1
|
Ge C, Wang H, Chen K, Sun W, Li H, Shi Y. Effect of plan complexity on the dosimetry, delivery accuracy, and interplay effect in lung VMAT SBRT with 6 MV FFF beam. Strahlenther Onkol 2022; 198:744-751. [PMID: 35486127 DOI: 10.1007/s00066-022-01940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The purpose of this study is to investigate the effect of plan complexity on the dosimetry, delivery accuracy, and interplay effect in lung stereotactic body radiation therapy (SBRT) using volumetric modulated arc therapy (VMAT) with 6 MV flattening-filter-free (FFF) beam. METHODS Twenty patients with early stage non-small cell lung cancer were included. For each patient, high-complexity (HC) and low-complexity (LC) three-partial-arc VMAT plans were optimized by adjusting the normal tissue objectives and the maximum monitoring units (MUs) for a Varian TrueBeam linear accelerator (Varian Medical Systems, Palo Alto, CA, USA) using 6 MV FFF beam. The effect of plan complexity was comprehensively evaluated in three aspects: (1) The dosimetric parameters, including CI, D2cm, R50, and dose-volume parameters of organs at risk were compared. (2) The delivery accuracy was assessed by pretreatment quality assurance for two groups of plans. (3) The motion-induced dose deviation was evaluated based on point dose measurements near the tumor center by using a programmable phantom. The standard deviation (SD) and maximum dose difference of five measurements were used to quantify the interplay effect. RESULTS The dosimetry of HC and LC plans were similar except the CI (1.003 ± 0.032 and 1.026 ± 0.043, p = 0.030) and Dmax to the spinal cord (10.6 ± 3.2 and 9.9 ± 3.0, p = 0.012). The gamma passing rates were significantly higher in LC plans for all arcs (p < 0.001). The SDs of HC and LC plans ranged from 0.5-16.6% and 0.03-2.9%, respectively, under the conditions of one-field, two-field, and three-field delivery for each plan with 0.5, 1, 2, and 3 cm motion amplitudes. The maximum dose differences of HC and LC plans were 34.5% and 9.1%, respectively. CONCLUSION For lung VMAT SBRT, LC plans have a higher delivery accuracy and a lower motion-induced dose deviation with similar dosimetry compared with HC plans.
Collapse
Affiliation(s)
- Chao Ge
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, 130021, Changchun, China
| | - Huidong Wang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, 130021, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, 130021, Changchun, China
| | - Kunzhi Chen
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, 130021, Changchun, China
| | - Wuji Sun
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, 130021, Changchun, China
| | - Huicheng Li
- Jilin Province FAW General Hospital, 130011, Changchun, China
| | - Yinghua Shi
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, 130021, Changchun, China.
| |
Collapse
|
2
|
Kolacio MŠ, Rajlić D, Radojčić M, Radojčić ĐS, Obajdin N, Debeljuh DD, Jurković S. Dosimetric accuracy of three dose calculation algorithms for radiation therapy of in situ non-small cell lung carcinoma. Rep Pract Oncol Radiother 2022; 27:86-96. [PMID: 35402037 PMCID: PMC8989458 DOI: 10.5603/rpor.a2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
Background Study determines differences in calculated dose distributions for non-small cell lung carcinoma (NSC LC) patients. NSC LC cases were investigated, being the most common lung cancer treated by radiotherapy in our clinical practice. Materials and methods A retrospective study of 15 NSCLC patient dose distributions originally calculated using standard superposition (SS) and recalculated using collapsed cone (CC ) and Monte Carlo (MC) based algorithm expressed as dose to medium in medium (MCDm) and dose to water in medium (MCDw,) was performed so that prescribed dose covers at least 99% of the gross target volume (GTV). Statistical analysis was performed for differences of conformity index (CI), heterogeneity index (HI), gradient index (GI), dose delivered to 2% of the volume (D2%), mean dose (Dmean) and percentage of volumes covered by prescribed dose (V70Gy). For organs at risk (OARs), Dmean and percentage of volume receiving 20 Gy and 5Gy (V20Gy, V5Gy) were analysed. Results Statistically significant difference for GTVs was observed between MCDw and SS algorithm in mean dose only. For planning target volumes (PTVs), statistically significant differences were observed in prescribed dose coverage for CC, MCDm and MCDw. The differences in mean CI value for the CC algorithm and mean HI value for MCDm and MCDw were statistically significant. There is a statistically significant difference in the number of MUs for MCDm and MCDw compared to SS. Conclusion All investigated algorithms succeed in managing the restrictive conditions of the clinical goals. This study shows the drawbacks of the CC algorithm compared to other algorithms used.
Collapse
Affiliation(s)
| | - David Rajlić
- Medical Physics Department, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Milan Radojčić
- Clinic for Radiotherapy and Oncology, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Đeni Smilović Radojčić
- Medical Physics Department, Clinical Hospital Center Rijeka, Rijeka, Croatia.,Department of Medical Physics and Biophysics, University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | - Nevena Obajdin
- Medical Physics Department, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Dea Dundara Debeljuh
- Medical Physics Department, Clinical Hospital Center Rijeka, Rijeka, Croatia.,Department of Medical Physics and Biophysics, University of Rijeka Faculty of Medicine, Rijeka, Croatia.,Radiology Department, General Hospital Pula, Pula, Croatia
| | - Slaven Jurković
- Medical Physics Department, Clinical Hospital Center Rijeka, Rijeka, Croatia.,Department of Medical Physics and Biophysics, University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
3
|
Vassiliev ON, Peterson CB, Chang JY, Mohan R. Monte Carlo evaluation of target dose coverage in lung stereotactic body radiation therapy with flattening filter-free beams. JOURNAL OF RADIOTHERAPY IN PRACTICE 2022; 21:81-87. [PMID: 35401050 PMCID: PMC8992779 DOI: 10.1017/s1460396920000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aim Previous studies showed that replacing conventional flattened beams (FF) with flattening filter-free (FFF) beams improves the therapeutic ratio in lung stereotactic body radiation therapy (SBRT), but these findings could have been impacted by dose calculation uncertainties caused by the heterogeneity of the thoracic anatomy and by respiratory motion, which were particularly high for target coverage. In this study, we minimized such uncertainties by calculating doses using high-spatial-resolution Monte Carlo and four-dimensional computed tomography (4DCT) images. We aimed to evaluate more reliably the benefits of using FFF beams for lung SBRT. Materials and methods For a cohort of 15 patients with early stage lung cancer that we investigated in a previous treatment planning study, we recalculated dose distributions with Monte Carlo using 4DCT images. This included fifteen FF and fifteen FFF treatment plans. Results Compared to Monte Carlo, the treatment planning system (TPS) over-predicted doses in low-dose regions of the planning target volume. For most patients, replacing FF beams with FFF beams improved target coverage, tumor control, and uncomplicated tumor control probabilities. Conclusions Monte Carlo tends to reveal deficiencies in target coverage compared to coverage predicted by the TPS. Our data support previously reported benefits of using FFF beams for lung SBRT.
Collapse
Affiliation(s)
- Oleg N Vassiliev
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y Chang
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Tjong M, Louie A, Singh A, Videtic G, Stephans K, Plumridge N, Harden S, Slotman B, Alongi F, Guckenberger M, Siva S. Single-Fraction Stereotactic Ablative Body Radiotherapy to the Lung – The Knockout Punch. Clin Oncol (R Coll Radiol) 2022; 34:e183-e194. [DOI: 10.1016/j.clon.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
|
5
|
Erickson BG, Ackerson BG, Kelsey CR, Yin FF, Adamson J, Cui Y. The effect of various dose normalization strategies when implementing linear Boltzmann transport equation dose calculation for lung SBRT planning. Pract Radiat Oncol 2022; 12:446-456. [DOI: 10.1016/j.prro.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
|
6
|
Webster M, Tanny S, Joyce N, Herman A, Chen Y, Milano M, Usuki K, Constine L, Singh D, Yeo I. New dosimetric guidelines for linear Boltzmann transport equations through comparative evaluation of stereotactic body radiation therapy for lung treatment planning. J Appl Clin Med Phys 2021; 22:115-124. [PMID: 34783438 PMCID: PMC8664148 DOI: 10.1002/acm2.13464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To propose guidelines for lung stereotactic body radiation therapy (SBRT) when using Acuros XB (AXB) equivalent to the existing ones developed for convolution algorithms such as analytic anisotropic algorithm (AAA), considering the difference between the algorithms. METHODS A retrospective analysis was performed on 30 lung patients previously treated with SBRT. The original AAA plans, which were developed using dynamic conformal arcs, were recalculated and then renormalized for planning target volume (PTV) coverage using AXB. The recalculated and renormalized plans were compared to the original plans based on V100% and V90% PTV coverage, as well as V105%, conformality index, D2cm , Rx/Dmax , R50, and Dmin . These metrics were analyzed nominally and on variations according to RTOG and NRG guidelines. Based on the relative difference between each metric in the AAA and AXB plans, new guidelines were developed. The relative differences in our cohort were compared to previously documented AAA to AXB comparisons found in the literature. RESULTS AAA plans recalculated in AXB had a significant reduction in most dosimetric metrics. The most notable changes were in V100% (4%) and the conformality index (7.5%). To achieve equal PTV coverage, AXB required an average of 1.8% more monitor units (MU). This fits well with previously published data. Applying the new guidelines to the AXB plans significantly increased the number of minor violations with no change in major violations, making them comparable to those of the original AAA plans. CONCLUSION The relative difference found between AAA and AXB for SBRT lung plans has been shown to be consistent with previous works. Based on these findings, new guidelines for lung SBRT are recommended when planning with AXB.
Collapse
Affiliation(s)
- Matthew Webster
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Sean Tanny
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Neil Joyce
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Amy Herman
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Yuhchyau Chen
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Michael Milano
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Kenneth Usuki
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Louis Constine
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Deepinder Singh
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Inhwan Yeo
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| |
Collapse
|
7
|
Sood SS, Pokhrel D, Badkul R, TenNapel M, McClinton C, Kimler B, Wang F. Correlation of clinical outcome, radiobiological modeling of tumor control, normal tissue complication probability in lung cancer patients treated with SBRT using Monte Carlo calculation algorithm. J Appl Clin Med Phys 2020; 21:56-62. [PMID: 32794632 PMCID: PMC7592969 DOI: 10.1002/acm2.13004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/05/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022] Open
Abstract
Purpose/Background We analyzed the predictive value of non‐x‐ray voxel Monte Carlo (XVMC)‐based modeling of tumor control probability (TCP) and normal tissue complication probability (NTCP) in patients treated with stereotactic body radiotherapy (SBRT) using the XVMC dose calculation algorithm. Materials/Methods We conducted an IRB‐approved retrospective analysis in patients with lung tumors treated with XVMC‐based lung SBRT. For TCP, we utilized tumor size‐adjusted biological effective dose (s‐BED) TCP modeling validated in non‐MC dose calculated SBRT to: (1) verify modeling as a function of s‐BED in patients treated with XVMC‐based SBRT; and (2) evaluate the predictive potential of different PTV dosimetric parameters (mean dose, minimum dose, max dose, prescription dose, D95, D98, and D99) for incorporation into the TCP model. Correlation between observed local control and TCPs was assessed by Pearson's correlation coefficient. For NTCP, Lyman NTCP Model was utilized to predict grade 2 pneumonitis and rib fracture. Results Eighty‐four patients with 109 lung tumors were treated with XVMC‐based SBRT to total doses of 40 to 60 Gy in 3 to 5 fractions. Median follow‐up was 17 months. The 2‐year local and local‐regional control rates were 91% and and 78%, respectievly. All estimated TCPs correlated significantly with 2‐year actuarial local control rates (P < 0.05). Significant corelations between TCPs and tumor control rate according to PTV dosimetric parameters were observed. D99 parameterization demonstrated the most robust correlation between observed and predicted tumor control. The incidences of grade 2 pneumonitis and rib fracture vs. predicted were 1% vs. 3% and 10% vs. 13%, respectively. Conclusion Our TCP results using a XVMC‐based dose calculation algorithm are encouraging and yield validation to previously described TCP models using non‐XVMC dose methods. Furthermore, D99 as potential predictive parameter in the TCP model demonstrated better correlation with clinical outcome.
