1
|
Raymakers L, Demmers TJ, Meijer GJ, Molenaar IQ, van Santvoort HC, Intven MPW, Leusen JHW, Olofsen PA, Daamen LA. The Effect of Radiation Treatment of Solid Tumors on Neutrophil Infiltration and Function: A Systematic Review. Int J Radiat Oncol Biol Phys 2024; 120:845-861. [PMID: 39009323 DOI: 10.1016/j.ijrobp.2024.07.2141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Radiation therapy (RT) initiates a local and systemic immune response which can induce antitumor immunity and improve immunotherapy efficacy. Neutrophils are among the first immune cells that infiltrate tumors after RT and are suggested to be essential for the initial antitumor immune response. However, neutrophils in tumors are associated with poor outcomes and RT-induced neutrophil infiltration could also change the composition of the tumor microenvironment (TME) in favor of tumor progression. To improve RT efficacy for patients with cancer it is important to understand the interplay between RT and neutrophils. Here, we review the literature on how RT affects the infiltration and function of neutrophils in the TME of solid tumors, using both patients studies and preclinical murine in vivo models. In general, it was found that neutrophil levels increase and reach maximal levels in the first days after RT and can remain elevated up to 3 weeks. Most studies report an immunosuppressive role of neutrophils in the TME after RT, caused by upregulated expression of neutrophil indoleamine 2,3-dioxygenase 1 and arginase 1, as well as neutrophil extracellular trap formation. RT was also associated with increased reactive oxygen species production by neutrophils, which can both improve and inhibit antitumor immunity. In addition, multiple murine models showed improved RT efficacy when depleting neutrophils, suggesting that neutrophils have a protumor phenotype after RT. We conclude that the role of neutrophils should not be overlooked when developing RT strategies and requires further investigation in specific tumor types. In addition, neutrophils can possibly be exploited to enhance RT efficacy by combining RT with neutrophil-targeting therapies.
Collapse
Affiliation(s)
- Léon Raymakers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Thijs J Demmers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gert J Meijer
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - I Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands
| | - Martijn P W Intven
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patricia A Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lois A Daamen
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands; Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Li TT, Lin CL, Chiang M, He JT, Hung CH, Hsieh CC. Cytokine-Induced Myeloid-Derived Suppressor Cells Demonstrate Their Immunoregulatory Functions to Prolong the Survival of Diabetic Mice. Cells 2023; 12:1507. [PMID: 37296628 PMCID: PMC10253032 DOI: 10.3390/cells12111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Type 1 diabetes is an inflammatory state. Myeloid-derived suppressive cells (MDSCs) originate from immature myeloid cells and quickly expand to control host immunity during infection, inflammation, trauma, and cancer. This study presents an ex vivo procedure to develop MDSCs from bone marrow cells propagated from granulocyte-macrophage-colony-stimulating factor (GM-CSF), interleukin (IL)-6, and IL-1β cytokines expressing immature morphology and high immunosuppression of T-cell proliferation. The adoptive transfer of cytokine-induced MDSCs (cMDSCs) improved the hyperglycemic state and prolonged the diabetes-free survival of nonobese diabetic (NOD) mice with severe combined immune deficiency (SCID) induced by reactive splenic T cells harvested from NOD mice. In addition, the application of cMDSCs reduced fibronectin production in the renal glomeruli and improved renal function and proteinuria in diabetic mice. Moreover, cMDSCs use mitigated pancreatic insulitis to restore insulin production and reduce the levels of HbA1c. In conclusion, administering cMDSCs propagated from GM-CSF, IL-6, and IL-1β cytokines provides an alternative immunotherapy protocol for treating diabetic pancreatic insulitis and renal nephropathy.
Collapse
Affiliation(s)
- Tung-Teng Li
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
| | - Chun-Liang Lin
- Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Meihua Chiang
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
| | - Jie-Teng He
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
| | - Chien-Hui Hung
- College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
- Division of Infectious Diseases, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan
| | - Ching-Chuan Hsieh
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
3
|
Chen MF, Chen PT, Hsieh CC, Wang CC. Effect of Proton Therapy on Tumor Cell Killing and Immune Microenvironment for Hepatocellular Carcinoma. Cells 2023; 12:cells12020332. [PMID: 36672266 PMCID: PMC9857172 DOI: 10.3390/cells12020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/31/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Radiotherapy with proton therapy (PT) has dosimetric advantages over photon therapy, which helps to enlarge the therapeutic window of radiotherapy for hepatocellular carcinoma (HCC). We evaluated the response of HCC to PT and examined the underlying mechanisms. The human liver cancer cell lines HepG2 and HuH7 and the murine liver cancer cell line Hepa1-6 were selected for cell and animal experiments to examine the response induced by PT irradiation. Biological changes and the immunological response following PT irradiation were examined. In vitro experiments showed no significant difference in cell survival following PT compared with photon radiotherapy. In a murine tumor model, the tumors were obviously smaller in size 12 days after PT irradiation. The underlying changes included increased DNA damage, upregulated IL-6 levels, and a regulated immune tumor microenvironment. Protein analysis in vitro and in vivo showed that PT increased the level of programmed cell death ligand 1 (PD-L1) expressed in tumor cells and recruited myeloid-derived suppressor cells (MDSCs). The increase in PD-L1 was positively correlated with the irradiation dose. In Hepa1-6 syngeneic mouse models, the combination of PT with anti-PD-L1 increased tumor growth delay compared with PT alone, which was associated with increased tumor-infiltrating T cells and attenuated MDSC recruitment in the microenvironment. Furthermore, when PT was applied to the primary HCC tumor, anti-PD-L1 antibody-treated mice showed smaller synchronous unirradiated tumors. In conclusion, the response of HCC to PT was determined by tumor cell killing and the immunological response in the tumor microenvironment. The combination with the anti-PD-L1 antibody to enhance antitumor immunity was responsible for the therapeutic synergism for HCC treated with PT. Based on our results, we suggest that PT combined with anti-PD-L1 may be a promising therapeutic policy for HCC.
