1
|
Pérez-Romasanta LA, González-Del Portillo E, Rodríguez-Gutiérrez A, Matías-Pérez Á. Stereotactic Radiotherapy for Hepatocellular Carcinoma, Radiosensitization Strategies and Radiation-Immunotherapy Combination. Cancers (Basel) 2021; 13:cancers13020192. [PMID: 33430362 PMCID: PMC7825787 DOI: 10.3390/cancers13020192] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Radiotherapy is rapidly turning into a crucial component of multidisciplinary treatment for liver cancer because many patients are not surgical treatment candidates. Thanks to technical developments, radiotherapy have achieved high precision treatments, making it possible to eliminate tumor cells without severe damage to the liver and other organs. Stereotactic Body Radiation Therapy is an advanced radiotherapy technique able to eradicate malignant tumors wherever they are located in properly selected patients. The best use of radiotherapy, the most fruitful radiotherapy strategy, and the best way to combine it with other treatments for liver cancer are largely unknown. Radiosensitizers, agents that can potentiate radiotherapy, could broaden the radiotherapeutic landscape. Radiotherapy potentiation can be achieved with diverse treatments, not only drugs but also nanoparticles. In order to clear up the performance of radiotherapy in liver cancer management in the future and the best ways to potentiate its effects, considerable medical research is needed. Abstract Stereotactic body radiotherapy (SBRT) is an emerging ablative modality for hepatocellular carcinoma (HCC). Most patients with HCC have advanced disease at the time of diagnosis, and therefore, are not candidates for definitive-intent therapies such as resection or transplantation. For this reason, various alternative local and regional therapies have been used to prevent disease progression, palliate symptoms, and delay liver failure. Stereotactic body radiation therapy is a non-invasive technique of delivering ablative doses of radiation to tumors while sparing normal or non-tumor hepatic tissue. Incorporation of SBRT in multidisciplinary HCC management is gradual, initially applied when other liver-directed therapies have failed or are contraindicated, and tried in combination with other locoregional or systemic therapies for more unfavorable conditions by more experienced teams. In order to improve SBRT therapeutic ratio, there has been much interest in augmenting the effect of radiation on tumors by combining it with chemotherapy, molecularly targeted therapeutics, nanoparticles, and immunotherapy. This review aims to synthesize available evidence to evaluate the clinical feasibility and efficacy of SBRT for HCC, and to explore novel radio-potentiation concepts by combining SBRT with novel therapeutics. It is expected that those approaches would result in improved therapeutic outcomes, even though many questions remain with regard to the optimal way to assemble treatments. Further trials are needed to evaluate and consolidate these promising therapies for HCC.
Collapse
|
2
|
Vinorelbine Augments Radiotherapy in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12040872. [PMID: 32260169 PMCID: PMC7226273 DOI: 10.3390/cancers12040872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
There is a need to improve the effectiveness of radiotherapy (RT) in hepatocellular carcinoma (HCC). Therefore, the purpose of this study was to explore the efficacy and toxicity of the anti-microtubule agent Vinorelbine as a radiosensitizer in HCC. The radio sensitivity of 16 HCC patient-derived xenograft (PDX) models was determined by quantifying the survival fraction following irradiation in vitro, and Vinorelbine radio sensitization was determined by clonogenic assay. Ectopic HCC xenografts were treated with a single dose of 8 Gy irradiation and twice-weekly 3 mg/kg Vinorelbine. Tumor growth and changes in the proteins involved in DNA repair, angiogenesis, tumor cell proliferation, and survival were assessed, and the 3/16 (18.75%), 7/16 (43.75%), and 6/16 (37.5%) HCC lines were classified as sensitive, moderately sensitive, and resistant, respectively. The combination of RT and Vinorelbine significantly inhibited tumor growth, DNA repair proteins, angiogenesis, and cell proliferation, and promoted more apoptosis compared with RT or Vinorelbine treatment alone. Vinorelbine improved HCC tumor response to standard irradiation with no increase in toxicity. HCC is prevalent in less developed parts of the world and is mostly unresectable on presentation. Vinorelbine and conventional radiotherapy are cost-effective, well-established modalities of cancer treatment that are readily available. Therefore, this strategy can potentially address an unmet clinical need, warranting further investigation in early-phase clinical trials.