Collapse
Affiliation(s)
- Sumit S Sood
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Damodar Pokhrel
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Rajeev Badkul
- Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Mindi TenNapel
- Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, KS, USA
| | | | - Bruce Kimler
- Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Fen Wang
- Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, KS, USA
| |
Collapse
|
8
|
Leung RWK, Chan MKH, Chiang CL, Wong M, Blanck O. On the pitfalls of PTV in lung SBRT using type-B dose engine: an analysis of PTV and worst case scenario concepts for treatment plan optimization. Radiat Oncol 2020; 15:130. [PMID: 32471457 PMCID: PMC7260838 DOI: 10.1186/s13014-020-01573-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/17/2020] [Indexed: 11/30/2022] Open
Abstract
Background PTV concept is presumed to introduce excessive and inconsistent GTV dose in lung stereotactic body radiotherapy (SBRT). That GTV median dose prescription (D50) and robust optimization are viable PTV–free solution (ICRU 91 report) to harmonize the GTV dose was investigated by comparisons with PTV–based SBRT plans. Methods Thirteen SBRT plans were optimized for 54 Gy / 3 fractions and prescribed (i) to 95% of the PTV (D95) expanded 5 mm from the ITV on the averaged intensity project (AIP) CT, i.e., PTVITV, (ii) to D95 of PTV derived from the van Herk (VH)‘s margin recipe on the mid–ventilation (MidV)–CT, i.e., PTVVH, (iii) to ITV D98 by worst case scenario (WCS) optimization on AIP,i.e., WCSITV and (iv) to GTV D98 by WCS using all 4DCT images, i.e., WCSGTV. These plans were subsequently recalculated on all 4DCT images and deformably summed on the MidV–CT. The dose differences between these plans were compared for the GTV and selected normal organs by the Friedman tests while the variability was compared by the Levene’s tests. The phase–to–phase changes of GTV dose through the respiration were assessed as an indirect measure of the possible increase of photon fluence owing to the type–B dose engine. Finally, all plans were renormalized to GTV D50 and all the dosimetric analyses were repeated to assess the relative influences of the SBRT planning concept and prescription method on the variability of target dose. Results By coverage prescriptions (i) to (iv), significantly smaller chest wall volume receiving ≥30 Gy (CWV30) and normal lung ≥20 Gy (NLV20Gy) were achieved by WCSITV and WCSGTV compared to PTVITV and PTVVH (p > 0.05). These plans differed significantly in the recalculated and summed GTV D2, D50 and D98 (p < 0.05). The inter–patient variability of all GTV dose parameters is however equal between these plans (Levene’s tests; p > 0.05). Renormalizing these plans to GTV D50 reduces their differences in GTV D2, and D98 to insignificant level (p > 0.05) and their inter–patient variability of all GTV dose parameters. None of these plans showed significant differences in GTV D2, D50 and D98 between respiratory phases, nor their inter–phase variability is significant. Conclusion Inconsistent GTV dose is not unique to PTV concept but occurs to other PTV–free concept in lung SBRT. GTV D50 renormalization effectively harmonizes the target dose among patients and SBRT concepts of geometric uncertainty management.
Collapse
Affiliation(s)
| | - Mark Ka Heng Chan
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany. .,Department of Radiotherapy, University Hospital Essen, Kiel Campus, 24105, Kiel, Germany.
| | - Chi-Leung Chiang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Matthew Wong
- Department of Clinical Oncology, TuenMun Hospital, Hong Kong, SAR, China
| | - Oliver Blanck
- Department of Radiotherapy, University Hospital Essen, Kiel Campus, 24105, Kiel, Germany
| |
Collapse
|
9
|
Mahuvava C, Du Plessis FCP. External beam patient dose verification based on the integral quality monitor (IQM ®) output signals. Biomed Phys Eng Express 2020; 6:035014. [PMID: 33438659 DOI: 10.1088/2057-1976/ab5f55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND The Integral Quality Monitor (IQM®) can essentially measure the integral fluence through a segment and provide real-time information about the accuracy of radiation delivery based on comparisons of measured segment signals and pre-calculated reference values. However, the present IQM chamber cannot calculate the dose in the patient. AIM This study aims to make use of IQM field output signals to calculate the number of monitor units (MUs) delivered through an arbitrary treatment field in order to convert Monte Carlo (MC)-generated dose distributions in a patient model into absolute dose. METHODS XiO and Monaco treatment planning systems (TPSs) were used to define treatment beam portals for cervix and esophagus conformal radiotherapy as well as prostate intensity-modulated radiotherapy for the translation of patient and beam setup information from DICOM to DOSXYZnrc. The planned beams were simulated in a patient model built from actual patient CT images and each simulated integral field/segment was weighted with its MUs before summation to get the total dose in the plan. The segment beam weights (MUs) were calculated as the ratio of the open-field IQM measured signal and the calculated signal per MU extracted from chamber sensitivity maps. These are the actual MUs delivered not just MUs set. The beam weighting method was evaluated by comparing weighted MC doses with original planned doses using profile and isodose comparisons, dose difference maps, γ analysis and dose-volume histogram (DVH) data. RESULTS γ pass rates of up to 98% were found, except for the esophagus plan where the γ pass rate was below 45%. DVH comparisons showed good agreement for most organs, with the largest differences observed in low-density lung. However, these discrepancies can result from differences in dose calculation algorithms or differences in MUs used for dose weighting planned by the TPS and MUs calculated using IQM field output signals. To test this, a 4-field box DOSXYZnrc MC simulation weighted with planned (XiO) MUs was compared with the same simulation weighted with IQM-based MUs. Dose differences of up to 5% were found on the isocentre slice. For XiO versus MC, up to 7% dose differences were found, indicating additional error due to limitations of XiO's superposition algorithm. Dose differences between MC Monaco and MC EGSnrc were less than 3%. CONCLUSIONS The most valuable comparison was MC versus MC as it eliminated algorithm discrepancies and evaluated dose differences precisely according to beam weighting. For XiO TPS, care must be taken as dose differences may also arise due to limitations in XiO's planning software, not merely due to differences in MUs. Overall, the IQM was successfully used to compute beam dose weights to accurately reconstruct the patient dose using unweighted MC beams. Our technique can be used for pre-treatment QA provided each segment output is known and an accurate linac source model is available.
Collapse
Affiliation(s)
- Courage Mahuvava
- Medical Physics Department, Faculty of Health Sciences, University of the Free State, P O Box 339, Bloemfontein 9300, South Africa
| | | |
Collapse
|
10
|
Wang D, DeNittis A, Evans T, Meyer T. Optimal prescription isodose line in SBRT for lung tumor treatment with volumetric-modulated arc therapy. JOURNAL OF RADIOSURGERY AND SBRT 2020; 7:157-164. [PMID: 33282469 PMCID: PMC7717096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/27/2020] [Indexed: 06/12/2023]
Abstract
It is crucial to spare lung when treating early stage lung carcinoma with stereotactic body radiotherapy (SBRT) for minimizing the radiation induced toxicities, such as radiation pneumonitis and late fibrosis. A retrospective study was performed with a combination of approaches to determine the optimal range of prescription isodose line (P-IDL) within which lung tissue was best spared in SBRT plans with Volumetric-Modulated Arc Therapy (VMAT) and Monte-Carlo-like dose calculation algorithm. Twenty clinically-delivered SBRT lung plans were optimized using traditional LINAC MLC based approaches: an average P-IDL of (88.8 ± 0.5)% (the error bar of all the data is the 95% confidence interval (CI)). The plans were then re-optimized using a new combination of approaches with variation of P-IDL from 60% to 90% for each case. The combination of approaches included finding and utilizing an optimal P-IDL, implementing tuning ring structures internal and external to the target, as well as normal tissue objective and equivalent. The plans were evaluated with the following indexes: 1. R50%, the ratio of 50% prescription isodose volume to the plan target volume (PTV); 2. V20 and V5, the volume of lung within 20Gy and 5Gy, respectively; 3. PCI, the Paddick comformity index; 4. D2cm, the maximum dose at 2 cm from PTV in any direction; 5. MLD, the mean dose in total lung volume; 6. Focal Index (FI), an indicator of dose in the core of the target. The optimal P-IDL was found to be in the range of 75-80%. The average optimal P-IDL for the 20 cases was (77.9 ± 0.9)%. With the optimization strategies the average PCI was increased by (10.3 ± 2.1)%; the average R50%, V20, V5, D2cm and MLD were decreased by (29.1 ± 4.1)%, (26.9 ± 5.4)%, (13.9 ± 3.5)%, (13.4 ± 4.3)% and (16.7 ± 2.3)%, respectively. The FI was increased by (23.7 ± 1.3)%. The optimal P-IDL range was 75-80% for SBRT VMAT lung treatment plans. The application of the set of optimization approaches can significantly improve the lung sparing in SBRT VMAT plans with AXB dose calculation algorithm and makes treatment plans more conformal in high, intermediate and low dose regions, while higher dose is delivered to the target.