Collapse
Affiliation(s)
- Miao-Fen Chen
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linko, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan333, Taiwan
- Correspondence: (M.-F.C.); (C.-C.W.); Tel.: +886-3-3281000 (ext. 7008) (M.-F.C.)
| | - Ping-Tsung Chen
- Department of Medical Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ching-Chuan Hsieh
- College of Medicine, Chang Gung University, Taoyuan333, Taiwan
- Department of Surgery, Chang Gung Memorial Hospital at Chiayi, Chiayi 613, Taiwan
| | - Chih-Chi Wang
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Correspondence: (M.-F.C.); (C.-C.W.); Tel.: +886-3-3281000 (ext. 7008) (M.-F.C.)
| |
Collapse
|
4
|
Hsieh CC, Chang CC, Hsu YC, Lin CL. Immune Modulation by Myeloid-Derived Suppressor Cells in Diabetic Kidney Disease. Int J Mol Sci 2022; 23:13263. [PMID: 36362050 PMCID: PMC9655277 DOI: 10.3390/ijms232113263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 09/22/2023] Open
Abstract
Diabetic kidney disease (DKD) frequently leads to end-stage renal disease and other life-threatening illnesses. The dysregulation of glomerular cell types, including mesangial cells, endothelial cells, and podocytes, appears to play a vital role in the development of DKD. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory and anti-inflammatory properties through the depletion of L-arginine that is required by T cells, through generation of oxidative stress, interference with T-cell recruitment and viability, proliferation of regulatory T cells, and through the promotion of pro-tumorigenic functions. Under hyperglycemic conditions, mouse mesangial cells reportedly produce higher levels of fibronectin and pro-inflammatory cytokines. Moreover, the number of MDSCs is noticeably decreased, weakening inhibitory immune activities, and creating an inflammatory environment. In diabetic mice, immunotherapy with MDSCs that were induced by a combination of granulocyte-macrophage colony-stimulating factor, interleukin (IL)-1β, and IL-6, reduced kidney to body weight ratio, fibronectin expression, and fibronectin accumulation in renal glomeruli, thus ameliorating DKD. In conclusion, MDSCs exhibit anti-inflammatory activities that help improve renal fibrosis in diabetic mice. The therapeutic targeting of the proliferative or immunomodulatory pathways of MDSCs may represent an alternative immunotherapeutic strategy for DKD.
Collapse
Affiliation(s)
- Ching-Chuan Hsieh
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| | - Cheng-Chih Chang
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| | - Yung-Chien Hsu
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
- Division of Nephrology, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| | - Chun-Liang Lin
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
- Division of Nephrology, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| |
Collapse
|
5
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
6
|
Chen PT, Hsieh CC, Chen MF. Role of vitamin D3 in tumor aggressiveness and radiation response for hepatocellular carcinoma. Mol Carcinog 2022; 61:787-796. [PMID: 35611989 DOI: 10.1002/mc.23421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Locoregional control is a significant prognostic factor for hepatocellular carcinoma (HCC). Historically, the use of radiotherapy (RT) for HCC was limited owing to the low radiotolerance of the liver and the need for high RT doses for disease control. We aimed to examine if 1α,25-dihydroxyvitamin D3 (calcitriol) has a role in the tumor inhibition and the radiation response of HCC in vitro and in vivo, and explore the underlying mechanisms. The human and murine liver cancer cell lines were selected for cellular and animal experiments to investigate the changes in tumor characteristics and the radiation response after calcitriol supplementation. The effects induced by calcitriol supplementation on interleukin-6 (IL-6) signaling and the tumor immune microenvironment following RT were also examined. Our data revealed that calcitriol supplementation attenuated tumor aggressive behavior, decrease IL-6 expression, and augmented radiation-induced tumor inhibition. The biological changes following calcitriol treatment included suppressed epithelial-mesenchymal transition, attenuated cancer stem cell-like properties and increased radiation-induced reactive oxygen species and cell death in vitro. Regarding immune microenvironment, calcitriol attenuated the recruitment of myeloid-derived suppressor cell (MDSC) recruitment and increased the infiltration of cytotoxic T cells in tumor following RT. Furthermore, When the primary liver tumor was irradiated with larger dose per fraction, calcitriol induced a smaller size of synchronous unirradiated tumor in mice, which linked with attenuated IL-6 signaling and MDSC recruitment. In conclusion, calcitriol treatment reduced tumor aggressiveness and enhanced the radiation response. The inhibited IL-6 signaling and subsequently enhanced antitumor immunity might be responsible to augment radiation-induced tumoricidal effect induced by calcitriol. Based on our results, we suggest that calcitriol could exert the antitumor and radiosensitization effects for HCC, especially for multifocal tumors.