Collapse
|
3
|
Liu K, Zhang X, Xu W, Chen J, Yu J, Gamble JR, McCaughan GW. Targeting the vasculature in hepatocellular carcinoma treatment: Starving versus normalizing blood supply. Clin Transl Gastroenterol 2017; 8:e98. [PMID: 28617447 PMCID: PMC5518951 DOI: 10.1038/ctg.2017.28] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Traditional treatments for intermediate or advanced stage hepatocellular carcinoma (HCC) such as transarterial chemoembolization (TACE) and anti-angiogenesis therapies were developed to starve tumor blood supply. A new approach of normalizing structurally and functionally abnormal tumor vasculature is emerging. While TACE improves survival in selected patients, the resulting tumor hypoxia stimulates proliferation, angiogenesis, treatment resistance and metastasis, which limits its overall efficacy. Vessel normalization decreases hypoxia and improves anti-tumor immune infiltrate and drug delivery. Several pre-clinical agents aimed at normalizing tumor vasculature in HCC appear promising. Although anti-angiogenic agents with vessel normalizing potential have been trialed in advanced HCC with modest results, to date their primary intention had been to starve the tumor. Judicious use of anti-angiogenic therapies is required to achieve vessel normalization yet avoid excessive pruning of vessels. This balance, termed the normalization window, is yet uncharacterized in HCC. However, the optimal class, dose and schedule of vascular normalization agents, alone or in combination with other therapies needs to be explored further.
Collapse
Affiliation(s)
- Ken Liu
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Centenary Institute and AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Xiang Zhang
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Weiqi Xu
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinbiao Chen
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Jun Yu
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Jennifer R Gamble
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, and University of Sydney, Sydney, New South Wales, Australia
| | - Geoffrey W McCaughan
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Fokas E, Rödel C. Targeted agents in GI radiotherapy: Clinical efficacy and side effects. Best Pract Res Clin Gastroenterol 2016; 30:537-49. [PMID: 27644903 DOI: 10.1016/j.bpg.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/26/2016] [Accepted: 05/08/2016] [Indexed: 01/31/2023]
Abstract
Approximately 50% of all patients with cancer receive radiotherapy (RT) at some point during their treatment. Despite the advent of modern imaging and advances in planning and delivering highly-conformal and precise RT, further dose escalation to improve clinical outcome is often limited by the potential side-effects to adjacent tissues. Addition of chemotherapy to radiotherapy (CRT) has led to significant clinical improvements in many gastrointestinal malignancies but at the expense of increased toxicity as most chemotherapy drugs lack specificity. Targeted agents modulate specific biological pathways and can potentially enhance RT efficacy. However, so far, the majority of clinical studies incorporating targeted agents into RT and CRT have produced disappointing results in gastrointestinal malignancies. Also, we lack validated biomarkers and methods for monitoring and predicting the efficacy of these agents when combined with RT/CRT. In the present article, we will review the most important targeted therapies, and examine the efficacy and toxicity of these agents when combined with RT/CRT in gastrointestinal malignancies. The shortcomings as well as future challenges and perspectives for the successful use of these compounds with RT/CRT in future trials will also be outlined.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK; Department of Radiotherapy and Oncology, University of Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK) partner site: Frankfurt, Germany.
| | - Claus Rödel
- Department of Radiotherapy and Oncology, University of Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK) partner site: Frankfurt, Germany
| |
Collapse
|
5
|
Ohri N, Dawson LA, Krishnan S, Seong J, Cheng JC, Sarin SK, Kinkhabwala M, Ahmed MM, Vikram B, Coleman CN, Guha C. Radiotherapy for Hepatocellular Carcinoma: New Indications and Directions for Future Study. J Natl Cancer Inst 2016; 108:djw133. [PMID: 27377923 DOI: 10.1093/jnci/djw133] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/18/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide; its incidence is increasing in the United States. Depending on disease extent and underlying liver status, patients may be treated with local, locoregional, and/or systemic therapy. Recent data indicates that radiotherapy (RT) can play a meaningful role in the management of HCC. Here, we review published experiences using RT for HCC, including the use of radiosensitizers and stereotactic RT. We discuss methods for performing preclinical studies of RT for HCC and biomarkers of response. As a part of the HCC Working Group, an informal committee of the National Cancer Institute's Radiation Research Program, we suggest how RT should be implemented in the management of HCC and identify future directions for the study of RT in HCC.
