapy. In stereotactic radiosurgery applications in which target sizes can be very small and dose gradients very steep, patient motion can significantly impact the magnitude and positional accuracy of the delivered dose. This work investigates the impact of intrafraction motion on dose metrics for small targets when treated with a virtual cone. Materials and Methods Monte Carlo simulations were performed to calculate dose kernels for treatment apertures ranging from 1 × 2.5 mm2 to 10 × 10 mm2. The phantom was an 8.2‐cm diameter sphere and isotropic voxels had lengths of 0.25 mm. Simulated treatments consisted of 3 arcs: 1 axial arc (360° gantry rotation, couch angle 0°) and 2 oblique arcs (180° gantry rotation, couch angle ±45°). Dose distributions were calculated via superposition of the rotated kernels. Two different collimator orientations were considered to create a virtual cone: (a) each treatment arc was delivered twice, once each with a static collimator angle of ±45°, and (b) each treatment arc was delivered once, with dynamic collimator rotation throughout the arc. Two different intrafraction motion patterns were considered: (a) constant linear motion and (b) sudden, persistent motion. The impact of motion on dose distributions for target sizes ranging from 1 to 10 mm diameter spheres was quantified as a function of the aperture size used to treat the lesions. Results The impact of motion on both the target and the surrounding tissue was a function of both aperture shape and target size. When a 0.5‐mm linear drift along each dimension occurred during treatment, targets ≥5 mm saw less than a 10% decrease in coverage by the prescription dose. Smaller apertures accrued larger penalties with respect to dosimetric hotspots seen in the tissues surrounding the target volume during intrafraction motion. For example, treating a 4‐mm‐sized target that undergoes 2.60 mm (3D vector) of continuous linear motion, the D5 in the concentric shells that extend 1, 2, and 3 mm from the surface of the target was 39%, 24%, and 14% smaller, respectively when comparing the delivery of a larger aperture (6 × 10 mm2) to a smaller aperture (2 × 5 mm2). Using a static collimator for shaping a virtual cone during treatment minimized the dosimetric impact of motion in the majority of cases. For example, the volume that is covered by 70% or more of the prescription dose is smaller in 60.4% of cases when using the static collimator. The volume covered by 50, and 30% or more of the prescription dose is also smaller when treating with a static collimator, but the clinical significance of this finding is unknown. Conclusions In this work, the dosimetric trade‐offs between aperture size and target size when irradiating with virtual cones has been demonstrated. These findings provide information about the tradeoffs between target coverage and normal tissue sparing that may help inform clinical decision making when treating smaller targets with virtual cones.
Collapse
Affiliation(s)
- Cody Church
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | - David Parsons
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alasdair Syme
- Department of Radiation Oncology, Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
25
|
Decabooter E, Swinnen AC, Öllers MC, Göpfert F, Verhaegen F. Operation and calibration of the novel PTW 1600SRS detector for the verification of single isocenter stereotactic radiosurgery treatments of multiple small brain metastases. Br J Radiol 2021; 94:20210473. [PMID: 34111967 PMCID: PMC8248213 DOI: 10.1259/bjr.20210473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Objectives: The aim of this work was to evaluate the operation of the 1600SRS detector and to develop a calibration procedure for verifying the dose delivered by a single isocenter stereotactic radiosurgery (SRS) treatment of small multiple brain metastases (BM). Methods: 14 clinical treatment cases were selected with the number of BM ranging from 2 to 11. The dosimetric agreement was investigated between the calculated and the measured dose by an OCTAVIUS 1600SRS array detector in an OCTAVIUS 4D phantom equipped with dedicated SRS top. The cross-calibration procedure deviated from the manufacturer’s as it applied field sizes and dose rates corresponding to the volumetric modulated arc therapy segments in each plan. Results: Measurements with a plan specific cross-calibration showed mean ± standard deviation (SD) agreement scores for cut-off values 50%, 80%, 95%, of 98.6 ± 1.7%, 96.5 ± 4.6%, 97.3 ± 4.4% for the 6 MV plans respectively, and 98.6 ± 1.5%, 96.6 ± 4.0% 96.4 ± 6.3%, for the 6 MV flattening filter free (FFF) plans respectively. Using the default calibration procedure instead of the plan specific calibration could lead to a combined systematic dose offset of 4.1% for our treatment plans. Conclusion: The 1600SRS detector array with the 4D phantom offers an accurate solution to perform routine quality assurance measurements of single isocenter SRS treatments of multiple BM. This work points out the necessity of an adapted cross-calibration procedure. Advances in knowledge: A dedicated calibration procedure enables accurate dosimetry with the 1600SRS detector for small field single isocenter SRS treatment of multiple brain metastases for a large amount of BM.
Collapse
Affiliation(s)
- Esther Decabooter
- Department of Radiation Oncology (Maastro clinic), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ans Cc Swinnen
- Department of Radiation Oncology (Maastro clinic), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Michel C Öllers
- Department of Radiation Oncology (Maastro clinic), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Frank Verhaegen
- Department of Radiation Oncology (Maastro clinic), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
26
|
Individual 3D-printed fixation masks for radiotherapy: first clinical experiences. Int J Comput Assist Radiol Surg 2021; 16:1043-1049. [PMID: 34021859 PMCID: PMC8166668 DOI: 10.1007/s11548-021-02393-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022]
Abstract
Purpose To show the feasibility of 3D-printed fixation masks for whole brain radiation therapy in a clinical setting and perform a first comparison to an established thermoplastic mask system. Methods Six patients were irradiated with whole brain radiotherapy using individually 3D-printed masks. Daily image guidance and position correction were performed prior to each irradiation fraction. The vectors of the daily position correction were compared to two collectives of patients, who were irradiated using the standard thermoplastic mask system (one cohort with head masks; one cohort with head and neck masks). Results The mean systematic errors in the experimental cohort ranged between 0.59 and 2.10 mm which is in a comparable range to the control groups (0.18 mm–0.68 mm and 0.34 mm–2.96 mm, respectively). The 3D-printed masks seem to be an alternative to the established thermoplastic mask systems. Nevertheless, further investigation will need to be performed. Conclusion The prevailing study showed a reliable and reproducible interfractional positioning accuracy using individually 3D-printed masks for whole brain irradiation in a clinical routine. Further investigations, especially concerning smaller target volumes or other areas of the body, need to be performed before using the system on a larger basis.
Collapse
|
27
|
Bry V, Licon AL, McCulloch J, Kirby N, Myers P, Saenz D, Stathakis S, Papanikolaou N, Rasmussen K. Quantifying false positional corrections due to facial motion using SGRT with open-face Masks. J Appl Clin Med Phys 2021; 22:172-183. [PMID: 33739569 PMCID: PMC8035563 DOI: 10.1002/acm2.13170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/09/2020] [Accepted: 12/25/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose Studies have evaluated the viability of using open‐face masks as an immobilization technique to treat intracranial and head and neck cancers. This method offers less stress to the patient with comparable accuracy to closed‐face masks. Open‐face masks permit implementation of surface guided radiation therapy (SGRT) to assist in positioning and motion management. Research suggests that changes in patient facial expressions may influence the SGRT system to generate false positional corrections. This study aims to quantify these errors produced by the SGRT system due to face motion. Methods Ten human subjects were immobilized using open‐face masks. Four discrete SGRT regions of interest (ROIs) were analyzed based on anatomical features to simulate different mask openings. The largest ROI was lateral to the cheeks, superior to the eyebrows, and inferior to the mouth. The smallest ROI included only the eyes and bridge of the nose. Subjects were asked to open and close their eyes and simulate fear and annoyance and peak isocenter shifts were recorded. This was performed in both standard and SRS specific resolutions with the C‐RAD Catalyst HD system. Results All four ROIs analyzed in SRS and Standard resolutions demonstrated an average deviation of 0.3 ± 0.3 mm for eyes closed and 0.4 ± 0.4 mm shift for eyes open, and 0.3 ± 0.3 mm for eyes closed and 0.8 ± 0.9 mm shift for eyes open. The average deviation observed due to changing facial expressions was 1.4 ± 0.9 mm for SRS specific and 1.6 ± 1.6 mm for standard resolution. Conclusion The SGRT system can generate false positional corrections for face motion and this is amplified at lower resolutions and smaller ROIs. These errors should be considered in the overall tolerances and treatment plan when using open‐face masks with SGRT and may warrant additional radiographic imaging.