Collapse
Affiliation(s)
- David Wang
- Lankenau Medical Center, 100 E Lancaster Ave, Wynnewood, PA 19096, USA
| | - Albert DeNittis
- Lankenau Medical Center, 100 E Lancaster Ave, Wynnewood, PA 19096, USA
- Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Wynnewood, PA 19096, USA
| | - Tracey Evans
- Lankenau Medical Center, 100 E Lancaster Ave, Wynnewood, PA 19096, USA
| | - Thomas Meyer
- Lankenau Medical Center, 100 E Lancaster Ave, Wynnewood, PA 19096, USA
| |
Collapse
|
11
|
Roberts NF, Williams M, Holloway L, Metcalfe P, Oborn BM. 4D Monte Carlo dose calculations for pre-treatment quality assurance of VMAT SBRT: a phantom-based feasibility study. Phys Med Biol 2019; 64:21NT01. [PMID: 31470421 DOI: 10.1088/1361-6560/ab3fd0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Volumetric arc therapy (VMAT) for lung stereotactic body radiotherapy (SBRT) is challenging due to both breathing-induced motion and the dynamic components of the linear accelerator. In this study, a 4D Monte Carlo (4DMC) dose calculation method for VMAT SBRT is proposed and the feasibility of the method is evaluated. A rigidly-moving lung phantom was imaged using four dimensional computed tomography (4DCT). VMAT SBRT plans were generated on the average intensity projection dataset using the internal target volume (ITV) strategy (ITV-plan) and a single phase to simulate a dynamic treatment-couch tracking technique (TRACKING-plan). 4DMC simulations were performed and compared to 3D Monte Carlo (3DMC) and 3D- and 4D- calculations in the treatment planning system using the adaptive convolution (AC) algorithm. Dose metrics calculated for the ITV-plan showed an overestimation with 3D adaptive convolution (3DAC) for D[Formula: see text] (GTV) by 3.5% and by 2.0% for 3DMC, both compared to 4DMC. The TRACKING-plan D[Formula: see text] (GTV) calculated with the 3DAC method overestimated by 2.0% compared with 4DMC. Deviations between the calculation methods for D mean (Lung) and D[Formula: see text] (PTV) were minimal. For both plans, measurements were taken with EBT3 film inside the phantom tumour. EBT3 film profiles showed good agreement with 4DMC for the TRACKING-plan giving a gamma pass rate of 97.2% for 3%/3 mm global and for 3DAC compared with measured, 95.8%. Whereas for the ITV-plan, the 3D profiles varied from film in the ITV periphery region with a pass rates of 50% and 48.6% for 3DAC and 3DMC, respectively. 4DMC agreed more closely to measurements for this plan with a pass rate of 95.8%. We have proposed an accurate method to perform 4D dose calculations for pre-treatment quality assurance of VMAT SBRT. The method was compared to experimental measurements and for both plans, 4DMC dose agreed with measurements more closely than other evaluated dose calculation methods. This study has demonstrated the feasibility of this 4DMC method.
Collapse
Affiliation(s)
- Natalia F Roberts
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia. Centre for Oncology Education and Research Translation (CONCERT), Wollongong, NSW, Australia. Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia. Author to whom correspondence should be addressed
| | | | | | | | | |
Collapse
|
12
|
Plan Quality and Secondary Cancer Risk Assessment in Patients with Benign Intracranial Lesions after Radiosurgery using the CyberKnife M6 Robotic Radiosurgery System. Sci Rep 2019; 9:9953. [PMID: 31289294 PMCID: PMC6616465 DOI: 10.1038/s41598-019-46133-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/17/2019] [Indexed: 12/31/2022] Open
Abstract
This study was performed to examine the quality of planning and treatment modality using a CyberKnife (CK) robotic radiosurgery system with multileaf collimator (MLC)-based plans and IRIS (variable aperture collimator system)-based plans in relation to the dose–response of secondary cancer risk (SCR) in patients with benign intracranial tumors. The study population consisted of 15 patients with benign intracranial lesions after curative treatment using a CyberKnife M6 robotic radiosurgery system. Each patient had a single tumor with a median volume of 6.43 cm3 (range, 0.33–29.72 cm3). The IRIS-based plan quality and MLC-based plan quality were evaluated by comparing the dosimetric indices, taking into account the planning target volume (PTV) coverage, the conformity index (CI), and the dose gradient (R10% and R50%). The dose–response SCR with sarcoma/carcinoma induction was calculated using the concept of the organ equivalent dose (OED). Analyses of sarcoma/carcinoma induction were performed using excess absolute risk (EAR) and various OED models of dose–response type/lifetime attributable risk (LAR). Moreover, analyses were performed using the BEIR VII model. PTV coverage using both IRIS-based plans and MLC-based plans was identical, although the CI values obtained using the MLC-based plans showed greater statistical significance. In comparison with the IRIS-based plans, the MLC-based plans showed better dose falloff for R10% and R50% evaluation. The estimated difference between Schneider’s model and BEIR VII in linear-no-threshold (Lnt) cumulative EAR was about twofold. The average values of LAR/EAR for carcinoma, for the IRIS-based plans, were 25% higher than those for the MLC-based plans using four SCR models; for sarcoma, they were 15% better in Schneider’s SCR models. MLC-based plans showed slightly better conformity, dose gradients, and SCR reduction. There was a slight increase in SCR with IRIS-based plans in comparison with MLC-based plans. EAR analyses did not show any significant difference between PTV and brainstem analyses, regardless of the tumor volume. Nevertheless, an increase in target volume led to an increase in the probability of SCR. EAR showed statistically significant differences in the soft tissue according to tumor volume (1–10 cc and ≥10 cc).
Collapse
|
13
|
Lee J, Dean C, Patel R, Webster G, Eaton DJ. Multi-center evaluation of dose conformity in stereotactic body radiotherapy. Phys Imaging Radiat Oncol 2019; 11:41-46. [PMID: 33458276 PMCID: PMC7807546 DOI: 10.1016/j.phro.2019.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Stereotactic body radiotherapy (SBRT) is an emerging technique for treating oligometastases, but limited data is available on what plan quality is achievable for a range of modalities and clinical sites. METHODS SBRT plans for lung, spine, bone, adrenal, liver and node sites from 17 participating centers were reviewed. Centers used various delivery techniques including static and rotational intensity-modulation and multiple non-coplanar beams. Plans were split into lung and other body sites and evaluated with different plan quality metrics, including two which are independent of target coverage; "prescription dose spillage" (PDS) and "modified gradient index" (MGI). These were compared to constraints from the ROSEL and RTOG 0813 clinical trials. RESULTS Planning target volume (PTV) coverage was compromised (PTV V100% < 90%) in 29% of patient plans in order to meet organ-at-risk (OAR) tolerances, supporting the use of plan quality metrics which are independent of target coverage. Both lung (n = 48) and other body (n = 99) site PDS values agreed well with ROSEL constraints on dose spillage, but RTOG 0813 values were too high to detect sub-optimal plans. MGI values for lung plans were mis-matched to both sets of previous constraints, with ROSEL values too high and RTOG 0813 values too low. MGI values were lower for other body plans as expected, though this was only statistically significant for PTV volumes <20 cm3. CONCLUSIONS Updated guidance for lung and other body site SBRT plan quality using the PDS and MGI metrics is presented.
Collapse
Affiliation(s)
- Jonny Lee
- National Radiotherapy Trials QA Group, Mount Vernon Hospital, London HA6 2RN, UK
| | | | - Rushil Patel
- National Radiotherapy Trials QA Group, Mount Vernon Hospital, London HA6 2RN, UK
| | | | - David J. Eaton
- National Radiotherapy Trials QA Group, Mount Vernon Hospital, London HA6 2RN, UK
| |
Collapse
|
14
|
Yuan L, Zhu W, Ge Y, Jiang Y, Sheng Y, Yin FF, Wu QJ. Lung IMRT planning with automatic determination of beam angle configurations. Phys Med Biol 2018; 63:135024. [PMID: 29846178 DOI: 10.1088/1361-6560/aac8b4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Beam angle configuration is a major planning decision in intensity modulated radiation treatment (IMRT) that has a significant impact on dose distributions and thus quality of treatment, especially in complex planning cases such as those for lung cancer treatment. We propose a novel method to automatically determine beam configurations that incorporates noncoplanar beams. We then present a completely automated IMRT planning algorithm that combines the proposed method with a previously reported OAR DVH prediction model. Finally, we validate this completely automatic planning algorithm using a set of challenging lung IMRT cases. A beam efficiency index map is constructed to guide the selection of beam angles. This index takes into account both the dose contributions from individual beams and the combined effect of multiple beams by introducing a beam-spread term. The effect of the beam-spread term on plan quality was studied systematically and the weight of the term to balance PTV dose conformity against OAR avoidance was determined. For validation, complex lung cases with clinical IMRT plans that required the use of one or more noncoplanar beams were re-planned with the proposed automatic planning algorithm. Important dose metrics for the PTV and OARs in the automatic plans were compared with those of the clinical plans. The results are very encouraging. The PTV dose conformity and homogeneity in the automatic plans improved significantly. And all the dose metrics of the automatic plans, except the lung V5 Gy, were statistically better than or comparable with those of the clinical plans. In conclusion, the automatic planning algorithm can incorporate non-coplanar beam configurations in challenging lung cases and can generate plans efficiently with quality closely approximating that of clinical plans.
Collapse
Affiliation(s)
- Lulin Yuan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, United States of America. Current address: Department of Radiation Oncology, Virginia Commonwealth University Health System, Richmond, VA 23298, United States of America
| | | | | | | | | | | | | |
Collapse
|
15
|
Sung K, Choi YE. Dose gradient curve: A new tool for evaluating dose gradient. PLoS One 2018; 13:e0196664. [PMID: 29698471 PMCID: PMC5919624 DOI: 10.1371/journal.pone.0196664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/17/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. Methods The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Results Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. Conclusions The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.
Collapse
Affiliation(s)
- KiHoon Sung
- Department of Radiation Oncology, Gachon University Gil Medical Center, Gachon University School of Medicine, Incheon, Republic of Korea
| | - Young Eun Choi
- Department of Radiation Oncology, Gachon University Gil Medical Center, Gachon University School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
16
|
Characterisation of small photon field outputs in a heterogeneous medium using X-ray voxel Monte Carlo dose calculation algorithm. JOURNAL OF RADIOTHERAPY IN PRACTICE 2018. [DOI: 10.1017/s1460396917000498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractAimTo characterise small photon beams using the Monte Carlo dose calculation algorithm for small field ranges in a heterogeneous medium.Materials and methodAn in-house phantom constructed with three different mediums, foam, polymethyl methacrylate and delrin resembling the densities of lung, soft tissue and bone respectively, was used in this study. Photon beam energies of 6 and 15 MV and field sizes of 8×8, 16×16, 24×24, 32×32 and 40×40 mm using X-ray voxel Monte Carlo (XVMC) algorithm using different detectors were validated. The relative output factor was measured in three different mediums having six different tissue interfaces; at the depth of 0, 1, 2 and 3 cm. The planar dose verification was undertaken using gafchromic films and considered dose at the lung and bone medium interfaces. For all the measurements, 104×104 mm was taken as the reference field size. The relative output factor for all other field sizes was taken and compared with planning system calculated values.ResultsFrom field size 16×16 mm and above, the relative output factors were analysed in bone and soft tissue medium having lung as first medium. The maximum deviations were observed as 1·8 and 1·3% for 6 MV and 2·5 and 1·1% for 15 MV photon beams for bone and soft tissue, respectively. For lung as measurement medium, the maximum deviation of 14·8 and 19·2% were observed and having bone as first medium with 8×8 mm for 6 and 15 MV photon beams, respectively. The fluence verification of dose spectrum for the lung–bone interface scenarios with smaller field sizes were found within 2% of deviation with treatment planning system (TPS).ConclusionThe accuracy of dose calculations for small field sizes in XVMC-based treatment planning algorithm was studied in different inhomogeneous mediums. It was found that the results correlated with measurement data for field size 16×16 mm and above. Noticeable deviation was observed for the smallest field size of 8×8 mm with interfaces of significant change in density. The observed results demands further analysis of work with smaller field sizes.