Collapse
Affiliation(s)
- Ping-Tsung Chen
- Department of Hematology Oncology, Chang Gung Memorial Hospital at Chiayi, Puzi, Taiwan.,Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chuan Hsieh
- Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Surgery, Chang Gung Memorial Hospital at Chiayi, Puzi, Taiwan
| | - Miao-Fen Chen
- Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Puzi, Taiwan
| |
Collapse
|
7
|
Galeaz C, Totis C, Bisio A. Radiation Resistance: A Matter of Transcription Factors. Front Oncol 2021; 11:662840. [PMID: 34141616 PMCID: PMC8204019 DOI: 10.3389/fonc.2021.662840] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, radiation therapy is one of the standard therapies for cancer treatment. Since the first applications, the field of radiotherapy has constantly improved, both in imaging technologies and from a dose-painting point of view. Despite this, the mechanisms of resistance are still a great problem to overcome. Therefore, a more detailed understanding of these molecular mechanisms will allow researchers to develop new therapeutic strategies to eradicate cancer effectively. This review focuses on different transcription factors activated in response to radiotherapy and, unfortunately, involved in cancer cells’ survival. In particular, ionizing radiations trigger the activation of the immune modulators STAT3 and NF-κB, which contribute to the development of radiation resistance through the up-regulation of anti-apoptotic genes, the promotion of proliferation, the alteration of the cell cycle, and the induction of genes responsible for the Epithelial to Mesenchymal Transition (EMT). Moreover, the ROS-dependent damaging effects of radiation therapy are hampered by the induction of antioxidant enzymes by NF-κB, NRF2, and HIF-1. This protective process results in a reduced effectiveness of the treatment, whose mechanism of action relies mainly on the generation of free oxygen radicals. Furthermore, the previously mentioned transcription factors are also involved in the maintenance of stemness in Cancer Stem Cells (CSCs), a subset of tumor cells that are intrinsically resistant to anti-cancer therapies. Therefore, combining standard treatments with new therapeutic strategies targeted against these transcription factors may be a promising opportunity to avoid resistance and thus tumor relapse.
Collapse
Affiliation(s)
- Chiara Galeaz
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Cristina Totis
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandra Bisio
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
8
|
Subedi P, Gomolka M, Moertl S, Dietz A. Ionizing Radiation Protein Biomarkers in Normal Tissue and Their Correlation to Radiosensitivity: A Systematic Review. J Pers Med 2021; 11:jpm11020140. [PMID: 33669522 PMCID: PMC7922485 DOI: 10.3390/jpm11020140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 12/16/2022] Open
Abstract
Background and objectives: Exposure to ionizing radiation (IR) has increased immensely over the past years, owing to diagnostic and therapeutic reasons. However, certain radiosensitive individuals show toxic enhanced reaction to IR, and it is necessary to specifically protect them from unwanted exposure. Although predicting radiosensitivity is the way forward in the field of personalised medicine, there is limited information on the potential biomarkers. The aim of this systematic review is to identify evidence from a range of literature in order to present the status quo of our knowledge of IR-induced changes in protein expression in normal tissues, which can be correlated to radiosensitivity. Methods: Studies were searched in NCBI Pubmed and in ISI Web of Science databases and field experts were consulted for relevant studies. Primary peer-reviewed studies in English language within the time-frame of 2011 to 2020 were considered. Human non-tumour tissues and human-derived non-tumour model systems that have been exposed to IR were considered if they reported changes in protein levels, which could be correlated to radiosensitivity. At least two reviewers screened the titles, keywords, and abstracts of the studies against the eligibility criteria at the first phase and full texts of potential studies at the second phase. Similarly, at least two reviewers manually extracted the data and accessed the risk of bias (National Toxicology Program/Office for Health Assessment and Translation—NTP/OHAT) for the included studies. Finally, the data were synthesised narratively in accordance to synthesis without meta analyses (SWiM) method. Results: In total, 28 studies were included in this review. Most of the records (16) demonstrated increased residual DNA damage in radiosensitive individuals compared to normo-sensitive individuals based on γH2AX and TP53BP1. Overall, 15 studies included proteins other than DNA repair foci, of which five proteins were selected, Vascular endothelial growth factor (VEGF), Caspase 3, p16INK4A (Cyclin-dependent kinase inhibitor 2A, CDKN2A), Interleukin-6, and Interleukin-1β, that were connected to radiosensitivity in normal tissue and were reported at least in two independent studies. Conclusions and implication of key findings: A majority of studies used repair foci as a tool to predict radiosensitivity. However, its correlation to outcome parameters such as repair deficient cell lines and patients, as well as an association to moderate and severe clinical radiation reactions, still remain contradictory. When IR-induced proteins reported in at least two studies were considered, a protein network was discovered, which provides a direction for further studies to elucidate the mechanisms of radiosensitivity. Although the identification of only a few of the commonly reported proteins might raise a concern, this could be because (i) our eligibility criteria were strict and (ii) radiosensitivity is influenced by multiple factors. Registration: PROSPERO (CRD42020220064).