Collapse
Affiliation(s)
- Victoria Bry
- Department of Radiation Oncology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Anna Laura Licon
- Department of Radiation Oncology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - James McCulloch
- Department of Radiation Oncology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Neil Kirby
- Department of Radiation Oncology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Pamela Myers
- Department of Radiation Oncology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Daniel Saenz
- Department of Radiation Oncology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sotirios Stathakis
- Department of Radiation Oncology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Niko Papanikolaou
- Department of Radiation Oncology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Karl Rasmussen
- Department of Radiation Oncology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
28
|
Zechner A, Ziegler I, Hug E, Lütgendorf-Caucig C, Stock M. Evaluation of the inter- and intrafraction displacement for head patients treated at the particle therapy centre MedAustron based on the comparison of different commercial immobilisation devices. Z Med Phys 2021; 32:39-51. [PMID: 33640219 PMCID: PMC9948876 DOI: 10.1016/j.zemedi.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 02/03/2023]
Abstract
In December 2016 the clinical operation has started at the particle therapy centre MedAustron, Wiener Neustadt, Austria. Different commercial immobilisation devices are used for head patients. These immobilisation devices are a combination of table tops (Qfix BoS™ Headframe, Elekta HeadStep™), pillows (BoS™ Standard pillow, Moldcare®, HeadStep™ pillow) and thermoplastic masks (Klarity Green™, Qfix Fibreplast™, HeadStep™ iCAST double). For each patient image-guided radiotherapy (IGRT) is performed by acquiring orthogonal X-ray imaging and 2D3D registration and the application of the resulting 6-degree of freedom (DOF) position correction on the robotic couch. The inter- and intrafraction displacement of 101 adult head patients and 27 paediatric sedated head patients were evaluated and compared among each other regarding reproducibility during the entire treatment and stability during each fraction. For the comparison, statistical methods (Shapiro-Wilk test, Mann-Whitney U-test) were applied on the position corrections as well as on the position verifications. The actual planning target volume margins of 3mm (adults) and 2mm (children) were evaluated by applying the van Herk formula on the intrafraction displacement results and performing treatment plan robustness simulations of twelve different translational offset scenarios including a HU uncertainty of 3.5%. Statistically significant differences between the immobilisation devices were found, but they turned out to be clinically irrelevant. The margin calculation for adult head patients resulted in 0.8mm (lateral), 1.2mm (cranio-caudal) and 0.6mm (anterior-posterior), and for paediatric head patients under anaesthesia in 0.8mm (lateral), 0.5mm (cranio-caudal) and 0.9mm (anterior-posterior). Based on these values, robustness evaluations of selected adult head patients and sedated children showed the validity of the currently used PTV margins.
Collapse
Affiliation(s)
- Andrea Zechner
- MedAustron Ion Therapy Centre, Wiener Neustadt, Austria.
| | - Ingrid Ziegler
- University Clinic for Radiotherapy and Radio-Oncology, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Hug
- MedAustron Ion Therapy Centre, Wiener Neustadt, Austria
| | | | - Markus Stock
- MedAustron Ion Therapy Centre, Wiener Neustadt, Austria
| |
Collapse
|
29
|
Zou W, Kurtz G, Nakib M, Burgdorf B, Alp M, Li T, Lustig R, Xiao Y, Dong L, Kassaee A, Alonso-Basanta M. A Probability-Based Investigation on the Setup Robustness of Pencil-beam Proton Radiation Therapy for Skull-Base Meningioma. Int J Part Ther 2021; 7:34-45. [PMID: 33604414 PMCID: PMC7886272 DOI: 10.14338/ijpt-20-00009.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022] Open
Abstract
Introduction The intracranial skull-base meningioma is in proximity to multiple critical organs and heterogeneous tissues. Steep dose gradients often result from avoiding critical organs in proton treatment plans. Dose uncertainties arising from setup errors under image-guided radiation therapy are worthy of evaluation. Patients and Methods Fourteen patients with skull-base meningioma were retrospectively identified and planned with proton pencil beam scanning (PBS) single-field uniform dose (SFUD) and multifield optimization (MFO) techniques. The setup uncertainties were assigned a probability model on the basis of prior published data. The impact on the dose distribution from nominal 1-mm and large, less probable setup errors, as well as the cumulative effect, was analyzed. The robustness of SFUD and MFO planning techniques in these scenarios was discussed. Results The target coverage was reduced and the plan dose hot spot increased by all setup uncertainty scenarios regardless of the planning techniques. For 1 mm nominal shifts, the deviations in clinical target volume (CTV) coverage D99% was -11 ± 52 cGy and -45 ± 147 cGy for SFUD and MFO plans. The setup uncertainties affected the organ at risk (OAR) dose both positively and negatively. The statistical average of the setup uncertainties had <100 cGy impact on the plan qualities for all patients. The cumulative deviations in CTV D95% were 1 ± 34 cGy and -7 ± 18 cGy for SFUD and MFO plans. Conclusion It is important to understand the impact of setup uncertainties on skull-base meningioma, as the tumor target has complex shape and is in proximity to multiple critical organs. Our work evaluated the setup uncertainty based on its probability distribution and evaluated the dosimetric consequences. In general, the SFUD plans demonstrated more robustness than the MFO plans in target coverages and brainstem dose. The probability-weighted overall effect on the dose distribution is small compared to the dosimetric shift during single fraction.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Goldie Kurtz
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Mayisha Nakib
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Brendan Burgdorf
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Murat Alp
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Taoran Li
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Lustig
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Xiao
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Lei Dong
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Alireza Kassaee
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Kang CL, Lee TF, Chan SH, Liu SC, Wang JC, Tsai CH, Liao KC, Fang FM, Chang L, Huang CC. Comparison of Intrafractional Motion in Head and Neck Cancer Between Two Immobilization Methods During Stereotactic Ablative Radiation Therapy by CyberKnife. Cancer Manag Res 2021; 12:13599-13606. [PMID: 33447079 PMCID: PMC7802594 DOI: 10.2147/cmar.s283746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Maintaining immobilization to minimize spine motion is very important during salvage stereotactic ablative radiation therapy (SABR) for recurrent head and neck cancer. This study aimed to compare the intrafractional motion between two immobilization methods. Patients and Methods With a spine tracking system for image guiding, 9094 records from 41 patients receiving SABR by CyberKnife were obtained for retrospective comparison. Twenty-one patients were immobilized with a thermoplastic mask and headrest (Group A), and another 20 patients used a thermoplastic mask and headrest together with a vacuum bag to support the head and neck area (Group B). The intrafractional motion in the X (superior-inferior), Y (right-left), Z (anterior-posterior) axes, 3D (three-dimensional) vector, Roll, Pitch and Yaw in the two groups was compared. The margins of the planning target volume (PTV) to cover 95% intrafractional motion were evaluated. Results The translational movements in the X-axis, Y-axis, and 3D vector in Group A were significantly smaller than in Group B. The rotational errors in the Roll and Yaw in Group A were also significantly smaller than those in Group B; conversely, those in the Pitch in Group A were larger. To cover 95% intrafractional motion, margins of 0.96, 1.55, and 1.51 mm in the X, Y and Z axes, respectively were needed in Group A, and 1.06, 2.86, and 1.34 mm, respectively were required in Group B. Conclusion The immobilization method of thermoplastic mask and head rest with vacuum bag did not provide better immobilization than that without vacuum bag in most axes. The clinical use of 2 mm as a margin of PTV to cover 95% intrafractional motion was adequate in Group A but not in Group B.