Collapse
Affiliation(s)
- Nitin Ohri
- Department of Radiation Oncology (NO, CG) and Montefiore-Einstein Center for Transplantation (MK), Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY; Department of Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, Ontario, Canada (LAD); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SK); Department of Radiation Oncology, Yonsei University Hospital, Seoul, North Korea (JS); Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (JCC); Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India (SKS); Molecular Radiation Therapeutics Branch (MMA) and Clinical Radiation Oncology Branch (BV), Radiation Research Program (CNC), National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura A Dawson
- Department of Radiation Oncology (NO, CG) and Montefiore-Einstein Center for Transplantation (MK), Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY; Department of Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, Ontario, Canada (LAD); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SK); Department of Radiation Oncology, Yonsei University Hospital, Seoul, North Korea (JS); Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (JCC); Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India (SKS); Molecular Radiation Therapeutics Branch (MMA) and Clinical Radiation Oncology Branch (BV), Radiation Research Program (CNC), National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sunil Krishnan
- Department of Radiation Oncology (NO, CG) and Montefiore-Einstein Center for Transplantation (MK), Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY; Department of Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, Ontario, Canada (LAD); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SK); Department of Radiation Oncology, Yonsei University Hospital, Seoul, North Korea (JS); Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (JCC); Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India (SKS); Molecular Radiation Therapeutics Branch (MMA) and Clinical Radiation Oncology Branch (BV), Radiation Research Program (CNC), National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jinsil Seong
- Department of Radiation Oncology (NO, CG) and Montefiore-Einstein Center for Transplantation (MK), Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY; Department of Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, Ontario, Canada (LAD); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SK); Department of Radiation Oncology, Yonsei University Hospital, Seoul, North Korea (JS); Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (JCC); Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India (SKS); Molecular Radiation Therapeutics Branch (MMA) and Clinical Radiation Oncology Branch (BV), Radiation Research Program (CNC), National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jason C Cheng
- Department of Radiation Oncology (NO, CG) and Montefiore-Einstein Center for Transplantation (MK), Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY; Department of Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, Ontario, Canada (LAD); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SK); Department of Radiation Oncology, Yonsei University Hospital, Seoul, North Korea (JS); Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (JCC); Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India (SKS); Molecular Radiation Therapeutics Branch (MMA) and Clinical Radiation Oncology Branch (BV), Radiation Research Program (CNC), National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Shiv K Sarin
- Department of Radiation Oncology (NO, CG) and Montefiore-Einstein Center for Transplantation (MK), Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY; Department of Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, Ontario, Canada (LAD); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SK); Department of Radiation Oncology, Yonsei University Hospital, Seoul, North Korea (JS); Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (JCC); Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India (SKS); Molecular Radiation Therapeutics Branch (MMA) and Clinical Radiation Oncology Branch (BV), Radiation Research Program (CNC), National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Milan Kinkhabwala
- Department of Radiation Oncology (NO, CG) and Montefiore-Einstein Center for Transplantation (MK), Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY; Department of Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, Ontario, Canada (LAD); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SK); Department of Radiation Oncology, Yonsei University Hospital, Seoul, North Korea (JS); Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (JCC); Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India (SKS); Molecular Radiation Therapeutics Branch (MMA) and Clinical Radiation Oncology Branch (BV), Radiation Research Program (CNC), National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mansoor M Ahmed
- Department of Radiation Oncology (NO, CG) and Montefiore-Einstein Center for Transplantation (MK), Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY; Department of Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, Ontario, Canada (LAD); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SK); Department of Radiation Oncology, Yonsei University Hospital, Seoul, North Korea (JS); Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (JCC); Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India (SKS); Molecular Radiation Therapeutics Branch (MMA) and Clinical Radiation Oncology Branch (BV), Radiation Research Program (CNC), National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Bhadrasain Vikram