Collapse
|
9
|
Kumar A, Kumarchandra R, Rai R, Kumblekar V. Radiation mitigating activities of Psidium guajava L. against whole-body X-ray-induced damages in albino Wistar rat model. 3 Biotech 2020; 10:507. [PMID: 33178550 PMCID: PMC7642191 DOI: 10.1007/s13205-020-02484-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022] Open
Abstract
In the present study, we investigated radiation mitigating activities of Psidium guajava L. (P. guajava) against whole-body X- ray induced damages in albino Wistar rat model. The animals were orally administered with 200 mg/kg bodyweight of hydroalcoholic leaf extract of P. guajava for five consecutive days and on the fifth day, after the last dose of extract administration, animals were exposed to 4 Gy of X-rays. Rats were sacrificed 24 h post X-ray irradiation. The radiomitigating activity of the herb extract was assessed by micronucleus assay, histopathology of the small intestine and hematological parameters. Hepatic cyclooxygenase-2 (COX-2), interleukin-6 (IL-6) and interleukin -10 (IL-10) levels were assayed to validate the anti-inflammatory property. Biochemical estimations were also performed in RBC lysates to corroborate antioxidant properties in the leaf extract. HPLC analysis of crude extract confirmed the presence of standard flavonoid quercetin. Our results indicated that radiation elevated COX-2, IL-6 and decreased IL-10 levels and also induced micronucleus formation in polychromatic erythrocytes, simultaneously impairing hematological parameters along with erythrocyte antioxidants. The animals pre-treated with P. guajava exhibited a significant decrease in the COX-2 (P ≤ 0.01), IL-6 levels (P ≤ 0.05) and also displayed significant increase in the hepatic IL-10 levels (P ≤ 0.01). Pre-treatment with plant extract improved antioxidant enzyme activities, hematological parameters and reduced the intestinal damage by recovering the architecture of the small intestine. Moreover, extract also rendered protection against radiation induced DNA damage, as evidenced by the significant (P ≤ 0.01) decrease in the percentage of radiation-induced micronucleus in polychromatic erythrocytes. Furthermore, the herb extract treatment increased radiation LD50/30 from 6.6 Gy to 9.0 Gy, offering a dose reduction factor (DRF) of 1.36. Our findings for the first time propose the beneficial use of P. guajava as a radioprotector against X-ray induced damage.
Collapse
Affiliation(s)
- Amith Kumar
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Reshma Kumarchandra
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Rajalakshmi Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Vasavi Kumblekar
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| |
Collapse
|
10
|
Zhang Md J, Zhang Md L, Yang Md Y, Liu Md Q, Ma Md H, Huang Md A, Zhao Md Y, Xia Md Z, Liu Md T, Wu Md G. Polymorphonuclear-MDSCs Facilitate Tumor Regrowth After Radiation by Suppressing CD8 + T Cells. Int J Radiat Oncol Biol Phys 2020; 109:1533-1546. [PMID: 33238192 DOI: 10.1016/j.ijrobp.2020.11.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Radiation therapy (RT) is widely used in the treatment of cancer. Unfortunately, RT alone is insufficient to control the disease in most cases, as regrowth after irradiation still occur. Thus, it would be meaningful to explore the underlying mechanism of tumor regrowth after irradiation. Myeloid-derived suppressor cells (MDSCs) contribute to the immunosuppressive tumor microenvironment and hinder the therapeutic efficacy of RT. However, it is unclear whether MDSCs-mediated immune suppression contributes to local relapse after irradiation. In this article, we tried to figure out how MDSCs sabotage the therapeutic effect of RT, and tried to determine the potential synergistic effect of combination between targeting MDSCs and RT. METHODS AND MATERIALS A syngeneic murine model of Lewis lung cancer was used. The abundance of tumor infiltrating MDSCs and tumor growth after irradiation was assessed. The percentage and functional state of CD8+ T cells were measured by flow cytometry, with or without polymorphonuclear (PMN)-MDSCs depletion. Arginase 1 (ARG1) expression and activity of MDSCs were examined by hematoxylin and eosin staining and flow cytometry. ARG1 inhibitor and phosphodiesterase 5 inhibitor sildenafil were administered after RT to figure out the underlying mechanism of MDSCs-mediated immunosuppression. RESULTS We demonstrated that irradiation recruited MDSCs, especially the polymorphonuclear subset, into the tumor microenvironment. PMN-MDSCs inhibited the CD8+ T cell response by elevating ARG1 expression. Selective depletion of PMN-MDSCs or inhibition on ARG1 promoted the infiltration and activation of intratumoral CD8+ T cells, and delayed tumor regrowth after irradiation. We showed that sildenafil reduced the accumulation and ARG1 expression of PMN-MDSCs after irradiation, thus abrogating the MDSCs-mediated immunosuppression. CONCLUSIONS Our results have suggested that PMN-MDSCs participate in the irradiation-induced immune suppression through ARG1 activation. We have also found that sildenafil has the potential to facilitate antitumor immunity, which provides a new alternative to delay tumor recurrence after RT.