Collapse
Affiliation(s)
- Chen-Lin Kang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan.,Department of Information Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Tsair-Fwu Lee
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.,Biomedical Engineering, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shan-Ho Chan
- Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Shyh-Chang Liu
- Department of Information Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Jui-Chu Wang
- Department of Anatomical Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Hsiang Tsai
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuan-Cho Liao
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Liyun Chang
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan
| | - Chun-Chieh Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
31
|
Alcorn SR, Zhou XC, Bojechko C, Rubo RA, Chen MJ, Dieckmann K, Ermoian RP, Ford EC, Kobyzeva D, MacDonald SM, McNutt TR, Nechesnyuk A, Nilsson K, Sjostrand H, Smith KS, Stock M, Tryggestad EJ, Villar RC, Winey BA, Terezakis SA. Low-Dose Image-Guided Pediatric CNS Radiation Therapy: Final Analysis From a Prospective Low-Dose Cone-Beam CT Protocol From a Multinational Pediatrics Consortium. Technol Cancer Res Treat 2020; 19:1533033820920650. [PMID: 32329413 PMCID: PMC7225835 DOI: 10.1177/1533033820920650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Lower-dose cone-beam computed tomography protocols for image-guided radiotherapy may permit target localization while minimizing radiation exposure. We prospectively evaluated a lower-dose cone-beam protocol for central nervous system image-guided radiotherapy across a multinational pediatrics consortium. Methods: Seven institutions prospectively employed a lower-dose cone-beam computed tomography central nervous system protocol (weighted average dose 0.7 mGy) for patients ≤21 years. Treatment table shifts between setup with surface lasers versus cone-beam computed tomography were used to approximate setup accuracy, and vector magnitudes for these shifts were calculated. Setup group mean, interpatient, interinstitution, and random error were estimated, and clinical factors were compared by mixed linear modeling. Results: Among 96 patients, with 2179 pretreatment cone-beam computed tomography acquisitions, median age was 9 years (1-20). Setup parameters were 3.13, 3.02, 1.64, and 1.48 mm for vector magnitude group mean, interpatient, interinstitution, and random error, respectively. On multivariable analysis, there were no significant differences in mean vector magnitude by age, gender, performance status, target location, extent of resection, chemotherapy, or steroid or anesthesia use. Providers rated >99% of images as adequate or better for target localization. Conclusions: A lower-dose cone-beam computed tomography protocol demonstrated table shift vector magnitude that approximate clinical target volume/planning target volume expansions used in central nervous system radiotherapy. There were no significant clinical predictors of setup accuracy identified, supporting use of this lower-dose cone-beam computed tomography protocol across a diverse pediatric population with brain tumors.
Collapse
Affiliation(s)
| | - Xian Chiong Zhou
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | - Michael J Chen
- Grupo de Apoio ao Adolescente e à Criança com Câncer, São Paulo, Brazil
| | - Karin Dieckmann
- Universität Klinik Für Strahlentherapie und Strahlenbiologie, Vienna, Austria
| | | | | | - Daria Kobyzeva
- Federal Scientific Clinical Center of Children's Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | - Alexey Nechesnyuk
- Federal Scientific Clinical Center of Children's Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | | | - Markus Stock
- Universität Klinik Für Strahlentherapie und Strahlenbiologie, Vienna, Austria
| | | | | | | | - Stephanie A Terezakis
- Department of Radiation Oncology and Molecular Radiation Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
32
|
Palmiero AN, Critchfield L, St Clair W, Randall M, Pokhrel D. Single-Isocenter Volumetric Modulated Arc Therapy (VMAT) Radiosurgery for Multiple Brain Metastases: Potential Loss of Target(s) Coverage Due to Isocenter Misalignment. Cureus 2020; 12:e11267. [PMID: 33274143 PMCID: PMC7707911 DOI: 10.7759/cureus.11267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023] Open
Abstract
Purpose A single-isocenter volumetric modulated arc therapy (VMAT) treatment to multiple brain metastatic patients is an efficient stereotactic radiosurgery (SRS) option. However, the current clinical practice of single-isocenter SRS does not account for patient setup uncertainty, which degrades treatment delivery accuracy. This study quantifies the loss of target coverage and potential collateral dose to normal tissue due to clinically observable isocenter misalignment. Methods and materials Nine patients with 61 total tumors (2-16 tumors/patient) who underwent Gamma Knife® SRS were replanned in Eclipse™ using 10 megavoltages (MV) flattening-filter-free (FFF) bream (2400 MU/min), using a single-isocenter VMAT plan, similar to HyperArc™ VMAT plan. Isocenter was placed in the geometric center of the tumors. The prescription was 20 Gy to each tumor. Average gross tumor volume (GTV) and planning target volume (PTV) were 1.1 cc (0.02-11.5 cc) and 1.9 cc (0.11-18.8 cc), respectively, derived from MRI images. The average isocenter to tumor distance was 5.5 cm (1.6-10.1 cm). Six-degrees of freedom (6DoF) random and systematic residual set up errors within [±2 mm, ±2o] were generated using an in-house script in Eclipse based on our pre-treatment daily cone-beam CT imaging shifts and recomputed for the simulated VMAT plan. Relative loss of target coverage as a function of tumor size and distance to isocenter were evaluated as well as collateral dose to organs-at risk (OAR). Results The average beam-on time was less than six minutes. However, loss of target coverage for clinically observable setup errors were, on average, 7.9% (up to 73.1%) for the GTV (p < 0.001) and 21.5% for the PTV (up to 93.7%; p < 0.001). The correlation was found for both random and systematic residual setup errors with tumor sizes; there was a greater loss of target coverage for small tumors. Due to isocenter misalignment, OAR doses fluctuated and potentially receive higher doses than the original plan. Conclusion A single-isocenter VMAT SRS treatment (similar to HyperArc™ VMAT) to multiple brain metastases was fast with < 6 min of beam-on time. However, due to small residual set up errors, single-isocenter VMAT, in its current use, is not an accurate SRS treatment modality for multiple brain metastases. Loss of target coverage was statistically significant, especially for smaller lesions, and may not be clinically acceptable if left uncorrected. Further investigation of correction strategies is underway.