- Department of Radiation Oncology (NO, CG) and Montefiore-Einstein Center for Transplantation (MK), Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY; Department of Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, Ontario, Canada (LAD); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SK); Department of Radiation Oncology, Yonsei University Hospital, Seoul, North Korea (JS); Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (JCC); Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India (SKS); Molecular Radiation Therapeutics Branch (MMA) and Clinical Radiation Oncology Branch (BV), Radiation Research Program (CNC), National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - C Norman Coleman
- Department of Radiation Oncology (NO, CG) and Montefiore-Einstein Center for Transplantation (MK), Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY; Department of Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, Ontario, Canada (LAD); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SK); Department of Radiation Oncology, Yonsei University Hospital, Seoul, North Korea (JS); Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (JCC); Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India (SKS); Molecular Radiation Therapeutics Branch (MMA) and Clinical Radiation Oncology Branch (BV), Radiation Research Program (CNC), National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Chandan Guha
- Department of Radiation Oncology (NO, CG) and Montefiore-Einstein Center for Transplantation (MK), Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY; Department of Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, Ontario, Canada (LAD); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SK); Department of Radiation Oncology, Yonsei University Hospital, Seoul, North Korea (JS); Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (JCC); Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India (SKS); Molecular Radiation Therapeutics Branch (MMA) and Clinical Radiation Oncology Branch (BV), Radiation Research Program (CNC), National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
6
|
Abstract
BACKGROUND During the past two decades, external-beam radiation technology has substantially changed from traditional two-dimensional to conformal three-dimensional to intensity-modulated planning and stereotactic body radiotherapy (SBRT). SUMMARY Modern techniques of radiotherapy (RT) are highly focused and capable of delivering an ablative dose to targeted hepatocellular carcinoma (HCC) tumors. SBRT is an option for selected patients with limited tumor volume and non-eligibility for other invasive treatments. Moreover, RT combined with a radiation sensitizer (RS) to increase the therapeutic ratio has shown promising results in select studies, prompting further investigation of this combination. With the undetermined role of RT in treatment guidelines and variation in patterns of treatment failure after RT in patient with HCC, useful biomarkers to guide RT decision-making and selection of patients are needed and emerging. KEY MESSAGE The objective of this review is to summarize the current RS with SBRT schemes and biomarkers for patient selection used to maximize the effect of RT on HCC.
Collapse
Affiliation(s)
- Chiao-Ling Tsai
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (ROC),Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (ROC)
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (ROC)
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (ROC),Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan (ROC),*Jason Chia-Hsien Cheng, MD, PhD, Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No.7, Chung Shan S. Rd., Zhongzheng Dist., Taipei 10002, Taiwan (ROC), Tel. +886 2 2356 2842, E-Mail
| |
Collapse
|
7
|
Ch'ang HJ. Optimal combination of antiangiogenic therapy for hepatocellular carcinoma. World J Hepatol 2015; 7:2029-40. [PMID: 26261692 PMCID: PMC4528276 DOI: 10.4254/wjh.v7.i16.2029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 02/06/2023] Open
Abstract
The success of sorafenib in prolonging survival of patients with hepatocellular carcinoma (HCC) makes therapeutic inhibition of angiogenesis a component of treatment for HCC. To enhance therapeutic efficacy, overcome drug resistance and reduce toxicity, combination of antiangiogenic agents with chemotherapy, radiotherapy or other targeted agents were evaluated. Nevertheless, the use of antiangiogenic therapy remains suboptimal regarding dosage, schedule and duration of therapy. The issue is further complicated by combination antiangiogenesis to other cytotoxic or biologic agents. There is no way to determine which patients are most likely respond to a given form of antiangiogenic therapy. Activation of alternative pathways associated with disease progression in patients undergoing antiangiogenic therapy has also been recognized. There is increasing importance in identifying, validating and standardizing potential response biomarkers for antiangiogenesis therapy for HCC patients. In this review, biomarkers for antiangiogenesis therapy including systemic, circulating, tissue and imaging ones are summarized. The strength and deficit of circulating and imaging biomarkers were further demonstrated by a series of studies in HCC patients receiving radiotherapy with or without thalidomide.