Collapse
Affiliation(s)
- Jieying Zhang Md
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liling Zhang Md
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhui Yang Md
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qing Liu Md
- Oncology Department, Union Hospital, Fujian Medical University, Fuzhou 350000, China
| | - Hong Ma Md
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ai Huang Md
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanxia Zhao Md
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zihan Xia Md
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Liu Md
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Gang Wu Md
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
11
|
Fu SY, Chen FH, Wang CC, Yu CF, Chiang CS, Hong JH. Role of Myeloid-Derived Suppressor Cells in High-Dose-Irradiated TRAMP-C1 Tumors: A Therapeutic Target and an Index for Assessing Tumor Microenvironment. Int J Radiat Oncol Biol Phys 2020; 109:1547-1558. [PMID: 33188861 DOI: 10.1016/j.ijrobp.2020.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE To investigate the temporal and spatial infiltration of TRAMP-C1 tumors by myeloid-derived suppressor cells (MDSCs) after high-dose radiation therapy (RT), and to explore their effect on tumor growth. METHODS AND MATERIALS TRAMP-C1 intramuscularly tumors were irradiated with a single dose of 8 Gy or 25 Gy. The dynamics of infiltrated MDSCs and their intratumoral spatial distribution were assessed by immunohistochemistry and flow cytometry. Cytokine levels in the blood and tumor were analyzed by multiplex immunoassay. Mice were injected with anti-Gr-1 antibody to determine whether MDSCs affect tumor growth after RT. RESULTS CD11b+Gr-1+ MDSCs infiltrated TRAMP-C1 tumors irradiated with 25 Gy, but not 8 Gy, within 4 hours and recruitment persisted for at least 2 weeks. Both CD11b+Ly6G+Ly6C+ polymorphonuclear-MDSCs (PMN-MDSCs) and CD11b+Ly6G-Ly6Chi monocytic-MDSCs (M-MDSCs) were involved. Tumor RT also increased the representation of both MDSC subpopulations in the spleen and peripheral blood. Levels of multiple cytokines were increased in the tumors at 2 weeks, including GM-CSF, G-CSF, CCL-3, CCL-5, CXCL-5, IL-6, IL-17α, and VEGF-a; while G-CSF, IL-6, and TNF-α levels increased in the blood. PMN-MDSCs aggregated in the central necrotic region of the irradiated tumors over time, where they were associated with avascular hypoxia (CD31-PIMO+). MDSCs expressed the proangiogenic factor, matrix metalloproteinase-9, and, within the necrotic area, high levels of arginase-1 and indoleamine 2,3-dioxygenase. Depletion of PMN-MDSCs by Gr-1 antibody increased the efficacy of high-dose RT. CONCLUSIONS PMN-MDSCs infiltrate TRAMP-C1 tumors after high-dose RT. Their spatial distribution suggests they are involved in the evolution of an intratumoral state of necrosis associated with avascular hypoxia, and their phenotype is consistent with them being immunosuppressive. They appear to promote tumor growth after RT, making them a prime therapeutic target for therapeutic intervention. Assessment of MDSCs and cytokine levels in blood could be an index of the need for such an intervention.
Collapse
Affiliation(s)
- Sheng-Yung Fu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Radiation Biology Research Center, Institute for Radiologic Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Fang-Hsin Chen
- Radiation Biology Research Center, Institute for Radiologic Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Imaging and Radiologic Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan
| | - Chun-Chieh Wang
- Radiation Biology Research Center, Institute for Radiologic Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Imaging and Radiologic Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan
| | - Ching-Fang Yu
- Radiation Biology Research Center, Institute for Radiologic Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan.
| | - Ji-Hong Hong
- Radiation Biology Research Center, Institute for Radiologic Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Imaging and Radiologic Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan.
| |
Collapse
|
12
|
Yang X, Lu Y, Hang J, Zhang J, Zhang T, Huo Y, Liu J, Lai S, Luo D, Wang L, Hua R, Lin Y. Lactate-Modulated Immunosuppression of Myeloid-Derived Suppressor Cells Contributes to the Radioresistance of Pancreatic Cancer. Cancer Immunol Res 2020; 8:1440-1451. [PMID: 32917658 DOI: 10.1158/2326-6066.cir-20-0111] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/11/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022]
Abstract
The mechanisms responsible for radioresistance in pancreatic cancer have yet to be elucidated, and the suppressive tumor immune microenvironment must be considered. We investigated whether the radiotherapy-augmented Warburg effect helped myeloid cells acquire an immunosuppressive phenotype, resulting in limited treatment efficacy of pancreatic ductal adenocarcinoma (PDAC). Radiotherapy enhanced the tumor-promoting activity of myeloid-derived suppressor cells (MDSC) in pancreatic cancer. Sustained increase in lactate secretion, resulting from the radiation-augmented Warburg effect, was responsible for the enhanced immunosuppressive phenotype of MDSCs after radiotherapy. Hypoxia-inducible factor-1α (HIF-1α) was essential for tumor cell metabolism and lactate-regulated activation of MDSCs via the G protein-coupled receptor 81 (GPR81)/mTOR/HIF-1α/STAT3 pathway. Blocking lactate production in tumor cells or deleting Hif-1α in MDSCs reverted antitumor T-cell responses and effectively inhibited tumor progression after radiotherapy in pancreatic cancer. Our investigation highlighted the importance of radiation-induced lactate in regulating the inhibitory immune microenvironment of PDAC. Targeting lactate derived from tumor cells and the HIF-1α signaling in MDSCs may hold distinct promise for clinical therapies to alleviate radioresistance in PDAC.