Collapse
Affiliation(s)
| | | | | | - Marcus Randall
- Radiation Medicine, University of Kentucky, Lexington, USA
| | | |
Collapse
|
33
|
Aoyama T, Uto K, Shimizu H, Ebara M, Kitagawa T, Tachibana H, Suzuki K, Kodaira T. Physical and dosimetric characterization of thermoset shape memory bolus developed for radiotherapy. Med Phys 2020; 47:6103-6112. [PMID: 33012062 PMCID: PMC7821231 DOI: 10.1002/mp.14516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We developed a thermoset shape memory bolus (shape memory bolus) made from poly-ε-caprolactone (PCL) polymer. This study aimed to investigate whether the shape memory bolus can be applied to radiotherapy as a bolus that conformally adheres to the body surface, can be created in a short time, and can be reused. METHODS The shape memory bolus was developed by cross-linking tetrabranch PCL with reactive acrylate end groups. Dice similarity coefficient (DSC) was used to evaluate shape memory characterization before deformation and after restoration. In addition, the degree of adhesion to the body surface and crystallization time were calculated. Moreover, dosimetric characterization was evaluated using the water equivalent phantom and an Alderson RANDO phantom. RESULTS The DSC value between before deformation and after restoration was close to 1. The degree of adhesion of the shape memory bolus (1.9%) was improved compared with the conventional bolus (45.6%) and was equivalent to three-dimensional (3D) printer boluses (1.3%-3.5%). The crystallization time was approximately 1.5 min, which was clinically acceptable. The dose calculation accuracy, dose distribution, and dose index were the equivalent compared with 3D boluses. CONCLUSION The shape memory bolus has excellent adhesion to the body surface, can be created in a short time, and can be reused. In addition, the shape memory bolus needs can be made from low-cost materials and no quality control systems are required for individual clinical departments, and it is useful as a bolus for radiotherapy.
Collapse
Affiliation(s)
- Takahiro Aoyama
- Department of Radiation Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan.,Graduate School of Medicine, Aichi Medical University, 1-1 Yazako-karimata, Nagakute, Aichi, 480-1195, Japan
| | - Koichiro Uto
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hidetoshi Shimizu
- Department of Radiation Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Mitsuhiro Ebara
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tomoki Kitagawa
- Department of Radiation Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Hiroyuki Tachibana
- Department of Radiation Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Kojiro Suzuki
- Department of Radiology, Aichi Medical University, 1-1 Yazako-karimata, Nagakute, Aichi, 480-1195, Japan
| | - Takeshi Kodaira
- Department of Radiation Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| |
Collapse
|
34
|
Wei W, Ioannides PJ, Sehgal V, Daroui P. Quantifying the impact of optical surface guidance in the treatment of cancers of the head and neck. J Appl Clin Med Phys 2020; 21:73-82. [PMID: 32250046 PMCID: PMC7324691 DOI: 10.1002/acm2.12867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 02/08/2020] [Accepted: 02/27/2020] [Indexed: 12/25/2022] Open
Abstract
Surface guided radiation therapy (SGRT) is increasingly being adopted for use in radiation treatment delivery for Head and Neck (H&N) cancer patients. This study investigated the improvement of patient setup accuracy and reduction of setup time for SGRT compared to a conventional setup. A total of 60 H&N cancer patients were retrospectively included. Patients were categorized into three groups: oral cavity, oropharynx and nasopharynx/sinonasal sites with 20 patients in each group. They were further separated into two (2) subgroups, depending on whether they were set up with the aid of SGRT. The Align‐RT™ system was used for SGRT in this work. Positioning was confirmed by daily kV‐kV imaging in conjunction with weekly CBCT scans. Translational and rotational couch shifts along with patient setup times were recorded. Imaging setup time, which was defined as the elapsed time from the acquisition of the first image set to the end of the last image set, was recorded. Average translational shifts were larger in the non‐SGRT group. Vertical shifts showed the most significant reduction in the SGRT group for both oropharynx and oral cavity groups. Pitch corrections were significantly higher in the SGRT group for oropharynx patients and higher pitch corrections were also observed in the SGRT groups of oral cavity and nasopharynx/sinonasal patients. The average setup time when SGRT guidance was employed was shorter for all three treatment sites although this did not reach statistical significance. The largest time reduction between the SGRT and non‐SGRT groups was seen in the nasopharynx/sinonasal group. This study suggests that the use of SGRT decreases the magnitude of translational couch shifts during patient setup. However, the rotational corrections needed were generally higher with SGRT group. When SGRT was employed, a definite reduction in patient setup time was observed for nasopharynx/sinonasal and hypopharynx cancer patients.
Collapse
Affiliation(s)
- Wenbo Wei
- Department of Radiation Oncology University of California Irvine Orange CA USA
| | | | - Varun Sehgal
- Department of Radiation Oncology University of California Irvine Orange CA USA
| | - Parima Daroui
- Department of Radiation Oncology The Permanente Medical Group Santa Clara CA USA
| |
Collapse
|
35
|
Fukao M, Okamura K, Sabu S, Akino Y, Arimura T, Inoue S, Kado R, Seo Y. Repositioning accuracy of a novel thermoplastic mask for head and neck cancer radiotherapy. Phys Med 2020; 74:92-99. [PMID: 32450542 DOI: 10.1016/j.ejmp.2020.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/05/2020] [Accepted: 05/08/2020] [Indexed: 10/24/2022] Open
Abstract
PURPOSE The aim of this study was to assess the reproducibility of patient shoulder position immobilized with a novel and innovative prototype mask (E-Frame, Engineering System). METHODS The E-frame mask fixes both shoulders and bisaxillary regions compared with that of a commercial mask (Type-S, CIVCO). Thirteen and twelve patients were immobilized with the Type-S and E-Frame mask systems, respectively. For each treatment fraction, cone-beam CT (CBCT) images of the patient were acquired and retrospectively analyzed. The CBCT images were registered to the planning CT based on the cervical spine, and then the displacements of the acromial extremity of the clavicle were measured. RESULTS The systematic and random errors between the two mask systems were evaluated. The differences of the systematic errors between the two mask systems were not statistically significant. The mean random errors in the three directions (AP, SI and LR) were 2.7 mm, 3.1 mm and 1.5 mm, respectively for the Type-S mask, and 2.8 mm 2.5 mm and 1.4 mm, respectively for the E-Frame mask. The random error of the E-Frame masks in the SI direction was significantly smaller than that of the Type-S. The number of cases showing displacements exceeding 10 mm in the SI direction for at least one fraction was eight (61% of 13 cases) and three (25% of 12 cases) for Type-S and E-Frame masks, respectively. CONCLUSIONS The E-Frame masks reduced the random displacements of patient's shoulders in the SI direction, effectively preventing large shoulder shifts that occurred frequently with Type-S masks.