Collapse
|
17
|
Fogliata A, Cozzi L. Dose calculation algorithm accuracy for small fields in non-homogeneous media: The lung SBRT case. Phys Med 2017; 44:157-162. [DOI: 10.1016/j.ejmp.2016.11.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022] Open
|
18
|
Ruggieri R, Stavrev P, Naccarato S, Stavreva N, Alongi F, Nahum AE. Optimal dose and fraction number in SBRT of lung tumours: A radiobiological analysis. Phys Med 2017; 44:188-195. [DOI: 10.1016/j.ejmp.2016.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/02/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022] Open
|
19
|
Wang H, Chandarana H, Block KT, Vahle T, Fenchel M, Das IJ. Dosimetric evaluation of synthetic CT for magnetic resonance-only based radiotherapy planning of lung cancer. Radiat Oncol 2017. [PMID: 28651599 PMCID: PMC5485621 DOI: 10.1186/s13014-017-0845-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Interest in MR-only treatment planning for radiation therapy is growing rapidly with the emergence of integrated MRI/linear accelerator technology. The purpose of this study was to evaluate the feasibility of using synthetic CT images generated from conventional Dixon-based MRI scans for radiation treatment planning of lung cancer. Methods Eleven patients who underwent whole-body PET/MR imaging following a PET/CT exam were randomly selected from an ongoing prospective IRB-approved study. Attenuation maps derived from the Dixon MR Images and atlas-based method was used to create CT data (synCT). Treatment planning for radiation treatment of lung cancer was optimized on the synCT and subsequently copied to the registered CT (planCT) for dose calculation. Planning target volumes (PTVs) with three sizes and four different locations in the lung were planned for irradiation. The dose-volume metrics comparison and 3D gamma analysis were performed to assess agreement between the synCT and CT calculated dose distributions. Results Mean differences between PTV doses on synCT and CT across all the plans were −0.1% ± 0.4%, 0.1% ± 0.5%, and 0.4% ± 0.5% for D95, D98 and D100, respectively. Difference in dose between the two datasets for organs at risk (OARs) had average differences of −0.14 ± 0.07 Gy, 0.0% ± 0.1%, and −0.1% ± 0.2% for maximum spinal cord, lung V20, and heart V40 respectively. In patient groups based on tumor size and location, no significant differences were observed in the PTV and OARs dose-volume metrics (p > 0.05), except for the maximum spinal-cord dose when the target volumes were located at the lung apex (p = 0.001). Gamma analysis revealed a pass rate of 99.3% ± 1.1% for 2%/2 mm (dose difference/distance to agreement) acceptance criteria in every plan. Conclusions The synCT generated from Dixon-based MRI allows for dose calculation of comparable accuracy to the standard CT for lung cancer treatment planning. The dosimetric agreement between synCT and CT calculated doses warrants further development of a MR-only workflow for radiotherapy of lung cancer.
Collapse
Affiliation(s)
- Hesheng Wang
- Department of Radiation Oncology, New York University School of Medicine, Langone Medical Center, New York, NY, USA.
| | - Hersh Chandarana
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Kai Tobias Block
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Thomas Vahle
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.,Siemens Healthcare GmbH, Erlangen, Germany
| | | | - Indra J Das
- Department of Radiation Oncology, New York University School of Medicine, Langone Medical Center, New York, NY, USA
| |
Collapse
|
20
|
Zhou C, Bennion N, Ma R, Liang X, Wang S, Zvolanek K, Hyun M, Li X, Zhou S, Zhen W, Lin C, Wahl A, Zheng D. A comprehensive dosimetric study on switching from a Type-B to a Type-C dose algorithm for modern lung SBRT. Radiat Oncol 2017; 12:80. [PMID: 28476138 PMCID: PMC5420128 DOI: 10.1186/s13014-017-0816-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/01/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Type-C dose algorithms provide more accurate dosimetry for lung SBRT treatment planning. However, because current dosimetric protocols were developed based on conventional algorithms, its applicability for the new generation algorithms needs to be determined. Previous studies on this issue used small sample sizes and reached discordant conclusions. Our study assessed dose calculation of a Type-C algorithm with current dosimetric protocols in a large patient cohort, in order to demonstrate the dosimetric impacts and necessary treatment planning steps of switching from a Type-B to a Type-C dose algorithm for lung SBRT planning. METHODS Fifty-two lung SBRT patients were included, each planned using coplanar VMAT arcs, normalized to D95% = prescription dose using a Type-B algorithm. These were compared against three Type-C plans: re-calculated plans (identical plan parameters), re-normalized plans (D95% = prescription dose), and re-optimized plans. Dosimetric endpoints were extracted and compared among the four plans, including RTOG dosimetric criteria: (R100%, R50%, D2cm, V105%, and lung V20), PTV Dmin, Dmax, Dmean, V% and D90%, PTV coverage (V100%), homogeneity index (HI), and Paddick conformity index (PCI). RESULTS Re-calculated Type-C plans resulted in decreased PTV Dmin with a mean difference of 5.2% and increased Dmax with a mean difference of 3.1%, similar or improved RTOG dose compliance, but compromised PTV coverage (mean D95% and V100% reduction of 2.5 and 8.1%, respectively). Seven plans had >5% D95% reduction (maximum reduction = 16.7%), and 18 plans had >5% V100% reduction (maximum reduction = 60.0%). Re-normalized Type-C plans restored target coverage, but yielded degraded plan conformity (average PCI reduction 4.0%), and RTOG dosimetric criteria deviation worsened in 11 plans, in R50%, D2cm, and R100%. Except for one case, re-optimized Type-C plans restored RTOG compliance achieved by the original Type-B plans, resulting in similar dosimetric values but slightly higher target dose heterogeneity (mean HI increase = 13.2%). CONCLUSIONS Type-B SBRT lung plans considerably overestimate target coverage for some patients, necessitating Type-C re-normalization or re-optimization. Current RTOG dosimetric criteria appear to remain appropriate.
Collapse
Affiliation(s)
- Christina Zhou
- School of Biological Sciences, University of Chicago, Chicago, IL USA
| | - Nathan Bennion
- Department of Radiation Oncology, University of Nebraska Medical Center, 42nd and Emile St, Omaha, NE 68198 USA
| | - Rongtao Ma
- Department of Radiation Oncology, University of Nebraska Medical Center, 42nd and Emile St, Omaha, NE 68198 USA
| | - Xiaoying Liang
- University of Florida Health Proton Therapy Institute, Jacksonville, FL USA
| | - Shuo Wang
- Department of Radiation Oncology, University of Nebraska Medical Center, 42nd and Emile St, Omaha, NE 68198 USA
| | - Kristina Zvolanek
- Department of Biological Systems Engineering, University of Nebraska Lincoln, Lincoln, NE USA
| | - Megan Hyun
- Department of Radiation Oncology, University of Nebraska Medical Center, 42nd and Emile St, Omaha, NE 68198 USA
| | - Xiaobo Li
- Department of Radiation Oncology, University of Nebraska Medical Center, 42nd and Emile St, Omaha, NE 68198 USA
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian China
| | - Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, 42nd and Emile St, Omaha, NE 68198 USA
| | - Weining Zhen
- Department of Radiation Oncology, University of Nebraska Medical Center, 42nd and Emile St, Omaha, NE 68198 USA
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, 42nd and Emile St, Omaha, NE 68198 USA
| | - Andrew Wahl
- Department of Radiation Oncology, University of Nebraska Medical Center, 42nd and Emile St, Omaha, NE 68198 USA
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, 42nd and Emile St, Omaha, NE 68198 USA
| |
Collapse
|
21
|
Diwanji TP, Mohindra P, Vyfhuis M, Snider JW, Kalavagunta C, Mossahebi S, Yu J, Feigenberg S, Badiyan SN. Advances in radiotherapy techniques and delivery for non-small cell lung cancer: benefits of intensity-modulated radiation therapy, proton therapy, and stereotactic body radiation therapy. Transl Lung Cancer Res 2017; 6:131-147. [PMID: 28529896 DOI: 10.21037/tlcr.2017.04.04] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 21st century has seen several paradigm shifts in the treatment of non-small cell lung cancer (NSCLC) in early-stage inoperable disease, definitive locally advanced disease, and the postoperative setting. A key driver in improvement of local disease control has been the significant evolution of radiation therapy techniques in the last three decades, allowing for delivery of definitive radiation doses while limiting exposure of normal tissues. For patients with locally-advanced NSCLC, the advent of volumetric imaging techniques has allowed a shift from 2-dimensional approaches to 3-dimensional conformal radiation therapy (3DCRT). The next generation of 3DCRT, intensity-modulated radiation therapy and volumetric-modulated arc therapy (VMAT), have enabled even more conformal radiation delivery. Clinical evidence has shown that this can improve the quality of life for patients undergoing definitive management of lung cancer. In the early-stage setting, conventional fractionation led to poor outcomes. Evaluation of altered dose fractionation with the previously noted technology advances led to advent of stereotactic body radiation therapy (SBRT). This technique has dramatically improved local control and expanded treatment options for inoperable, early-stage patients. The recent development of proton therapy has opened new avenues for improving conformity and the therapeutic ratio. Evolution of newer proton therapy techniques, such as pencil-beam scanning (PBS), could improve tolerability and possibly allow reexamination of dose escalation. These new progresses, along with significant advances in systemic therapies, have improved survival for lung cancer patients across the spectrum of non-metastatic disease. They have also brought to light new challenges and avenues for further research and improvement.
Collapse
Affiliation(s)
- Tejan P Diwanji
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Pranshu Mohindra
- University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Melissa Vyfhuis
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - James W Snider
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Chaitanya Kalavagunta
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Sina Mossahebi
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Jen Yu
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Steven Feigenberg
- University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Shahed N Badiyan
- University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| |
Collapse
|
22
|
Kawahara D, Ozawa S, Kimura T, Saito A, Nishio T, Nakashima T, Ohno Y, Murakami Y, Nagata Y. Marginal prescription equivalent to the isocenter prescription in lung stereotactic body radiotherapy: preliminary study for Japan Clinical Oncology Group trial (JCOG1408). JOURNAL OF RADIATION RESEARCH 2017; 58:149-154. [PMID: 28115532 PMCID: PMC5321195 DOI: 10.1093/jrr/rrw096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/12/2016] [Accepted: 09/14/2016] [Indexed: 05/27/2023]
Abstract
A new randomized Phase III trial, the Japan Clinical Oncology Group (JCOG) 1408, which compares two dose fractionations (JCOG 0403 and JCOG 0702) for medically inoperable Stage IA NSCLC or small lung lesions clinically diagnosed as primary lung cancer, involves the introduction of a prescribed dose to the D95% of the planning target volume (PTV) using a superposition/convolution algorithm. Therefore, we must determine the prescribed dose in the D95% prescribing method to begin JCOG1408. JCOG 0702 uses density correction and the D95% prescribing method. However, JCOG 0403 uses no density correction and isocenter- prescribing method. The purpose of this study was to evaluate the prescribed dose to the D95% of the PTV equivalent to a dose of 48 Gy to the isocenter (JCOG 0403) using a superposition algorithm. The peripheral isodose line, which has the highest conformity index, and the D95% of the PTV were analyzed by considering the weighting factor, i.e. the inverse of the difference between the doses obtained using the superposition and Clarkson algorithms. The average dose at the isodose line of the highest conformity index and the D95% of the PTV were 41.5 ± 0.3 and 42.0 ± 0.3 Gy, respectively. The D95% of the PTV had a small correlation with the target volume (r2 = 0.0022) and with the distance between the scatterer and tumor volumes (r2 = 0.19). Thus, the prescribed dose of 48 Gy using the Clarkson algorithm (JCOG0403) was found to be equivalent to the prescribed dose of 42 Gy to the D95% of the PTV using the superposition algorithm.