Collapse
Affiliation(s)
- Xuguang Yang
- Cancer Institute, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Lu
- Cancer Institute, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junjie Hang
- Department of Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Junfeng Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tiening Zhang
- Oncology Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanmiao Huo
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Liu
- Oncology Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Lai
- Department of Radiation Oncology, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dawei Luo
- Oncology Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Liwei Wang
- Department of Oncology, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yuli Lin
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Wei X, Jiang Y, Zhang X, Feng S, Zhou B, Ye X, Xing H, Xu Y, Shi J, Guo W, Zhou D, Zhang H, Sun H, Huang C, Lu C, Zheng Y, Meng Y, Huang B, Cong W, Lau WY, Cheng S. Neoadjuvant Three-Dimensional Conformal Radiotherapy for Resectable Hepatocellular Carcinoma With Portal Vein Tumor Thrombus: A Randomized, Open-Label, Multicenter Controlled Study. J Clin Oncol 2019; 37:2141-2151. [PMID: 31283409 PMCID: PMC6698917 DOI: 10.1200/jco.18.02184] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To compare the survival outcomes of neoadjuvant three-dimensional conformal radiotherapy (RT) followed by hepatectomy with hepatectomy alone in patients with hepatocellular carcinoma (HCC) and portal vein tumor thrombus (PVTT). PATIENTS AND METHODS A randomized, multicenter controlled study was conducted from January 2016 to December 2017 in patients with resectable HCC and PVTT. Patients were randomly assigned to receive neoadjuvant RT followed by hepatectomy (n = 82) or hepatectomy alone (n = 82). The modified Response Evaluation Criteria in Solid Tumors (mRECIST) guidelines were used to evaluate the therapeutic effects of RT. The primary end point was overall survival. The expression of interleukin-6 (IL-6) in patients’ serum before RT and in surgical specimens was correlated with response to RT. RESULTS In the neoadjuvant RT group, 17 patients (20.7%) had partial remission. The overall survival rates for the neoadjuvant RT group at 6, 12, 18, and 24 months were 89.0%, 75.2%, 43.9%, and 27.4%, respectively, compared with 81.7%, 43.1%, 16.7%, and 9.4% in the surgery-alone group (P < .001). The corresponding disease-free survival rates were 56.9%, 33.0%, 20.3%, and 13.3% versus 42.1%, 14.9%, 5.0%, and 3.3% (P < .001). On multivariable Cox regression analyses, neoadjuvant RT significantly reduced HCC-related mortality and HCC recurrence rates compared with surgery alone (hazard ratios, 0.35 [95% CI, 0.23 to 0.54; P < .001] and 0.45 [95% CI, 0.31 to 0.64; P < .001]). Increased expressions of IL-6 in pre-RT serum and tumor tissues were significantly associated with resistance to RT. CONCLUSION For patients with resectable HCC and PVTT, neoadjuvant RT provided significantly better postoperative survival outcomes than surgery alone. IL-6 may predict response to RT in these patients.