Collapse
Affiliation(s)
- Mari Fukao
- Department of Medical Technology, Osaka University Hospital, 2-15, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Keita Okamura
- Department of Medical Technology, Osaka University Hospital, 2-15, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shotaro Sabu
- Department of Medical Technology, Osaka University Hospital, 2-15, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Akino
- Oncology Center, Osaka University Hospital, 2-2 (D10), Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takehiro Arimura
- Department of Medical Technology, Osaka University Hospital, 2-15, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinichi Inoue
- Department of Medical Technology, Osaka University Hospital, 2-15, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryoko Kado
- Department of Nursing, Osaka University Hospital, 2-15, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10), Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
36
|
Swinnen ACC, Öllers MC, Loon Ong C, Verhaegen F. The potential of an optical surface tracking system in non-coplanar single isocenter treatments of multiple brain metastases. J Appl Clin Med Phys 2020; 21:63-72. [PMID: 32237274 PMCID: PMC7324699 DOI: 10.1002/acm2.12866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/23/2020] [Accepted: 02/24/2020] [Indexed: 12/25/2022] Open
Abstract
To evaluate the accuracy of a commercial optical surface tracking (OST) system and to demonstrate how it can be implemented to monitor patient positioning during non‐coplanar single isocenter stereotactic treatments of brain metastases. A 3‐camera OST system was used (Catalyst HD™, C‐RAD) on a TruebeamSTx with a 6DoF couch. The setup accuracy and agreement between the OST system, and CBCT and kV‐MV imaging at couch angles 0° and 270°, respectively, were examined. Film measurements at 3 depths in the Rando‐Alderson phantom were performed using a single isocenter non‐coplanar VMAT plan containing 4 brain lesions. Setup of the phantom was performed with CBCT at couch 0° and subsequently monitored by OST at other couch angles. Setup data for 7 volunteers were collected to evaluate the accuracy and reproducibility of the OST system at couch angles 0°, 45°, 90°, 315°, and 270°. These results were also correlated to the couch rotation offsets obtained by a Winston‐Lutz (WL) test. The Rando‐Alderson phantom, as well as volunteers, were fixated using open face masks (Orfit). For repeated tests with the Rando‐Alderson phantom, deviations between rotational and translational isocenter corrections for CBCT and OST systems are always within 0.2° (pitch, roll, yaw), and 0.1mm and 0.5mm (longitudinal, lateral, vertical) for couch positions 0° and 270°, respectively. Dose deviations between the film and TPS doses in the center of the 4 lesions were −1.2%, −0.1%, −0.0%, and −1.9%. Local gamma evaluation criteria of 2%/2 mm and 3%/1 mm yielded pass rates of 99.2%, 99.2%, 98.6%, 89.9% and 98.8%, 97.5%, 81.7%, 78.1% for the 4 lesions. Regarding the volunteers, the mean translational and rotational isocenter shift values were (0.24 ± 0.09) mm and (0.15 ± 0.07) degrees. Largest isocenter shifts were found for couch angles 45˚ and 90˚, confirmed by WL couch rotation offsets. Patient monitoring during non‐coplanar VMAT treatments of brain metastases is feasible with submillimeter accuracy.
Collapse
Affiliation(s)
| | | | - Chin Loon Ong
- Department of Radiation Oncology, HagaZiekenhuis, Den Haag, the Netherlands
| | | |
Collapse
|
37
|
Mendel JT, Jaster AW, Yu FF, Morris LC, Lynch PT, Shah BR, Agarwal A, Timmerman RD, Nedzi LA, Raj KM. Fundamentals of Radiation Oncology for Neurologic Imaging. Radiographics 2020; 40:827-858. [PMID: 32216705 DOI: 10.1148/rg.2020190138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although the physical and biologic principles of radiation therapy have remained relatively unchanged, a technologic renaissance has led to continuous and ever-changing growth in the field of radiation oncology. As a result, medical devices, techniques, and indications have changed considerably during the past 20-30 years. For example, advances in CT and MRI have revolutionized the treatment planning process for a variety of central nervous system diseases, including primary and metastatic tumors, vascular malformations, and inflammatory diseases. The resultant improved ability to delineate normal from abnormal tissue has enabled radiation oncologists to achieve more precise targeting and helped to mitigate treatment-related complications. Nevertheless, posttreatment complications still occur and can pose a diagnostic challenge for radiologists. These complications can be divided into acute, early-delayed, and late-delayed complications on the basis of the time that they manifest after radiation therapy and include leukoencephalopathy, vascular complications, and secondary neoplasms. The different irradiation technologies and applications of these technologies in the brain, current concepts used in treatment planning, and essential roles of the radiation oncologist in the setting of brain disease are reviewed. In addition, relevant imaging findings that can be used to delineate the extent of disease before treatment, and the expected posttreatment imaging changes are described. Common and uncommon complications related to radiation therapy and the associated imaging manifestations also are discussed. Familiarity with these entities may aid the radiologist in making the diagnosis and help guide appropriate management. ©RSNA, 2020.
Collapse
Affiliation(s)
- J Travis Mendel
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Adam W Jaster
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Fang F Yu
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Lee C Morris
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Patrick T Lynch
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Bhavya R Shah
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Amit Agarwal
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Robert D Timmerman
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Lucien A Nedzi
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Karuna M Raj
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| |
Collapse
|
38
|
Nagtegaal SH, van Lier AL, den Boer AA, Kramer MC, Fanetti G, Eppinga WS, Philippens ME, Verhoeff JJ, Seravalli E. Does an immobilization mask have added value during planning magnetic resonance imaging for stereotactic radiotherapy of brain tumours? Phys Imaging Radiat Oncol 2020; 13:7-13. [PMID: 33458301 PMCID: PMC7807597 DOI: 10.1016/j.phro.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE When using an immobilization mask, a magnetic resonance imaging (MRI) head receive coil cannot be used and patients may experience discomfort during the examination. We therefore wish to assess the added value of an immobilization mask during all MRI scans intended for cranial stereotactic radiotherapy (SRT) planning. MATERIALS AND METHODS An MRI was acquired with and without a thermoplastic immobilization mask in ten patients eligible for SRT. A planning computed tomography (CT) scan was also made, to which the two MRIs were independently registered. Additionally, the MRI without immobilization was registered to the MRI in mask. On each sequence, gross tumour volume (GTV), the right eye, brain stem and chiasm were delineated. The absolute differences in centre-of-gravity coordinates and Dice coefficients of the volumes of the delineated structures between the two MRIs were compared. RESULTS Differences in GTV volume between the two MRIs were low, with median Dice coefficients between 0.88 and 0.91. Similarly, the median absolute differences in centre-of-gravity coordinates between the GTVs, organs at risk and landmarks delineated on the two MRIs were within 0.5 mm. The 95% confidence intervals of the median absolute differences in the three GTV coordinates was within 1 mm, which corresponds to the target volume safety margin used to account for possible errors during the SRT treatment chain. CONCLUSIONS The effect of scanning a patient without the immobilization mask falls within acceptable bounds of error for the geometrical accuracy of the SRT treatment chain. Consequently, placing the head in treatment position during all MRI scans for patients undergoing radiotherapy of brain metastasis is deemed unnecessary.
Collapse
Affiliation(s)
| | | | - Anne A. den Boer
- UMC Utrecht, Department of Radiation Oncology, Utrecht, The Netherlands
| | | | - Giuseppe Fanetti
- Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | | | | | | | - Enrica Seravalli
- UMC Utrecht, Department of Radiation Oncology, Utrecht, The Netherlands
| |
Collapse
|
39
|
Mesko S, Wang H, Tung S, Wang C, Pasalic D, Chapman BV, Moreno AC, Reddy JP, Garden AS, Rosenthal DI, Gunn GB, Frank SJ, Fuller CD, Morrison W, Phan J. Estimating PTV Margins in Head and Neck Stereotactic Ablative Radiation Therapy (SABR) Through Target Site Analysis of Positioning and Intrafractional Accuracy. Int J Radiat Oncol Biol Phys 2020; 106:185-193. [PMID: 31580928 PMCID: PMC7307590 DOI: 10.1016/j.ijrobp.2019.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Recurrent or previously irradiated head and neck cancers (HNC) are therapeutically challenging and may benefit from high-dose, highly accurate radiation techniques, such as stereotactic ablative radiation therapy (SABR). Here, we compare set-up and positioning accuracy across HNC subsites to further optimize the treatment process and planning target volume (PTV) margin recommendations for head and neck SABR. METHODS AND MATERIALS We prospectively collected data on 405 treatment fractions across 79 patients treated with SABR for recurrent/previously irradiated HNC. First, interfractional error was determined by comparing ExacTrac x-ray to the treatment plan. Patients were then shifted and residual error was measured with repeat x-ray. Next, cone beam computed tomography (CBCT) was compared with ExacTrac for positioning agreement, and final shifts were applied. Lastly, intrafractional error was measured with x-ray before each arc. Results were stratified by treatment site into skull base, neck/parotid, and mucosal. RESULTS Most patients (66.7%) were treated to 45 Gy in 5 fractions (range, 21-47.5 Gy in 3-5 fractions). The initial mean ± standard deviation interfractional errors were -0.2 ± 1.4 mm (anteroposterior), 0.2 ± 1.8 mm (craniocaudal), and -0.1 ± 1.7 mm (left-right). Interfractional 3-dimensional vector error was 2.48 ± 1.44, with skull base significantly lower than other sites (2.22 vs 2.77; P = .0016). All interfractional errors were corrected to within 1.3 mm and 1.8°. CBCT agreed with ExacTrac to within 3.6 mm and 3.4°. CBCT disagreements and intrafractional errors of >1 mm or >1° occurred at significantly lower rates in skull base sites (CBCT: 16.4% vs 50.0% neck, 52.0% mucosal, P < .0001; intrafractional: 22.0% vs 48.7% all others, P < .0001). Final PTVs were 1.5 mm (skull base), 2.0 mm (neck/parotid), and 1.8 mm (mucosal). CONCLUSIONS Head and neck SABR PTV margins should be optimized by target site. PTV margins of 1.5 to 2 mm may be sufficient in the skull base, whereas 2 to 2.5 mm may be necessary for neck and mucosal targets. When using ExacTrac, skull base sites show significantly fewer uncertainties throughout the treatment process, but neck/mucosal targets may require the addition of CBCT to account for positioning errors and internal organ motion.