Collapse
Affiliation(s)
- Daisuke Kawahara
- Section of Radiation Therapy, Department of Clinical Support, Hiroshima University Hospital 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shuichi Ozawa
- Department of Radiation Oncology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Hiroshima High-Precision Radiotherapy Cancer Center, 3-2-2, Futabanosato, Higashi-ku, Hiroshima 732-0057, Japan
| | - Tomoki Kimura
- Department of Radiation Oncology, Hiroshima University Hospital , 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Akito Saito
- Department of Radiation Oncology, Hiroshima University Hospital , 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Teiji Nishio
- Department of Radiation Oncology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Takeo Nakashima
- Section of Radiation Therapy, Department of Clinical Support, Hiroshima University Hospital 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yoshimi Ohno
- Section of Radiation Therapy, Department of Clinical Support, Hiroshima University Hospital 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yuji Murakami
- Department of Radiation Oncology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Hiroshima High-Precision Radiotherapy Cancer Center, 3-2-2, Futabanosato, Higashi-ku, Hiroshima 732-0057, Japan
| |
Collapse
|
23
|
Hardcastle N, Oborn BM, Haworth A. On the use of a convolution-superposition algorithm for plan checking in lung stereotactic body radiation therapy. J Appl Clin Med Phys 2016; 17:99-110. [PMID: 27685114 PMCID: PMC5874108 DOI: 10.1120/jacmp.v17i5.6186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/09/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022] Open
Abstract
Stereotactic body radiation therapy (SBRT) aims to deliver a highly conformal ablative dose to a small target. Dosimetric verification of SBRT for lung tumors presents a challenge due to heterogeneities, moving targets, and small fields. Recent software (M3D) designed for dosimetric verification of lung SBRT treatment plans using an advanced convolution–superposition algorithm was evaluated. Ten lung SBRT patients covering a range of tumor volumes were selected. 3D CRT plans were created using the XiO treatment planning system (TPS) with the superposition algorithm. Dose was recalculated in the Eclipse TPS using the AAA algorithm, M3D verification software using the collapsed‐cone‐convolution algorithm, and in‐house Monte Carlo (MC). Target point doses were calculated with RadCalc software. Near‐maximum, median, and near‐minimum target doses, conformity indices, and lung doses were compared with MC as the reference calculation. M3D 3D gamma passing rates were compared with the XiO and Eclipse. Wilcoxon signed‐rank test was used to compare each calculation method with XiO with a threshold of significance of p<0.05. M3D and RadCalc point dose calculations were greater than MC by up to 7.7% and 13.1%, respectively, with M3D being statistically significant (s.s.). AAA and XiO calculated point doses were less than MC by 11.3% and 5.2%, respectively (AAA s.s.). Median and near‐minimum and near‐maximum target doses were less than MC when calculated with AAA and XiO (all s.s.). Near‐maximum and median target doses were higher with M3D compared with MC (s.s.), but there was no difference in near‐minimum M3D doses compared with MC. M3D‐calculated ipsilateral lung V20 Gy and V5 Gy were greater than that calculated with MC (s.s.); AAA‐ and XiO‐calculated V20 Gy was lower than that calculated with MC, but not statistically different to MC for V5 Gy. Nine of the 10 plans achieved M3D gamma passing rates greater than 95% and 80%for 5%/1 mm and 3%/1 mm criteria, respectively. M3D typically calculated a higher target and lung dose than MC for lung SBRT plans. The results show a range of calculated doses with different algorithms and suggest that M3D is in closer agreement with Monte Carlo, thus discrepancies between the TPS and M3D software will be observed for lung SBRT plans. M3D provides a useful supplement to verification of lung SBRT plans by direct measurement, which typically excludes patient specific heterogeneities. PACS number(s): 87.55.D‐, 87.55.Qr, 87.55.K‐
Collapse
|
24
|
Pokhrel D, Sood S, Badkul R, Jiang H, McClinton C, Lominska C, Kumar P, Wang F. Assessment of Monte Carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy. J Appl Clin Med Phys 2016; 17:277-293. [PMID: 27167284 PMCID: PMC5690924 DOI: 10.1120/jacmp.v17i3.6077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/28/2016] [Accepted: 01/25/2016] [Indexed: 11/29/2022] Open
Abstract
The purpose of the study was to evaluate Monte Carlo‐generated dose distributions with the X‐ray Voxel Monte Carlo (XVMC) algorithm in the treatment of peripheral lung cancer patients using stereotactic body radiotherapy (SBRT) with non‐protocol dose‐volume normalization and to assess plan outcomes utilizing RTOG 0915 dosimetric compliance criteria. The Radiation Therapy Oncology Group (RTOG) protocols for non‐small cell lung cancer (NSCLC) currently require radiation dose to be calculated using tissue density heterogeneity corrections. Dosimetric criteria of RTOG 0915 were established based on superposition/convolution or heterogeneities corrected pencil beam (PB‐hete) algorithms for dose calculations. Clinically, more accurate Monte Carlo (MC)‐based algorithms are now routinely used for lung stereotactic body radiotherapy (SBRT) dose calculations. Hence, it is important to determine whether MC calculations in the delivery of lung SBRT can achieve RTOG standards. In this report, we evaluate iPlan generated MC plans for peripheral lung cancer patients treated with SBRT using dose‐volume histogram (DVH) normalization to determine if the RTOG 0915 compliance criteria can be met. This study evaluated 20 Stage I‐II NSCLC patients with peripherally located lung tumors, who underwent MC‐based SBRT with heterogeneity correction using X‐ray Voxel Monte Carlo (XVMC) algorithm (Brainlab iPlan version 4.1.2). Total dose of 50 to 54 Gy in 3 to 5 fractions was delivered to the planning target volume (PTV) with at least 95% of the PTV receiving 100% of the prescription dose (V100%≥95%). The internal target volume (ITV) was delineated on maximum intensity projection (MIP) images of 4D CT scans. The PTV included the ITV plus 5 mm uniform margin applied to the ITV. The PTV ranged from 11.1 to 163.0 cc (mean=46.1±38.7 cc). Organs at risk (OARs) including ribs were delineated on mean intensity projection (MeanIP) images of 4D CT scans. Optimal clinical MC SBRT plans were generated using a combination of 3D noncoplanar conformal arcs and nonopposing static beams for the Novalis‐TX linear accelerator consisting of high‐definition multileaf collimators (HD‐MLCs: 2.5 mm leaf width at isocenter) and 6 MV‐SRS (1000 MU/min) beam. All treatment plans were evaluated using the RTOG 0915 high‐ and intermediate‐dose spillage criteria: conformity index (R100%), ratio of 50% isodose volume to the PTV (R50%), maximum dose 2 cm away from PTV in any direction (D2cm), and percent of normal lung receiving 20 Gy V20 or more. Other OAR doses were documented, including the volume of normal lung receiving 5 Gy V5 or more, dose to <0.35 cc of spinal cord, and dose to 1000 cc of total normal lung tissue. The dose to <1 cc, <5 cc, <10 cc of ribs, as well as maximum point dose as a function of PTV, prescription dose, and a 3D distance from the tumor isocenter to the proximity of the rib contour were also examined. The biological effective dose (BED) with α/β ratio of 3 Gy for ribs was analyzed. All 20 patients either fully met or were within the minor deviation dosimetric compliance criteria of RTOG 0915 while using DVH normalization. However, only 5 of the 20 patients fully met all the criteria. Ten of 20 patients had minor deviations in R100% (mean=1.25±0.09), 13 in R50% (mean=4.5±0.6), and 11 in D2cm (mean=61.9±8.5). Lung V20, dose to 1000 cc of normal lung, and dose to <0.35 cc of spinal cord were met in accordance with RTOG criteria in 95%, 100%, and 100%, respectively, with exception of one patient who exhibited the largest PTV (163 cc) and experienced a minor deviation in lung V20 (mean=4.7±3.4%). The 3D distance from the tumor isocenter to the proximal rib contour strongly correlated with maximum rib dose. The average values of BED3Gy for maximum point dose and dose to <1 cc of ribs were higher by a factor of 1.5 using XVMC compared to RTOG 0915 guidelines. The preliminary results for our iPlan XVMC dose analyses indicate that the majority (i.e., 75% of patient population) of our patients had minor deviations when compared to the dosimetric guidelines set by RTOG 0915 protocol. When using an exclusively sophisticated XVMC algorithm and DVH normalization, the RTOG 0915 dosimetric compliance criteria such as R100%, R50%, and D2cm may need to be revised. On average, about 7% for R100%, 13% for R50%, and 14% for D2cm corrections from the mean values were necessary to pass the RTOG 0915 compliance criteria. Another option includes rescaling of the prescription dose. No further adjustment is necessary for OAR dose tolerances including normal lung V20 and total normal lung 1000 cc. Since all the clinical MC plans were generated without compromising the target coverage, rib dose was on the higher side of the protocol guidelines. As expected, larger tumor size and proximity to ribs correlated to higher absolute dose to ribs. These patients will be clinically followed to determine whether delivered MC‐computed dose to PTV and the ribs dose correlate with tumor control and severe chest wall pain and/or rib fractures. In order to establish new specific MC‐based dose parameters, further dosimetric studies with a large cohort of MC lung SBRT patients will need to be conducted. PACS number(s): 87.55.k
Collapse
|
25
|
Kang KM, Jeong BK, Choi HS, Song JH, Park BD, Lim YK, Jeong H. Effectiveness of the Monte Carlo method in stereotactic radiation therapy applied to quasi-homogenous brain tumors. Oncotarget 2016; 7:12662-71. [PMID: 26871473 PMCID: PMC4914312 DOI: 10.18632/oncotarget.7280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 11/30/2022] Open
Abstract
This study was aimed to evaluate the effectiveness of Monte Carlo (MC) method in stereotactic radiotherapy for brain tumor. The difference in doses predicted by the conventional Ray-tracing (Ray) and the advanced MC algorithms was comprehensively investigated through the simulations for phantom and patient data, actual measurement of dose distribution, and the retrospective analysis of 77 brain tumors patients. These investigations consistently showed that the MC algorithm overestimated the dose than the Ray algorithm and the MC overestimation was generally increased as decreasing the beams size and increasing the number of beams delivered. These results demonstrated that the advanced MC algorithm would be inaccurate than the conventional Raytracing algorithm when applied to a (quasi-) homogeneous brain tumors. Thus, caution may be needed to apply the MC method to brain radiosurgery or radiotherapy.