Collapse
Affiliation(s)
- Hui-Ju Ch'ang
- Hui-Ju Ch'ang, National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|
8
|
Perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging predict outcomes of hepatocellular carcinoma receiving radiotherapy with or without thalidomide. Hepatol Int 2014; 9:258-68. [PMID: 25788178 DOI: 10.1007/s12072-014-9557-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/21/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND To correlate between signal parameters using dynamic contrast-enhanced magnetic resonance imaging (DCEMRI) and outcomes of hepatocellular carcinoma (HCC) receiving radiotherapy with or without concomitant thalidomide. METHODS DCEMRI was performed in advanced HCC patients undergoing radiotherapy with or without concomitant thalidomide. Initial first-pass enhancement slopes (slope) and peak enhancement ratios (peak) were measured over an operator-defined region of interest over tumor and non-tumor liver parenchyma. The perfusion parameters were correlated with clinical outcomes. The study was registered with ClinicalTrials.gov. (identifier NCT00155272). RESULTS Forty-three patients were evaluable. There were 18 partial responses (PRs), 5 minimal responses (MRs), 17 stable diseases (SDs), and 3 progressive diseases (PDs). Baseline perfusion parameters as well as slope at 14 days of radiotherapy were higher in patients with PR or MR compared to SD or PD (0.81 ± 0.29 vs. 0.49 ± 0.34, p < 0.01; 0.39 ± 0.15 vs. 0.28 ± 0.16, p = 0.02; 0.97 ± 0.38 vs. 0.46 ± 0.26, p < 0.01; respectively). Multivariate analysis revealed perfusion parameters over liver parenchyma, but not over tumor, and independently predicted progression-free and overall survival (182 ± 33 vs. 105 ± 26 days, p = 0.01; 397 ± 111 vs. 233 ± 19 days, p = 0.001 respectively). For 22 patients receiving concomitant thalidomide, the perfusion parameters were not significantly different from those receiving radiotherapy alone. CONCLUSIONS Signal parameters of DCEMRI over tumor and liver parenchyma correlated with tumor response and survival, respectively, in HCC patients receiving radiotherapy.
Collapse
|
9
|
Chang X, Zhu Y, Shi C, Stewart AK. Mechanism of immunomodulatory drugs' action in the treatment of multiple myeloma. Acta Biochim Biophys Sin (Shanghai) 2014; 46:240-53. [PMID: 24374776 DOI: 10.1093/abbs/gmt142] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although immunomodulatory drugs (IMiDs), such as thalidomide, lenalidomide, and pomalidomide, are widely used in the treatment of multiple myeloma (MM), the molecular mechanism of IMiDs' action is largely unknown. In this review, we will summarize recent advances in the application of IMiDs in MM cancer treatment as well as their effects on immunomodulatory activities, anti-angiogenic activities, intervention of cell surface adhesion molecules between myeloma cells and bone marrow stromal cells, anti-inflammatory activities, anti-proliferation, pro-apoptotic effects, cell cycle arrest, and inhibition of cell migration and metastasis. In addition, the potential IMiDs' target protein, IMiDs' target protein's functional role, and the potential molecular mechanisms of IMiDs resistance will be discussed. We wish, by presentation of our naive discussion, that this review article will facilitate further investigation in these fields.
Collapse
Affiliation(s)
- Xiubao Chang
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | | | | | | |
Collapse
|
10
|
Liu YC, Chiang IT, Hsu FT, Hwang JJ. Using NF-κB as a molecular target for theranostics in radiation oncology research. Expert Rev Mol Diagn 2014; 12:139-46. [DOI: 10.1586/erm.12.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Ree AH, Hollywood D. Design and conduct of early-phase radiotherapy trials with targeted therapeutics: lessons from the PRAVO experience. Radiother Oncol 2013; 108:3-16. [PMID: 23830196 DOI: 10.1016/j.radonc.2013.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 05/28/2013] [Accepted: 06/10/2013] [Indexed: 12/28/2022]
Abstract
New strategies to facilitate the improvement of physical and integrated biological optimization of high-precision treatment protocols are an important priority for modern radiation oncology. From a clinical perspective, as knowledge accumulates from molecular radiobiology, there is a complex and exciting opportunity to investigate novel approaches to rational patient treatment stratification based on actionable tumor targets, together with the appropriate design of next-generation early-phase radiotherapy trials utilizing targeted therapeutics, to formally evaluate relevant clinical and biomarker endpoints. A unique aspect in the development pathway of systemic agents with presumed radiosensitizing activity will also be the need for special attention on patient eligibility and the rigorous definition of radiation dose-volume relationships and potential dose-limiting toxicities. Based on recent experience from systematically investigating histone deacetylase inhibitors as radiosensitizing agents, from initial studies in preclinical tumor models through the conduct of a phase I clinical study to evaluate tumor activity of the targeted agent as well as patient safety and tumor response to the combined treatment modality, this communication will summarize principles relating to early clinical evaluation of combining radiotherapy and targeted therapeutics.