Collapse
Affiliation(s)
- Shane Mesko
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - He Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samuel Tung
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Congjun Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dario Pasalic
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bhavana V Chapman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy C Moreno
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jay P Reddy
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adam S Garden
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David I Rosenthal
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - G Brandon Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William Morrison
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jack Phan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
40
|
Asfia A, Novak JI, Mohammed MI, Rolfe B, Kron T. A review of 3D printed patient specific immobilisation devices in radiotherapy. Phys Imaging Radiat Oncol 2020; 13:30-35. [PMID: 33458304 PMCID: PMC7807671 DOI: 10.1016/j.phro.2020.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Radiotherapy is one of the most effective cancer treatment techniques, however, delivering the optimal radiation dosage is challenging due to movements of the patient during treatment. Immobilisation devices are typically used to minimise motion. This paper reviews published research investigating the use of 3D printing (additive manufacturing) to produce patient-specific immobilisation devices, and compares these to traditional devices. MATERIALS AND METHODS A systematic review was conducted across thirty-eight databases, with results limited to those published between January 2000 and January 2019. A total of eighteen papers suitably detailed the use of 3D printing to manufacture and test immobilisers, and were included in this review. This included ten journal papers, five posters, two conference papers and one thesis. RESULTS 61% of relevant studies featured human subjects, 22% focussed on animal subjects, 11% used phantoms, and one study utilised experimental test methods. Advantages of 3D printed immobilisers reported in literature included improved patient experience and comfort over traditional methods, as well as high levels of accuracy between immobiliser and patient, repeatable setup, and similar beam attenuation properties to thermoformed immobilisers. Disadvantages included the slow 3D printing process and the potential for inaccuracies in the digitisation of patient geometry. CONCLUSION It was found that a lack of technical knowledge, combined with disparate studies with small patient samples, required further research in order to validate claims supporting the benefits of 3D printing to improve patient comfort or treatment accuracy.
Collapse
Affiliation(s)
- Amirhossein Asfia
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
- ARC Industrial Transformation Training Centre in Additive Bio-manufacturing, Brisbane, Queensland, Australia
| | - James I. Novak
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
| | | | - Bernard Rolfe
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
| | - Tomas Kron
- ARC Industrial Transformation Training Centre in Additive Bio-manufacturing, Brisbane, Queensland, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Gamma Knife radiosurgery: Scenarios and support for re-irradiation. Phys Med 2019; 68:75-82. [PMID: 31760329 DOI: 10.1016/j.ejmp.2019.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/16/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022] Open
Abstract
Stereotactic radiosurgery (SRS) involves the focal delivery of large, cytotoxic doses of radiation to small targets within the brain, often located in close proximity to radiosensitive normal tissue structures and requiring very low procedural uncertainties to perform safely. Historically, neurosurgeons considered SRS as a one-time, single session procedure. However therapeutic advances and a better understanding of the clinical response to SRS have caused a renewal of interest in a variety of re-irradiation scenarios; including re-irradiation of the same target after prior SRS, SRS treatments after prior broad-field radiation, hypofractionated treatments, and volume-staged treatments. Re-irradiation may in some cases require even greater effort towards minimizing treatment uncertainties as compared to one-time-only treatments. Gamma Knife radiosurgery (GKRS) has evolved over time in ways that directly supports many re-irradiation scenarios while helping to minimize overall procedural uncertainty.
Collapse
|
42
|
Sarkar B, Munshi A, Ganesh T, Manikandan A, Krishnankutty S, Chitral L, Pradhan A, Kalyan Mohanti B. Technical Note: Rotational positional error corrected intrafraction set-up margins in stereotactic radiotherapy: A spatial assessment for coplanar and noncoplanar geometry. Med Phys 2019; 46:4749-4754. [PMID: 31495931 DOI: 10.1002/mp.13810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The aim of this study is to calculate setup margin based on six-dimensional (6D) corrected residual positional errors from kV cone beam computed tomography (CBCT) and from intrafraction projection kV imaging in coplanar and in noncoplanar couch positions in stereotactic radiotherapy. METHODS Six dimensional positional corrections were carried out before patient treatments, using a robotic couch and CBCT matching. A CBCT and stereoscopic ExacTrac image were acquired post-table position correction. Further, a series of intrafraction ExacTrac images were obtained for the variable couch position. Translational and rotational errors were identified as lateral (X), longitudinal (Y), vertical (Z); roll (Ɵ°), pitch (Φ°) and yaw (Ψ°). A total of 699 intrafraction image sets (361 coplanar and 338 noncoplanar) for 51 SRS/SRT patients were analysed. Rotational errors were corrected in terms of translational coordinates. Residual set-up margins were calculated from CBCT shifts. ExacTrac shifts give residual + intrafraction setup margins as a function of coplanar and noncoplanar couch positions. RESULTS The average residual positional error obtained from CBCT in X, Y, Z, Ɵ, Φ, Ψ were 0.1 ± 0.4 mm, 0.0 ± 0.6 mm, 0.0 ± 0.5 mm, 0.2 ± 0.8°, 0.1 ± 0.6° and -0.1 ± 0.7° respectively. For ExacTrac, the shits were -0.5 ± 0.9 mm, -0.0 ± 1mm, -0.6 ± 1.0mm, 0.4 ± 0.9°, -0.2 ± 0.6°, and -0.0 ± 0.8°. CBCT calculated linear setup margins in X, Y, Z direction were 0.5, 1.2, and 1 mm respectively. ExacTrac yielded coplanar and noncoplanar linear setup margins were 1.2, 1.3, 1.5, 1.4, 1.5, and 2.1 mm respectively. CONCLUSION CBCT-based gross residual set-up margin is equal to 1 mm. ExacTrac calculated residual plus intrafraction setup margin falls within a 2 mm range; attributed to intrafraction patient movement, table position inaccuracies, and poor image fusion in noncoplanar geometry. There could be variations in the required additional margin between centers and between machines, which require further studies.