Collapse
Affiliation(s)
- Ki Mun Kang
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Bae Kwon Jeong
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hoon Sik Choi
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jin Ho Song
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Byung-Do Park
- Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Young Kyung Lim
- Proton Therapy Center, National Cancer Center, Goyang, Republic of Korea
| | - Hojin Jeong
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
26
|
Luo W, Meacham A, Xie X, Li J, Aryal P, McGarry R, Molloy J. Monte Carlo dose verification for lung SBRT with CMS/XiO superposition algorithm. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/1/015020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Deep Inspiration Breath Hold-Based Radiation Therapy: A Clinical Review. Int J Radiat Oncol Biol Phys 2015; 94:478-92. [PMID: 26867877 DOI: 10.1016/j.ijrobp.2015.11.049] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/03/2015] [Accepted: 11/29/2015] [Indexed: 01/06/2023]
Abstract
Several recent developments in linear accelerator-based radiation therapy (RT) such as fast multileaf collimators, accelerated intensity modulation paradigms like volumeric modulated arc therapy and flattening filter-free (FFF) high-dose-rate therapy have dramatically shortened the duration of treatment fractions. Deliverable photon dose distributions have approached physical complexity limits as a consequence of precise dose calculation algorithms and online 3-dimensional image guided patient positioning (image guided RT). Simultaneously, beam quality and treatment speed have continuously been improved in particle beam therapy, especially for scanned particle beams. Applying complex treatment plans with steep dose gradients requires strategies to mitigate and compensate for motion effects in general, particularly breathing motion. Intrafractional breathing-related motion results in uncertainties in dose delivery and thus in target coverage. As a consequence, generous margins have been used, which, in turn, increases exposure to organs at risk. Particle therapy, particularly with scanned beams, poses additional problems such as interplay effects and range uncertainties. Among advanced strategies to compensate breathing motion such as beam gating and tracking, deep inspiration breath hold (DIBH) gating is particularly advantageous in several respects, not only for hypofractionated, high single-dose stereotactic body RT of lung, liver, and upper abdominal lesions but also for normofractionated treatment of thoracic tumors such as lung cancer, mediastinal lymphomas, and breast cancer. This review provides an in-depth discussion of the rationale and technical implementation of DIBH gating for hypofractionated and normofractionated RT of intrathoracic and upper abdominal tumors in photon and proton RT.
Collapse
|
28
|
Bibault JE, Mirabel X, Lacornerie T, Tresch E, Reynaert N, Lartigau E. Adapted Prescription Dose for Monte Carlo Algorithm in Lung SBRT: Clinical Outcome on 205 Patients. PLoS One 2015. [PMID: 26207808 PMCID: PMC4514775 DOI: 10.1371/journal.pone.0133617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Purpose SBRT is the standard of care for inoperable patients with early-stage lung cancer without lymph node involvement. Excellent local control rates have been reported in a large number of series. However, prescription doses and calculation algorithms vary to a great extent between studies, even if most teams prescribe to the D95 of the PTV. Type A algorithms are known to produce dosimetric discrepancies in heterogeneous tissues such as lungs. This study was performed to present a Monte Carlo (MC) prescription dose for NSCLC adapted to lesion size and location and compare the clinical outcomes of two cohorts of patients treated with a standard prescription dose calculated by a type A algorithm or the proposed MC protocol. Patients and Methods Patients were treated from January 2011 to April 2013 with a type B algorithm (MC) prescription with 54 Gy in three fractions for peripheral lesions with a diameter under 30 mm, 60 Gy in 3 fractions for lesions with a diameter over 30 mm, and 55 Gy in five fractions for central lesions. Clinical outcome was compared to a series of 121 patients treated with a type A algorithm (TA) with three fractions of 20 Gy for peripheral lesions and 60 Gy in five fractions for central lesions prescribed to the PTV D95 until January 2011. All treatment plans were recalculated with both algorithms for this study. Spearman’s rank correlation coefficient was calculated for GTV and PTV. Local control, overall survival and toxicity were compared between the two groups. Results 205 patients with 214 lesions were included in the study. Among these, 93 lesions were treated with MC and 121 were treated with TA. Overall survival rates were 86% and 94% at one and two years, respectively. Local control rates were 79% and 93% at one and two years respectively. There was no significant difference between the two groups for overall survival (p = 0.785) or local control (p = 0.934). Fifty-six patients (27%) developed grade I lung fibrosis without clinical consequences. GTV size was a prognostic factor for overall survival (HR = 1.026, IC95% [1.01–1.041], p<0.001) and total dose was a prognostic factor for local control (HR = 0.924, IC95% [0.870–0.982], p = 0.011). D50 of the GTV calculated with MC correlated poorly with the D95 of the PTV calculated with TA (r = 0.116) for lesions with a diameter of 20 mm or less. For lesions larger than 20 mm, spearman correlation was higher (r = 0.618), but still insufficient. Conclusion No difference in local control or overall survival was found between patients treated with a type A or a type B algorithm in our cohort. A size and location adapted GTV-based prescription method could be used with a type B algorithm. External validation of these results is warranted.
Collapse
Affiliation(s)
- Jean-Emmanuel Bibault
- Academic Radiation Oncology Department, Oscar Lambret Comprehensive Cancer Center, 3 rue Frédéric Combemale, Lille, France
- Faculty of Medicine, University Lille 2, Lille, France
- ONCOLille, maison régionale de la recherche Clinique, Lille, France
| | - Xavier Mirabel
- Academic Radiation Oncology Department, Oscar Lambret Comprehensive Cancer Center, 3 rue Frédéric Combemale, Lille, France
- Faculty of Medicine, University Lille 2, Lille, France
- ONCOLille, maison régionale de la recherche Clinique, Lille, France
| | - Thomas Lacornerie
- Academic Radiation Oncology Department, Oscar Lambret Comprehensive Cancer Center, 3 rue Frédéric Combemale, Lille, France
- Faculty of Medicine, University Lille 2, Lille, France
- ONCOLille, maison régionale de la recherche Clinique, Lille, France
| | - Emmanuelle Tresch
- Biostatistics Department, Oscar Lambret Comprehensive Cancer Center, 3 rue Frédéric Combemale, Lille, France
- ONCOLille, maison régionale de la recherche Clinique, Lille, France
| | - Nick Reynaert
- Academic Radiation Oncology Department, Oscar Lambret Comprehensive Cancer Center, 3 rue Frédéric Combemale, Lille, France
- Faculty of Medicine, University Lille 2, Lille, France
- ONCOLille, maison régionale de la recherche Clinique, Lille, France
| | - Eric Lartigau
- Academic Radiation Oncology Department, Oscar Lambret Comprehensive Cancer Center, 3 rue Frédéric Combemale, Lille, France
- Faculty of Medicine, University Lille 2, Lille, France
- ONCOLille, maison régionale de la recherche Clinique, Lille, France
- * E-mail:
| |
Collapse
|
29
|
Li Y, Tian Z, Shi F, Song T, Wu Z, Liu Y, Jiang S, Jia X. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy. Phys Med Biol 2015; 60:2903-19. [DOI: 10.1088/0031-9155/60/7/2903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Troeller A, Garny S, Pachmann S, Kantz S, Gerum S, Manapov F, Ganswindt U, Belka C, Söhn M. Stereotactic radiotherapy of intrapulmonary lesions: comparison of different dose calculation algorithms for Oncentra MasterPlan®. Radiat Oncol 2015; 10:51. [PMID: 25888786 PMCID: PMC4387737 DOI: 10.1186/s13014-015-0354-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The use of high accuracy dose calculation algorithms, such as Monte Carlo (MC) and Collapsed Cone (CC) determine dose in inhomogeneous tissue more accurately than pencil beam (PB) algorithms. However, prescription protocols based on clinical experience with PB are often used for treatment plans calculated with CC. This may lead to treatment plans with changes in field size (FS) and changes in dose to organs at risk (OAR), especially for small tumor volumes in lung tissue treated with SABR. METHODS We re-evaluated 17 3D-conformal treatment plans for small intrapulmonary lesions with a prescription of 60 Gy in fractions of 7.5 Gy to the 80% isodose. All treatment plans were initially calculated in Oncentra MasterPlan® using a PB algorithm and recalculated with CC (CCre-calc). Furthermore, a CC-based plan with coverage similar to the PB plan (CCcov) and a CC plan with relaxed coverage criteria (CCclin), were created. The plans were analyzed in terms of Dmean, Dmin, Dmax and coverage for GTV, PTV and ITV. Changes in mean lung dose (MLD), V10Gy and V20Gy were evaluated for the lungs. The re-planned CC plans were compared to the original PB plans regarding changes in total monitor units (MU) and average FS. RESULTS When PB plans were recalculated with CC, the average V60Gy of GTV, ITV and PTV decreased by 13.2%, 19.9% and 41.4%, respectively. Average Dmean decreased by 9% (GTV), 11.6% (ITV) and 14.2% (PTV). Dmin decreased by 18.5% (GTV), 21.3% (ITV) and 17.5% (PTV). Dmax declined by 7.5%. PTV coverage correlated with PTV volume (p < 0.001). MLD, V10Gy, and V20Gy were significantly reduced in the CC plans. Both, CCcov and CCclin had significantly increased MUs and FS compared to PB. CONCLUSIONS Recalculation of PB plans for small lung lesions with CC showed a strong decline in dose and coverage in GTV, ITV and PTV, and declined dose in the lung. Thus, switching from a PB algorithm to CC, while aiming to obtain similar target coverage, can be associated with application of more MU and extension of radiotherapy fields, causing greater OAR exposition.