Collapse
Affiliation(s)
- Xubiao Wei
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Yabo Jiang
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Xiuping Zhang
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Shuang Feng
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Bin Zhou
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Xiaofei Ye
- 2Department of Health Statistics, Navy Military Medical University, Shanghai, People's Republic of China
| | - Hui Xing
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Ying Xu
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Jie Shi
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Weixing Guo
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Dong Zhou
- 3Fujian Provincial Cancer Hospital, Fuzhou, People's Republic of China
| | - Hui Zhang
- 3Fujian Provincial Cancer Hospital, Fuzhou, People's Republic of China
| | - Huichuan Sun
- 4Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Cheng Huang
- 4Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Congde Lu
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Yaxin Zheng
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Yan Meng
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Bin Huang
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Wenming Cong
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Wan Yee Lau
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China.,5The Chinese University of Hong Kong, Sha Tin, People's Republic of China
| | - Shuqun Cheng
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Lin JB, Hung LC, Cheng CY, Chien YA, Lee CH, Huang CC, Chou TW, Ko MH, Lai YC, Liu MT, Chang TH, Lee J, Chen YJ. Prognostic significance of lung radiation dose in patients with esophageal cancer treated with neoadjuvant chemoradiotherapy. Radiat Oncol 2019; 14:85. [PMID: 31126307 PMCID: PMC6534831 DOI: 10.1186/s13014-019-1283-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background The prognostic significance of radiation dose to the lung or heart is unknown in esophageal cancer patients receiving neoadjuvant chemoradiotherapy followed by surgery (trimodal therapy). This study aimed to determine the association between lung and heart radiation dose volumes and prognosis of esophageal cancer after trimodal therapy. Methods This study reviewed 123 esophageal cancer patients treated with trimodal therapy in two tertiary institutions between 2010 and 2015. The dose-volume histogram parameter of Vx was defined as the percentage of total organ volume receiving a radiation dose of x (Gy) or more. Predictors of overall survival (OS) were identified using Cox regression models. Receiver-operating characteristic curves were used to select cut-off values for dose-volume. Results Median follow-up was 28.3 months (range: 4.7–92.8 months). Median OS and progression-free survival were 34.0 months (95% confidence interval [CI]: 27.4–40.6 months) and 24.8 months (95% CI, 18.9–30.7 months), respectively. Multivariate analyses showed that lung V20 (hazard ratio, 1.09; 95% CI: 1.04–1.14; p < 0.001) and lung V5 (hazard ratio, 1.02; 95% CI: 1.00–1.05; p = 0.03) were associated with OS when adjusting for surgical margin and pathological treatment response. The 5-year OS for patients with lung V20 ≤ 23% vs. patients with lung V20 > 23% was 54.4% vs. 5% (p < 0.001) whereas that for patients with lung V5 ≤ 56% vs. patients with lung V5 > 56% was 81.5% vs. 23.4% (p < 0.001). Mean heart dose showed no association with survival outcomes. Conclusions Lung radiation dose was independently associated with survival outcomes in esophageal cancer patients treated with neoadjuvant chemoradiotherapy and surgery. Electronic supplementary material The online version of this article (10.1186/s13014-019-1283-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jhen-Bin Lin
- Department of Radiation Oncology, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua City, 50006, Taiwan
| | - Li-Chung Hung
- Department of Radiation Oncology, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua City, 50006, Taiwan
| | - Ching-Yuan Cheng
- Department of Thoracic Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-An Chien
- Department of Radiation Oncology, Changhua Christian Hospital Yunlin Branch, Yunlin, Taiwan
| | - Chou-Hsien Lee
- Department of Radiation Oncology, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Chia-Chun Huang
- Department of Radiation Oncology, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua City, 50006, Taiwan
| | - Tsai-Wei Chou
- Department of Radiation Oncology, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua City, 50006, Taiwan
| | - Ming-Huei Ko
- Division of Medical Physics, Department of Radiation Oncology, Changhua Christian Hospital, Changhua, Taiwan
| | - Yuan-Chun Lai
- Division of Medical Physics, Department of Radiation Oncology, Changhua Christian Hospital, Changhua, Taiwan
| | - Mu-Tai Liu
- Department of Radiation Oncology, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua City, 50006, Taiwan.,Department of Medical Imaging and Radiological Technology, Yuanpei University of Science and Technology, Hsinchu, Taiwan
| | - Tung-Hao Chang
- Department of Radiation Oncology, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua City, 50006, Taiwan. .,Department of Medical Imaging and Radiological Technology, Yuanpei University of Science and Technology, Hsinchu, Taiwan.
| | - Jie Lee
- Department of Radiation Oncology, MacKay Memorial Hospital, 92, Section 2, Chung Shan North Road, Taipei, 10449, Taiwan. .,Department of Medicine, MacKay Medical College, New Taipei city, Taiwan.
| | - Yu-Jen Chen
- Department of Radiation Oncology, MacKay Memorial Hospital, 92, Section 2, Chung Shan North Road, Taipei, 10449, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei city, Taiwan
| |
Collapse
|
15
|
Chen X, Chen F, Ren Y, Weng G, Xu L, Xue X, Keng PC, Lee SO, Chen Y. IL-6 signaling contributes to radioresistance of prostate cancer through key DNA repair-associated molecules ATM, ATR, and BRCA 1/2. J Cancer Res Clin Oncol 2019; 145:1471-1484. [DOI: 10.1007/s00432-019-02917-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
|
16
|
Pyrazinib (P3), [(E)-2-(2-Pyrazin-2-yl-vinyl)-phenol], a small molecule pyrazine compound enhances radiosensitivity in oesophageal adenocarcinoma. Cancer Lett 2019; 447:115-129. [DOI: 10.1016/j.canlet.2019.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/13/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
|
17
|
Choi J, Lee EJ, Yang SH, Im YR, Seong J. A prospective Phase II study for the efficacy of radiotherapy in combination with zoledronic acid in treating painful bone metastases from gastrointestinal cancers. JOURNAL OF RADIATION RESEARCH 2019; 60:242-248. [PMID: 30445597 PMCID: PMC6430247 DOI: 10.1093/jrr/rry092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/30/2018] [Indexed: 06/09/2023]
Abstract
We investigated the efficacy of combined radiotherapy (RT) and zoledronic acid in treating painful bone metastases from gastrointestinal cancers. Sixty patients were prospectively enrolled between November 2014 and July 2016. The most common primary cancer type was hepatocellular carcinoma (HCC, n = 25), followed by colorectal cancer (n = 6). Patients received external beam RT of 30-54 Gy in 10-17 fractions or 20 Gy in 5 fractions for symptomatic bone metastases. On the first day of RT, patients received 4 mg intravenous zoledronic acid, which was repeated monthly for a total of six cycles. The mean pain score before treatment was 6.7, and it decreased to 2.8 at 1 month and 2.1 at 3 months (P < 0.001).The overall pain response rates at 1 and 3 months were 95% and 96%, respectively. Among the 24 patients who underwent magnetic resonance imaging, 71% were responders, with a complete response in 1 patient and partial in 16 patients. Combined treatment significantly decreased levels of macrophage inflammatory protein-1α and matrix metalloproteinase (MMP)-2 and -3 compared with baseline (all P < 0.05). In HCC patients, IL-6 and MMP-9 levels were significantly lower 1 month after treatment (P < 0.05). The mean quality of life (QOL) score improved from 66 to 56 at 1 month (P < 0.001) and 55 at 3 months (P = 0.016). The median survival was 7 months. In conclusion, RT with zoledronic acid decreased bone pain and improved QOL in patients with painful bone metastases from gastrointestinal cancers. Radiographic findings and serum biomarker measurements were closely correlated with therapeutic responses.