Collapse
Affiliation(s)
- Biplab Sarkar
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, 110070, India
| | - Anusheel Munshi
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, 110070, India
| | - Tharmarnadar Ganesh
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, 110070, India
| | - Arjunan Manikandan
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, 600096, Tamil Nadu, India
| | - Saneg Krishnankutty
- Department of Radiation Oncology, Fortis Memorial Research Institute, Gurgaon, 122002, Haryana, India
| | - Latika Chitral
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, 110070, India
| | - Anirudh Pradhan
- Department of Mathematics, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Bidhu Kalyan Mohanti
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, 110070, India
| |
Collapse
|
43
|
Hanna SA, Mancini A, Dal Col AH, Asso RN, Neves-Junior WFP. Frameless Image-Guided Radiosurgery for Multiple Brain Metastasis Using VMAT: A Review and an Institutional Experience. Front Oncol 2019; 9:703. [PMID: 31440464 PMCID: PMC6693418 DOI: 10.3389/fonc.2019.00703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
We undertook a structured review of stereotactic radiosurgery (SRS) using linear particle accelerator (linac) equipment, focusing on volumetric modulated arc therapy (VMAT) technology, and frameless image-guided radiotherapy (IGRT), for the treatment of brain metastases. We analyzed the role of linac SRS and its clinical applications, exploring stereotactic localization. Historically, there was a shift from fixed frames to frameless approaches, moving toward less invasive treatments. Thus, we reviewed the concepts of VMAT for multiple-target applications, comparing its dosimetric and technical features to those of other available techniques. We evaluated relevant technical issues and discussed the planning parameters that have gained worldwide acceptance to date. Thus, we reviewed the current literature on the clinical aspects of SRS, especially its main indications and how the advantages of VMAT may achieve clinical benefits in such scenarios. Finally, we reported our institutional results on IGRT-VMAT for SRS treatments for patients with multiple brain metastases.
Collapse
Affiliation(s)
| | - Anselmo Mancini
- Radiation Oncology Department, Sírio-Libanês Hospital, São Paulo, Brazil
| | | | - Rie Nadia Asso
- Radiation Oncology Department, Sírio-Libanês Hospital, São Paulo, Brazil
| | | |
Collapse
|
44
|
Aliotta E, Nourzadeh H, Siebers J. Quantifying the dosimetric impact of organ-at-risk delineation variability in head and neck radiation therapy in the context of patient setup uncertainty. Phys Med Biol 2019; 64:135020. [PMID: 31071687 DOI: 10.1088/1361-6560/ab205c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to quantify the potential dosimetric impact of delineation variability (DV) in head and neck radiation therapy (RT) when inherent patient setup variability (SV) is also considered. The impact of DV was assessed by generating plans with multiple structure sets, cross-evaluating them, including SV, across sets, and determining P PQM: the probability of achieving organ-specific plan quality metrics (PQM). DV was incorporated by: (1) using multiple organ at risk (OAR) structure sets delineated by independent manual observers; and (2) randomly perturbing manually generated OARs to generate alternatives with varying levels of uncertainty (low, medium, and high DV). For each structure set, independent VMAT plans were auto-generated to meet clinical PQMs. Each plan was cross-evaluated using OARs from multiple structure sets with simulated SV including per-fraction random (σ s) and per-treatment-course systematic (Σs) setup errors. The dosimetric impact of DV was assessed by examining P PQM with and without SV/DV. Clinically significant differences were defined by those that exceeded differences caused by a +2% output variation. Without including SV, simulated DV at the medium level reduced P PQM by an average of 5.5% for all OARs with D max PQMs. This reduction decreased to 2.8% for SV = 2 mm and 2.4% for SV = 4 mm (the average P PQM reduction due to 2% output errors was 2.7%). For OARs with D mean PQMs, the average P PQM reduction was 0.9% for SV = 0 and ⩽0.1% for SV ⩾ 2 mm. The effect of DV was larger for OARs that directly abutted a target volume than for those that did not. These trends were also observed with real DV from multi-observer delineations. The dosimetric impact of DV appeared to decrease when random and systematic SV was considered. Sensitivity to DV was affected by OAR objective type (i.e. D mean versus D max objectives) as well as distance from the target volume.
Collapse
Affiliation(s)
- Eric Aliotta
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, United States of America. Radiological Physics, University of Virginia, 1335 Lee St, Box 800375, Charlottesville, VA 22908, United States of America. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
45
|
Dekker J, Rozema T, Böing-Messing F, Garcia M, Washington D, de Kruijf W. Whole-brain radiation therapy without a thermoplastic mask. Phys Imaging Radiat Oncol 2019; 11:27-29. [PMID: 33458273 PMCID: PMC7807553 DOI: 10.1016/j.phro.2019.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022] Open
Abstract
The aim of the study was to investigate the clinical feasibility of whole-brain radiation therapy without a thermoplastic mask. Positioning and intra-fractional motion monitoring were performed using optical surface scanning. The motion threshold was 3 mm/3 degrees. The group mean vector deviation was 1.1 mm. The roll was larger compared to pitch and rotation. Two patients out of 30 were not able to lie still. All other patients completed their treatment successfully without a mask. With a probability of success of 93%, we concluded that irradiation without a mask is a clinically feasible method.
Collapse
Affiliation(s)
- Janita Dekker
- Instituut Verbeeten, Klinische fysica & instrumentatie, Postbus 90120, 5000 LA Tilburg, The Netherlands
| | - Tom Rozema
- Helios Radiotherapie B.V., Postbus 90120, 5000 LA Tilburg, The Netherlands
| | - Florian Böing-Messing
- Jheronimus Academy of Data Science, Sint Janssingel 92, 5211 DA ’s-Hertogenbosch, The Netherlands
- Tilburg University, Department of Methodology and Statistics, Postbus 90153, 5000 LE Tilburg, The Netherlands
| | - Martha Garcia
- Instituut Verbeeten, Radiotherapie, Postbus 90120, 5000 LA Tilburg, The Netherlands
| | - Deniece Washington
- Instituut Verbeeten, Radiotherapie, Postbus 90120, 5000 LA Tilburg, The Netherlands
| | - Willy de Kruijf
- Instituut Verbeeten, Klinische fysica & instrumentatie, Postbus 90120, 5000 LA Tilburg, The Netherlands
| |
Collapse
|
46
|
Garcia MA, Anwar M, Yu Y, Duriseti S, Merritt B, Nakamura J, Hess C, Theodosopoulos PV, McDermott M, Sneed PK, Braunstein SE. Brain metastasis growth on preradiosurgical magnetic resonance imaging. Pract Radiat Oncol 2018; 8:e369-e376. [DOI: 10.1016/j.prro.2018.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/16/2018] [Accepted: 06/04/2018] [Indexed: 12/01/2022]
|
47
|
Kamezawa H, Arimura H, Arakawa H, Kameda N. INVESTIGATION OF A PRACTICAL PATIENT DOSE INDEX FOR ASSESSMENT OF PATIENT ORGAN DOSE FROM CONE-BEAM COMPUTED TOMOGRAPHY IN RADIATION THERAPY USING A MONTE CARLO SIMULATION. RADIATION PROTECTION DOSIMETRY 2018; 181:333-342. [PMID: 29506291 DOI: 10.1093/rpd/ncy032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to investigate a practical patient dose index for assessing the patient organ dose from a cone-beam computed tomography (CBCT) scan by comparing eight dose indices, i.e. CTDI100, CTDIIEC, CTDI∞, midpoint doses f(0)PMMA for a cylindrical polymethyl methacrylate (PMMA) phantom, f(0)Ap for an anthropomorphic phantom and f(0)Pat for a prostate cancer patient, as well as the conventional size specific dose estimations (SSDEconv) and modified SSDE (SSDEmod), with organ dose for the prostate (ODprost) obtained via Monte Carlo (MC) simulation. The ODprost was the reference dose used to find the practical dose index at the center of the pelvic region of a prostate cancer patient. The smallest error rate with respect to the ODprost of 19.3 mGy (reference) among eight dose indices was 5% for f(0)Pat. The practical patient dose index was the f(0)Pat, which showed the smallest error with respect to the reference dose.