Collapse
Affiliation(s)
- Almut Troeller
- Department of Radiation Oncology, University of Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Sylvia Garny
- Department of Radiation Oncology, University of Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Sophia Pachmann
- Department of Radiation Oncology, University of Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Steffi Kantz
- Department of Radiation Oncology, University of Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Sabine Gerum
- Department of Radiation Oncology, University of Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Farkhad Manapov
- Department of Radiation Oncology, University of Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Ute Ganswindt
- Department of Radiation Oncology, University of Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Claus Belka
- Department of Radiation Oncology, University of Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Matthias Söhn
- Department of Radiation Oncology, University of Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
31
|
Pokhrel D, Badkul R, Jiang H, Kumar P, Wang F. Technical Note: Dosimetric evaluation of Monte Carlo algorithm in iPlan for stereotactic ablative body radiotherapy (SABR) for lung cancer patients using RTOG 0813 parameters. J Appl Clin Med Phys 2015; 16:5058. [PMID: 25679161 PMCID: PMC5689968 DOI: 10.1120/jacmp.v16i1.5058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/29/2014] [Accepted: 09/26/2014] [Indexed: 11/23/2022] Open
Abstract
For stereotactic ablative body radiotherapy (SABR) in lung cancer patients, Radiation Therapy Oncology Group (RTOG) protocols currently require radiation dose to be calculated using tissue heterogeneity corrections. Dosimetric criteria of RTOG 0813 were established based on the results obtained from non-Monte Carlo (MC) algorithms, such as superposition/convolutions. Clinically, MC-based algorithms are now routinely used for lung SABR dose calculations. It is essential to confirm that MC calculations in lung SABR meet RTOG guidelines. This report evaluates iPlan MC plans for SABR in lung cancer patients using dose-volume histogram normalization per current RTOG 0813 compliance criteria. Eighteen Stage I-II non-small cell lung cancer (NSCLC) patients with centrally located tumors, who underwent MC-based lung SABR with heterogeneity correction using X-ray Voxel Monte Carlo (XVMC) algorithm (BrainLAB iPlan version 4.1.2), were analyzed. Total dose of 60 Gy in 5 fractions was delivered to planning target volume (PTV) with at least V100% = 95%. Internal target volumes (ITVs) were delineated on maximum intensity projection (MIP) images of 4D CT scans. PTV (ITV + 5 mm margin) volumes ranged from 10.0 to 99.9 cc (mean = 36.8 ± 20.7 cc). Organs at risk (OARs) were delineated on average images of 4D CT scans. Optimal clinical MC SABR plans were generated using a combination of non-coplanar conformal arcs and beams for the Novalis-TX consisting of high definition multileaf collimators (MLCs) and 6 MV-SRS (1000 MU/min) mode. All plans were evaluated using the RTOG 0813 high and intermediate dose spillage criteria: conformity index (R100%), ratio of 50% isodose volume to the PTV (R50%), maximum dose 2 cm away from PTV in any direction (D2 cm), and percent of normal lung receiving 20 Gy (V20) or more. Other organs-at-risk (OARs) doses were tabulated, including the volume of normal lung receiving 5 Gy (V5), maximum cord dose, dose to < 15 cc of heart, and dose to <5 cc of esophagus. Only six out of 18 patients met all RTOG 0813 compliance criteria. Eight of 18 patients had minor deviations in R100%, four in R50%, and nine in D2 cm. However, only one patient had minor deviation in V20. All other OARs doses, such as maximum cord dose, dose to < 15 cc of heart, and dose to < 5 cc of esophagus, were satisfactory for RTOG criteria, except for one patient, for whom the dose to < 15 cc of heart was higher than RTOG guidelines. The preliminary results for our limited iPlan XVMC dose calculations indicate that the majority (i.e., 2/3) of our patients had minor deviations in the dosimetric guidelines set by RTOG 0813 protocol in one way or another. When using an exclusive highly sophisticated XVMC algorithm, the RTOG 0813 dosimetric compliance criteria such as R100% and D2 cm may need to be revisited. Based on our limited number of patient datasets, in general, about 6% for R100% and 9% for D2 cm corrections could be applied to pass the RTOG 0813 compliance criteria in most of those patients. More patient plans need to be evaluated to make recommendation for R50%. No adjustment is necessary for OAR dose tolerances, including normal lung V20. In order to establish new MC specific dose parameters, further investigation with a large cohort of patients including central, as well as peripheral lung tumors, is anticipated and strongly recommended.
Collapse
Affiliation(s)
- Damodar Pokhrel
- The University of Kansas Hospital Department of Radiation Oncology Kansas City, KS 66160.
| | | | | | | | | |
Collapse
|
32
|
Chen WZ, Xiao Y, Li J. Impact of dose calculation algorithm on radiation therapy. World J Radiol 2014; 6:874-880. [PMID: 25431642 PMCID: PMC4241494 DOI: 10.4329/wjr.v6.i11.874] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/04/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
The quality of radiation therapy depends on the ability to maximize the tumor control probability while minimize the normal tissue complication probability. Both of these two quantities are directly related to the accuracy of dose distributions calculated by treatment planning systems. The commonly used dose calculation algorithms in the treatment planning systems are reviewed in this work. The accuracy comparisons among these algorithms are illustrated by summarizing the highly cited research papers on this topic. Further, the correlation between the algorithms and tumor control probability/normal tissue complication probability values are manifested by several recent studies from different groups. All the cases demonstrate that dose calculation algorithms play a vital role in radiation therapy.
Collapse
|
33
|
Lacornerie T, Lisbona A, Mirabel X, Lartigau E, Reynaert N. GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms. Radiat Oncol 2014; 9:223. [PMID: 25319444 PMCID: PMC4205279 DOI: 10.1186/s13014-014-0223-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 09/29/2014] [Indexed: 12/31/2022] Open
Abstract
Background The aim of current study was to investigate the way dose is prescribed to lung lesions during SBRT using advanced dose calculation algorithms that take into account electron transport (type B algorithms). As type A algorithms do not take into account secondary electron transport, they overestimate the dose to lung lesions. Type B algorithms are more accurate but still no consensus is reached regarding dose prescription. The positive clinical results obtained using type A algorithms should be used as a starting point. Methods In current work a dose-calculation experiment is performed, presenting different prescription methods. Three cases with three different sizes of peripheral lung lesions were planned using three different treatment platforms. For each individual case 60 Gy to the PTV was prescribed using a type A algorithm and the dose distribution was recalculated using a type B algorithm in order to evaluate the impact of the secondary electron transport. Secondly, for each case a type B algorithm was used to prescribe 48 Gy to the PTV, and the resulting doses to the GTV were analyzed. Finally, prescriptions based on specific GTV dose volumes were evaluated. Results When using a type A algorithm to prescribe the same dose to the PTV, the differences regarding median GTV doses among platforms and cases were always less than 10% of the prescription dose. The prescription to the PTV based on type B algorithms, leads to a more important variability of the median GTV dose among cases and among platforms, (respectively 24%, and 28%). However, when 54 Gy was prescribed as median GTV dose, using a type B algorithm, the variability observed was minimal. Conclusion Normalizing the prescription dose to the median GTV dose for lung lesions avoids variability among different cases and treatment platforms of SBRT when type B algorithms are used to calculate the dose. The combination of using a type A algorithm to optimize a homogeneous dose in the PTV and using a type B algorithm to prescribe the median GTV dose provides a very robust method for treating lung lesions. Electronic supplementary material The online version of this article (doi:10.1186/s13014-014-0223-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Albert Lisbona
- Service de Physique Médicale, Institut de Cancérologie de l'Ouest, Nantes, France.
| | - Xavier Mirabel
- Département Universitaire de Radiothérapie, Centre Oscar Lambret, Lille, France.
| | - Eric Lartigau
- Département Universitaire de Radiothérapie, Centre Oscar Lambret, Lille, France.
| | - Nick Reynaert
- Service de Physique Médicale, Centre Oscar Lambret, Lille, France.
| |
Collapse
|
34
|
Akino Y, Das IJ, Cardenes HR, Desrosiers CM. Correlation between target volume and electron transport effects affecting heterogeneity corrections in stereotactic body radiotherapy for lung cancer. JOURNAL OF RADIATION RESEARCH 2014; 55:754-760. [PMID: 24522269 PMCID: PMC4099989 DOI: 10.1093/jrr/rrt231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/25/2013] [Accepted: 12/28/2013] [Indexed: 06/01/2023]
Abstract
Recently, stereotactic body radiotherapy (SBRT) for lung cancer is conducted with heterogeneity-corrected treatment plans, as the correction greatly affects the dose delivery to the lung tumor. In this study, the correlation between the planning target volume (PTV) and the dose delivery is investigated by separation of the heterogeneity correction effects into photon attenuation and electron transport. Under Institutional Review Board exemption status, 74 patients with lung cancer who were treated with SBRT were retrospectively evaluated. All treatment plans were generated using an anisotropic analytical algorithm (AAA) of an Eclipse (Varian Medical Systems, Palo Alto, CA) treatment planning system. Two additional plans were created using the same treatment parameters (monitor units, beam angles and energy): a plan with no heterogeneity correction (NC), and a plan calculated with a pencil beam convolution algorithm (PBC). Compared with NC, AAA and PBC isocenter doses were on average 13.4% and 21.8% higher, respectively. The differences in the isocenter dose and the dose coverage for 95% of the PTV (D95%) between PBC and AAA were correlated logarithmically (ρ = 0.78 and ρ = 0.46, respectively) with PTV. Although D95% calculated with AAA was in general 2.9% larger than that for NC, patients with a small PTV showed a negative ΔD95% for AAA due to the significant effect of electron transport. The PTV volume shows logarithmic correlation with the effects of the lateral electron transport. These findings indicate that the dosimetric metrics and prescription, especially in clinical trials, should be clearly evaluated in the context of target volume characteristics and with proper heterogeneity correction.
Collapse
Affiliation(s)
- Yuichi Akino
- Department of Radiation Oncology, Indiana University School of Medicine, 535 Barnhill Drive RT 041, Indianapolis, IN 46202, USA
| | - Indra J Das
- Department of Radiation Oncology, Indiana University School of Medicine, 535 Barnhill Drive RT 041, Indianapolis, IN 46202, USA
| | - Higinia R Cardenes
- Department of Radiation Oncology, Indiana University School of Medicine, 535 Barnhill Drive RT 041, Indianapolis, IN 46202, USA
| | - Colleen M Desrosiers
- Department of Radiation Oncology, Indiana University School of Medicine, 535 Barnhill Drive RT 041, Indianapolis, IN 46202, USA
| |
Collapse
|
35
|
López-Tarjuelo J, García-Mollá R, Juan-Senabre XJ, Quirós-Higueras JD, Santos-Serra A, de Marco-Blancas N, Calzada-Feliu S. Acceptance and Commissioning of a Treatment Planning System Based on Monte Carlo Calculations. Technol Cancer Res Treat 2014; 13:129-38. [DOI: 10.7785/tcrt.2012.500361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Monaco Treatment Planning System (TPS), based on a virtual energy fluence model of the photon beam head components of the linac and a dose computation engine made with Monte Carlo (MC) algorithm X-Ray Voxel MC (XVMC), has been tested before being put into clinical use. An Elekta Synergy with 6 MV was characterized using routine equipment. After the machine's model was installed, a set of functionality, geometric, dosimetric and data transfer tests were performed. The dosimetric tests included dose calculations in water, heterogeneous phantoms and Intensity Modulated Radiation Therapy (IMRT) verifications. Data transfer tests were run for every imaging device, TPS and the electronic medical record linked to Monaco. Functionality and geometric tests were run properly. Dose calculations in water were in accordance with measurements so that, in 95% of cases, differences were up to 1.9%. Dose calculation in heterogeneous media showed expected results found in the literature. IMRT verification results with an ionization chamber led to dose differences lower than 2.5% for points inside a standard gradient. When an 2-D array was used, all the fields passed the γ (3%, 3 mm) test with a percentage of succeeding points between 90% and 95%, of which the majority of the mentioned fields had a percentage of succeeding points between 95% and 100%. Data transfer caused problems that had to be solved by means of changing our workflow. In general, tests led to satisfactory results. Monaco performance complied with published international recommendations and scored highly in the dosimetric ambit. However, the problems detected when the TPS was put to work together with our current equipment showed that this kind of product must be completely commissioned, without neglecting data workflow, before treating the first patient.