Collapse
Affiliation(s)
- Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.
| | | |
Collapse
|
12
|
Tsai CL, Koong AC, Hsu FM, Graber M, Chen IS, Cheng JCH. Biomarker studies on radiotherapy to hepatocellular carcinoma. Oncology 2013; 84 Suppl 1:64-8. [PMID: 23428861 DOI: 10.1159/000345892] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Radiotherapy (RT) has been gradually integrated into the multimodality treatment for hepatocellular carcinoma (HCC). The various patterns of failure in HCC patients undergoing RT drive the need of effective biomarkers to guide treatment decisions. Limited numbers of biomarkers have been investigated in HCC, with even fewer of them for patients treated by RT. Serum or plasma biomarkers measured by enzyme-linked immunosorbent assay were the most common practice. Of particular interest are those biomarkers that are detectable early in the course of radiotherapy which correlated with ultimate clinical outcome. Functional magnetic resonance imaging (MRI) is increasingly used to evaluate the imaging pattern indicative of disease control following RT. Positron emission tomography shows that pre-RT standard uptake values associate with various types of recurrence after treatment. Proximity ligation assay (PLA) is evolving with the unique features of dual-probe identification, ligation and amplification to allow the small volume of serum/plasma samples for evaluating multiple biomarkers. We demonstrate the screening work of biomarkers by PLA with pre- and post-RT serum samples from HCC patients undergoing RT. Efforts are being made to search for the potential biomarkers for HCC patients treated by RT.
Collapse
Affiliation(s)
- Chiao-Ling Tsai
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
13
|
Stewart EE, Sun H, Chen X, Schafer PH, Chen Y, Garcia BM, Lee TY. Effect of an angiogenesis inhibitor on hepatic tumor perfusion and the implications for adjuvant cytotoxic therapy. Radiology 2012; 264:68-77. [PMID: 22627603 DOI: 10.1148/radiol.12110674] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To determine whether dynamic contrast material-enhanced (DCE) computed tomography (CT) can help identify hepatic tumor perfusion response to vascular remodeling induced by antiangiogenesis treatment in a rabbit model. MATERIALS AND METHODS The study was approved by the Animal Use Subcommittee of the University Council on Animal Care. DCE CT hepatic perfusion measurements were performed in the livers of 20 rabbits implanted with VX2 carcinoma. Vascular remodeling was induced with thalidomide dissolved in dimethyl sulfoxide and sterile water, starting at a tumor diameter of 0.7 cm±0.1 and continuing until metastatic lung nodules were observed. The control group (n=8) was given an equivalent volume of the vehicle. The therapy group was subdivided into animals that survived for more than 24 days without lung metastasis (responder group, n=5) or those that survived for less than 24 days (nonresponder group, n=7). Data were analyzed with the Kruskal-Wallis or Friedman rank test and reported as medians and interquartile ranges. RESULTS DCE CT depicted differential perfusion change within the therapy group after treatment. By day 4, hepatic blood volume (HBV) in the responder group decreased by 29.2% (-32.5% to -11.8%) relative to that before treatment and was significantly different from that in the nonresponder (P=.048) and control (P=.011) groups, where HBV remained stable. By day 8, hepatic artery blood flow decreased by 50.0% (-59.08% to -21.05%) relative to that before treatment in the responder group and was significantly different from that in the nonresponder and control groups (P=.030 for both), which remained stable at -3.5% (-8.5% to 28.7%, P=.50) and -10.0% (-33.8% to 10.4%, P=.48), respectively. CONCLUSION DCE CT can help differentiate responders from nonresponders by their early differential perfusion response to antiangiogenesis therapy.