Collapse
Affiliation(s)
- H Kamezawa
- Department of Radiological Technology, Faculty of Fukuoka Medical Technology, Teikyo University, 6-22 Misaki-machi, Omuta, Fukuoka, Japan
| | - H Arimura
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan
| | - H Arakawa
- Department of Radiological Technology, Faculty of Fukuoka Medical Technology, Teikyo University, 6-22 Misaki-machi, Omuta, Fukuoka, Japan
| | - N Kameda
- Department of Radiology, Fujimoto General Hospital, 17-1, Hayasuzu-cho, Miyakonojo, Miyazaki, Japan
| |
Collapse
|
48
|
Kang CL, Liu SC, Wang JC, Liao KC, Huang YJ, Fang FM, Liao TI, Juan KJ, Huang CC. Comparison of Skull Motions in Six Degrees of Freedom Between Two Head Supports During Frameless Radiosurgery by CyberKnife. Front Oncol 2018; 8:359. [PMID: 30234018 PMCID: PMC6131575 DOI: 10.3389/fonc.2018.00359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022] Open
Abstract
Introduction: Maintaining immobilization to minimize skull motion is important during frameless radiosurgery. This study aimed to compare the intrafractional skull motions between two head supports. Methods: With 6D skull tracking system, 4,075 image records from 45 patients receiving radiosurgery by CyberKnife were obtained. Twenty-three patients used TIMO head supports (CIVCO) (Group A) and twenty-two patients used Silverman head supports (CIVCO) with MoldCare cushions (ALCARE) (Group B). The skull motions in X (superior-inferior), Y (right-left), Z (anterior-posterior) axes, 3D (three-dimensional) vector, Roll, Pitch and Yaw between the two groups were compared and the margins of planning target volume were estimated. Results: The translational motions in Group A were similar in three axes at initial but became different after 10 min, and those in Group B were less prominent in the Y axis. The rotational errors in Group A were most obvious in Yaw, but those in Group B were stationary in three axes. The motions in the X axis, 3D vector, Pitch and Yaw in Group B were significantly smaller than those in Group A; conversely, the motions in the Z axis in Group B were larger. To cover the 95% confidence intervals, margins of 0.77, 0.79, and 0.40 mm in the X, Y, and Z axes, respectively, were needed in Group A, and 0.69, 0.50, and 0.51 mm were needed in Group B. Conclusions: Both head supports could provide good immobilization during the frameless radiosurgery. Silverman head support with MoldCare cushion was better than TIMO head support in the superior-inferior direction, 3D vector, Pitch and Yaw axes, but worse in the anterior-posterior direction.
Collapse
Affiliation(s)
- Chen-Lin Kang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Information Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Shyh-Chang Liu
- Department of Information Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Jui-Chu Wang
- Department of Anatomical Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuan-Cho Liao
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Jie Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsung-I Liao
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Jung Juan
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Chieh Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
49
|
Lim TK, Kim WK, Yoo CJ, Kim EY, Kim MJ, Yee GT. Fractionated Stereotactic Radiosurgery for Brain Metastases Using the Novalis Tx® System. J Korean Neurosurg Soc 2018; 61:525-529. [PMID: 29991112 PMCID: PMC6046567 DOI: 10.3340/jkns.2018.0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/01/2018] [Indexed: 11/27/2022] Open
Abstract
Objective To evaluate the efficacy of fractionated stereotactic radiosurgery (FSRS) performed using the Novalis Tx® system (BrainLAB AG, Feldkirchen, Germany; Varian Medical Systems, Palo Alto, CA, USA) for brain metastases. Methods Between March 2013 and July 2016, 23 brain metastases patients were admitted at a single institute. Twenty-nine lesions too large for single session stereotactic radiosurgery or located in the vicinity of eloquent structures were treated by FSRS. Based on the results obtained, we reviewed the efficacy and toxicity of FSRS for the treatment of brain metastases. Results The most common lesion origin was lung (55%) followed by breast (21%). Median overall survival was 10.0 months (95% confidence interval [CI], 4.9–15.0), and median progression-free survival was 10.0 months (95% CI, 2.1–13.9). Overall survival rates at 1 and 2 years were 58.6% and 36.0%, respectively. Local recurrence and neurological complications affecting morbidity each occurred in two cases. Conclusion FSRS using the Novalis-Tx® system would appear to be an effective, safe noninvasive treatment modality for large and eloquently situated brain metastases. Further investigation is required on a larger number of patients.
Collapse
Affiliation(s)
- Tae Kyoo Lim
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Woo Kyung Kim
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Chan Jong Yoo
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Eun Young Kim
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Myeong Jin Kim
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Gi Taek Yee
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
50
|
Jeon SH, Kim JH. Positional uncertainties of cervical and upper thoracic spine in stereotactic body radiotherapy with thermoplastic mask immobilization. Radiat Oncol J 2018; 36:122-128. [PMID: 29983032 PMCID: PMC6074070 DOI: 10.3857/roj.2017.00591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/07/2018] [Indexed: 01/19/2023] Open
Abstract
Purpose To investigate positional uncertainty and its correlation with clinical parameters in spine stereotactic body radiotherapy (SBRT) using thermoplastic mask (TM) immobilization. Materials and Methods A total of 21 patients who underwent spine SBRT for cervical or upper thoracic spinal lesions were retrospectively analyzed. All patients were treated with image guidance using cone beam computed tomography (CBCT) and 4 degrees-of-freedom (DoF) positional correction. Initial, pre-treatment, and post-treatment CBCTs were analyzed. Setup error (SE), pre-treatment residual error (preRE), post-treatment residual error (postRE), intrafraction motion before treatment (IM1), and intrafraction motion during treatment (IM2) were determined from 6 DoF manual rigid registration. Results The three-dimensional (3D) magnitudes of translational uncertainties (mean ± 2 standard deviation) were 3.7±3.5 mm (SE), 0.9±0.9 mm (preRE), 1.2±1.5 mm (postRE), 1.4±2.4 mm (IM1), and 0.9±1.0 mm (IM2), and average angular differences were 1.1°±1.2° (SE), 0.9°±1.1° (preRE), 0.9°±1.1° (postRE), 0.6°±0.9° (IM1), and 0.5°±0.5° (IM2). The 3D magnitude of SE, preRE, postRE, IM1, and IM2 exceeded 2 mm in 18, 0, 3, 3, and 1 patients, respectively. No association were found between all positional uncertainties and body mass index, pain score, and treatment location (p > 0.05, Mann-Whitney test). There was a tendency of intrafraction motion to increase with overall treatment time; however, the correlation was not statistically significant (p > 0.05, Spearman rank correlation test). Conclusion In spine SBRT using TM immobilization, CBCT and 4 DoF alignment correction, a minimum residual translational uncertainty was 2 mm. Shortening overall treatment time and 6 DoF positional correction may further reduce positional uncertainties.
Collapse
Affiliation(s)
- Seung Hyuck Jeon
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | - Jin Ho Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|