Collapse
Affiliation(s)
- J. López-Tarjuelo
- Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón. Avda. Dr. Clará, 19. Castellón de la Plana 12002. España/Spain
| | - R. García-Mollá
- Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón. Avda. Dr. Clará, 19. Castellón de la Plana 12002. España/Spain
| | - X. J. Juan-Senabre
- Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón. Avda. Dr. Clará, 19. Castellón de la Plana 12002. España/Spain
| | - J. D. Quirós-Higueras
- Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón. Avda. Dr. Clará, 19. Castellón de la Plana 12002. España/Spain
| | - A. Santos-Serra
- Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón. Avda. Dr. Clará, 19. Castellón de la Plana 12002. España/Spain
| | - N. de Marco-Blancas
- Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón. Avda. Dr. Clará, 19. Castellón de la Plana 12002. España/Spain
| | - S. Calzada-Feliu
- Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón. Avda. Dr. Clará, 19. Castellón de la Plana 12002. España/Spain
| |
Collapse
|
36
|
Ojala JJ, Kapanen MK, Hyödynmaa SJ, Wigren TK, Pitkänen MA. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions. J Appl Clin Med Phys 2014; 15:4662. [PMID: 24710454 PMCID: PMC5875463 DOI: 10.1120/jacmp.v15i2.4662] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/04/2013] [Accepted: 09/25/2013] [Indexed: 12/31/2022] Open
Abstract
The accuracy of dose calculation is a key challenge in stereotactic body radiotherapy (SBRT) of the lung. We have benchmarked three photon beam dose calculation algorithms — pencil beam convolution (PBC), anisotropic analytical algorithm (AAA), and Acuros XB (AXB) — implemented in a commercial treatment planning system (TPS), Varian Eclipse. Dose distributions from full Monte Carlo (MC) simulations were regarded as a reference. In the first stage, for four patients with central lung tumors, treatment plans using 3D conformal radiotherapy (CRT) technique applying 6 MV photon beams were made using the AXB algorithm, with planning criteria according to the Nordic SBRT study group. The plans were recalculated (with same number of monitor units (MUs) and identical field settings) using BEAMnrc and DOSXYZnrc MC codes. The MC‐calculated dose distributions were compared to corresponding AXB‐calculated dose distributions to assess the accuracy of the AXB algorithm, to which then other TPS algorithms were compared. In the second stage, treatment plans were made for ten patients with 3D CRT technique using both the PBC algorithm and the AAA. The plans were recalculated (with same number of MUs and identical field settings) with the AXB algorithm, then compared to original plans. Throughout the study, the comparisons were made as a function of the size of the planning target volume (PTV), using various dose‐volume histogram (DVH) and other parameters to quantitatively assess the plan quality. In the first stage also, 3D gamma analyses with threshold criteria 3%/3 mm and 2%/2 mm were applied. The AXB‐calculated dose distributions showed relatively high level of agreement in the light of 3D gamma analysis and DVH comparison against the full MC simulation, especially with large PTVs, but, with smaller PTVs, larger discrepancies were found. Gamma agreement index (GAI) values between 95.5% and 99.6% for all the plans with the threshold criteria 3%/3 mm were achieved, but 2%/2 mm threshold criteria showed larger discrepancies. The TPS algorithm comparison results showed large dose discrepancies in the PTV mean dose (D50%), nearly 60%, for the PBC algorithm, and differences of nearly 20% for the AAA, occurring also in the small PTV size range. This work suggests the application of independent plan verification, when the AAA or the AXB algorithm are utilized in lung SBRT having PTVs smaller than 20‐25 cc. The calculated data from this study can be used in converting the SBRT protocols based on type ‘a’ and/or type ‘b’ algorithms for the most recent generation type ‘c’ algorithms, such as the AXB algorithm. PACS numbers: 87.55.‐x, 87.55.D‐, 87.55.K‐, 87.55.kd, 87.55.Qr
Collapse
|
37
|
Rana S, Rogers K, Pokharel S, Cheng C. Evaluation of Acuros XB algorithm based on RTOG 0813 dosimetric criteria for SBRT lung treatment with RapidArc. J Appl Clin Med Phys 2014; 15:4474. [PMID: 24423844 PMCID: PMC5711238 DOI: 10.1120/jacmp.v15i1.4474] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 09/25/2013] [Accepted: 09/07/2013] [Indexed: 12/20/2022] Open
Abstract
The Radiation Therapy Oncology Group (RTOG) 0813 protocol requires the use of dose calculation algorithms with tissue heterogeneity corrections to compute dose on stereotactic body radiation therapy (SBRT) non-small cell lung cancer (NSCLC) plans. A new photon dose calculation algorithm called Acuros XB (AXB) has recently been implemented in the Eclipse treatment planning system (TPS). The main purpose of this study was to compare the dosimetric results of AXB with that of anisotropic analytical algorithm (AAA) for RTOG 0813 parameters. Additionally, phantom study was done to evaluate the dose prediction accuracy of AXB and AAA beyond low-density medium of different thicknesses by comparing the calculated results with the measurements. For the RTOG dosimetric study, 14 clinically approved SBRT NSCLC cases were included. The planning target volume (PTV) ranged from 3.2-43.0 cc. RapidArc treatment plans were generated in the Eclipse TPS following RTOG 0813 dosimetric criteria, and treatment plans were calculated using AAA with heterogeneity correction (AAA plans). All the AAA plans were then recalculated using AXB with heterogeneity correction (AXB plans) for identical beam parameters and same number of monitor units. The AAA and AXB plans were compared for following RTOG 0813 parameters: ratio of prescription isodose volume to PTV (R100%), ratio of 50% prescription isodose volume to PTV (R50%), maximal dose 2 cm from the PTV in any direction as a percentage of prescription dose (D2cm), and the percentage of ipsilateral lung receiving dose equal to or larger than 20 Gy (V20). The phantom study showed that the results of AXB had better agreement with the measurements, and the difference ranged from -1.7% to 2.8%. The AAA results showed larger disagreement with the measurements, with differences from 4.1% to 12.5% for field size 5 × 5cm2 and from 1.4% to 6.8% for field size 10 × 10 cm2. The results from the RTOG SBRT lung cases showed that, on average, the AXB plans produced lower values for R100%, R50%, and D2cm by 4.96%, 1.15%, and 1.60%, respectively, but higher V20 of ipsilateral lung by 1.09% when compared with AAA plans. In the set of AAA plans, minor deviation was seen for R100% (six cases), R50% (nine cases), D2cm (four cases), and V20 (one case). Similarly, the AXB plans also showed minor deviation for R100% (one case), R50% (eight cases), D2cm (three cases), and V20 (one case). The dosimetric results presented in the current study show that both the AXB and AAA can meet the RTOG 0813 dosimetric criteria.
Collapse
Affiliation(s)
- Suresh Rana
- ProCure Proton Therapy Center, Arizona Center for Cancer.
| | | | | | | |
Collapse
|
38
|
Braunstein SE, Dionisio SA, Lometti MW, Pinnaduwage DS, Chuang CF, Yom SS, Gottschalk AR, Descovich M. Evaluation of ray tracing and Monte Carlo algorithms in dose calculation and clinical outcomes for robotic stereotactic body radiotherapy of lung cancers. JOURNAL OF RADIOSURGERY AND SBRT 2014; 3:67-79. [PMID: 29296387 PMCID: PMC5725332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/20/2013] [Indexed: 06/07/2023]
Abstract
PURPOSE/OBJECTIVE Dose calculation in treatment planning must account for tissue heterogeneity, especially for tumors within low-density lung tissues. While Monte Carlo (MC) calculation methods are the most accurate, Ray Tracing (RT) methods are also commonly employed. We evaluated dose calculation differences between the RT and MC algorithms in central and peripheral lung tumors treated with CyberKnife SBRT to determine which planning parameters may predict dose differences. We also examined clinical outcomes of local-regional control (LRC) and long-term treatment-related toxicity as a function of calculation method. MATERIALS/METHODS A retrospective series of 70 patient plans (19 central and 51 peripheral lung lesions) treated between 2009 and 2011 were analyzed. Among those, 33 were primary lung cancer and 37 were metastatic lesions. Thirty-three treatment plans were developed with the RT method, and 37 plans used MC. Groups were recalculated with the reciprocal method for dose comparison. Parameters examined to quantify dose differences between the two algorithms included: dose delivered to 95% (D95) of the planning target volume (PTV), dose heterogeneity, and dose to organs at risk (OAR). Dose differences were analyzed as a function of target volume, distance to soft tissue, and fraction of target overlap with soft tissue. For the subset of primary lung tumors, LRC was assessed radiographically at a median follow-up of 19 months (mo) (range, 2 to 41 mo). RESULTS Compared to MC, the RT algorithm largely overestimated the dose delivered to the PTV. The dose difference between RT and MC plans correlated to the volume of PTV overlapping with soft tissue; the smaller the overlap volume, the larger the dose differences between RT and MC. Compared to MC, the RT algorithm overestimated the dose delivered to 10% of the ipsilateral lung (D10%). Evidence of local progression was noted in only one of the 31 patients treated for primary lung malignancy. DFS and OS were not significantly different between RT and MC plans. CONCLUSION There is a significant range of discordance between MC and RT dose calculations for SBRT treated peripheral lung tumors. While variation is correlated to target size and proximity to soft tissue, no single parameter can reliably predict dose differences. Ultimately, local control and long-term toxicity appear independent of the dose calculation method.
Collapse
Affiliation(s)
- Steve E Braunstein
- University of California, San Francisco, Department of Radiation Oncology, 1600 Divisadero St., Suite H1031, San Francisco, CA 94143, USA
| | - Sebastian A Dionisio
- University of California, San Francisco, Department of Radiation Oncology, 1600 Divisadero St., Suite H1031, San Francisco, CA 94143, USA
| | - Michael W Lometti
- University of California, San Francisco, Department of Radiation Oncology, 1600 Divisadero St., Suite H1031, San Francisco, CA 94143, USA
| | - Dilini S Pinnaduwage
- University of California, San Francisco, Department of Radiation Oncology, 1600 Divisadero St., Suite H1031, San Francisco, CA 94143, USA
| | - Cynthia F Chuang
- University of California, San Francisco, Department of Radiation Oncology, 1600 Divisadero St., Suite H1031, San Francisco, CA 94143, USA
| | - Sue S Yom
- University of California, San Francisco, Department of Radiation Oncology, 1600 Divisadero St., Suite H1031, San Francisco, CA 94143, USA
| | - Alexander R Gottschalk
- University of California, San Francisco, Department of Radiation Oncology, 1600 Divisadero St., Suite H1031, San Francisco, CA 94143, USA
| | - Martina Descovich
- University of California, San Francisco, Department of Radiation Oncology, 1600 Divisadero St., Suite H1031, San Francisco, CA 94143, USA
| |
Collapse
|
39
|
Ruggieri R, Stavreva N, Naccarato S, Stavrev P. Computed 88% TCP dose for SBRT of NSCLC from tumour hypoxia modelling. Phys Med Biol 2013; 58:4611-20. [DOI: 10.1088/0031-9155/58/13/4611] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|