Collapse
|
14
|
Niyazi M, Maihoefer C, Krause M, Rödel C, Budach W, Belka C. Radiotherapy and "new" drugs-new side effects? Radiat Oncol 2011; 6:177. [PMID: 22188921 PMCID: PMC3266653 DOI: 10.1186/1748-717x-6-177] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 12/21/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Targeted drugs have augmented the cancer treatment armamentarium. Based on the molecular specificity, it was initially believed that these drugs had significantly less side effects. However, currently it is accepted that all of these agents have their specific side effects. Based on the given multimodal approach, special emphasis has to be placed on putative interactions of conventional cytostatic drugs, targeted agents and other modalities. The interaction of targeted drugs with radiation harbours special risks, since the awareness for interactions and even synergistic toxicities is lacking. At present, only limited is data available regarding combinations of targeted drugs and radiotherapy. This review gives an overview on the current knowledge on such combined treatments. MATERIALS AND METHODS Using the following MESH headings and combinations of these terms pubmed database was searched: Radiotherapy AND cetuximab/trastuzumab/panitumumab/nimotuzumab, bevacizumab, sunitinib/sorafenib/lapatinib/gefitinib/erlotinib/sirolimus, thalidomide/lenalidomide as well as erythropoietin. For citation crosscheck the ISI web of science database was used employing the same search terms. RESULTS Several classes of targeted substances may be distinguished: Small molecules including kinase inhibitors and specific inhibitors, antibodies, and anti-angiogenic agents. Combination of these agents with radiotherapy may lead to specific toxicities or negatively influence the efficacy of RT. Though there is only little information on the interaction of molecular targeted radiation and radiotherapy in clinical settings, several critical incidents are reported. CONCLUSIONS The addition of molecular targeted drugs to conventional radiotherapy outside of approved regimens or clinical trials warrants a careful consideration especially when used in conjunction in hypo-fractionated regimens. Clinical trials are urgently needed in order to address the open question in regard to efficacy, early and late toxicity.
Collapse
Affiliation(s)
- Maximilian Niyazi
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 München, Germany
| | - Cornelius Maihoefer
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 München, Germany
| | - Mechthild Krause
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Claus Rödel
- Klinik für Strahlentherapie und Onkologie, Johann Wolfgang Goethe Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Wilfried Budach
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Heinrich Heine Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Claus Belka
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 München, Germany
| |
Collapse
|
15
|
Rehman W, Arfons LM, Lazarus HM. The rise, fall and subsequent triumph of thalidomide: lessons learned in drug development. Ther Adv Hematol 2011; 2:291-308. [PMID: 23556097 PMCID: PMC3573415 DOI: 10.1177/2040620711413165] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Perhaps no other drug in modern medicine rivals the dramatic revitalization of thalidomide. Originally marketed as a sedative, thalidomide gained immense popularity worldwide among pregnant women because of its effective anti-emetic properties in morning sickness. Mounting evidence of human teratogenicity marked a dramatic fall from grace and led to widespread social, legal and economic ramifications. Despite its tragic past thalidomide emerged several decades later as a novel and highly effective agent in the treatment of various inflammatory and malignant diseases. In 2006 thalidomide completed its remarkable renaissance becoming the first new agent in over a decade to gain approval for the treatment of plasma cell myeloma. The catastrophic collapse yet subsequent revival of thalidomide provides important lessons in drug development. Never entirely abandoned by the medical community, thalidomide resurfaced as an important drug once the mechanisms of action were further studied and better understood. Ongoing research and development of related drugs such as lenalidomide now represent a class of irreplaceable drugs in hematological malignancies. Further, the tragedies associated with this agent stimulated the legislation which revamped the FDA regulatory process, expanded patient informed consent procedures and mandated more transparency from drug manufacturers. Finally, we review recent clinical trials summarizing selected medical indications for thalidomide with an emphasis on hematologic malignancies. Herein, we provide a historic perspective regarding the up-and-down development of thalidomide. Using PubMed databases we conducted searches using thalidomide and associated keywords highlighting pharmacology, mechanisms of action, and clinical uses.
Collapse
Affiliation(s)
- Waqas Rehman
- Department of Medicine, Division of Hematology-Oncology, Case Comprehensive Cancer Center, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Lisa M. Arfons
- Department of Medicine, Division of Hematology/Oncology, Louis Stokes Cleveland VAMC, Cleveland, OH, USA
| | - Hillard M. Lazarus
- Department of Medicine, University Hospitals Case Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|