Collapse
Affiliation(s)
- Jinhyun Choi
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 50–1 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Eun Jung Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 50–1 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Seung Hyun Yang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 50–1 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Yoo Ri Im
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 50–1 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 50–1 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
18
|
Wennerberg E, Vanpouille-Box C, Bornstein S, Yamazaki T, Demaria S, Galluzzi L. Immune recognition of irradiated cancer cells. Immunol Rev 2018; 280:220-230. [PMID: 29027232 DOI: 10.1111/imr.12568] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ionizing irradiation has been extensively employed for the clinical management of solid tumors, with therapeutic or palliative intents, for decades. Until recently, radiation therapy (RT) was believed to mediate antineoplastic activity mostly (if not only) as a consequence of cancer cell-intrinsic effects. Indeed, the macromolecular damage imposed to malignant cells by RT initiates one or multiple signal transduction cascades that drive a permanent proliferative arrest (cellular senescence) or regulated cell death. Both these phenomena show a rather linear dose-response correlation. However, RT also mediates consistent immunological activity, not only as an "on-target effect" originating within irradiated cancer cells, but also as an "off-target effect" depending on the interaction between RT and stromal, endothelial, and immune components of the tumor microenvironment. Interestingly, the immunological activity of RT does not exhibit linear dose-response correlation. Here, we discuss the mechanisms whereby RT alters the capacity of the immune system to recognize and eliminate irradiated cancer cells, either as an "on-target" or as on "off-target" effect. In particular, we discuss the antagonism between the immunostimulatory and immunosuppressive effects of RT as we delineate combinatorial strategies to boost the former at the expenses of the latter.
Collapse
Affiliation(s)
- Erik Wennerberg
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Sophia Bornstein
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Université Paris Descartes/Paris V, Paris, France
| |
Collapse
|
19
|
Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies. Cancer Metastasis Rev 2017; 36:375-393. [DOI: 10.1007/s10555-017-9669-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Tamari Y, Kashino G, Mori H. Acquisition of radioresistance by IL-6 treatment is caused by suppression of oxidative stress derived from mitochondria after γ-irradiation. JOURNAL OF RADIATION RESEARCH 2017; 58:412-420. [PMID: 28199717 PMCID: PMC5570009 DOI: 10.1093/jrr/rrw084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/06/2016] [Indexed: 05/22/2023]
Abstract
Interleukin (IL)-6 is a multifunctional cytokine and is one of the radiation-induced bystander factors. This study aimed to clarify the mechanism of acquisition of radioresistance through the control of reactive oxygen species (ROS) by IL-6. We used a rat glioma cell line (C6) as tumor cells and a rat astrocyte cell line (RNB) as non-tumor cells. Our results showed that the surviving fraction of C6 cells after 6 Gy irradiation was increased by the addition of IL-6, but that this was not the case in RNB cells. In addition, the number of 53BP1 foci in C6 cells at 30 min after γ-irradiation were decreased by IL-6. Levels of ROS in whole C6 cells, and superoxide in the mitochondria of C6 cells immediately after γ-irradiation, were reduced by IL-6, but this was not observed in RNB cells. The mitochondrial membrane potential detected by JC-1 in C6 and RNB cells was inhibited by IL-6 alone. Therefore, it was concluded that IL-6 leads specifically to radioresistance in tumor cells by inhibition of increases in ROS after γ-irradiation.
Collapse
Affiliation(s)
- Yuki Tamari
- Department of Radiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Genro Kashino
- Advanced Molecular Imaging Center, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Corresponding author. Advanced Molecular Imaging Center, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan. Tel: +81-97-586-6318; Fax: +81-97-586-6314;
| | - Hiromu Mori
- Department of Radiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| |
Collapse
|
21
|
Cha H, Lee EJ, Seong J. Multi-analyte analysis of cytokines that predict outcomes in patients with hepatocellular carcinoma treated with radiotherapy. World J Gastroenterol 2017; 23:2077-2085. [PMID: 28373775 PMCID: PMC5360650 DOI: 10.3748/wjg.v23.i11.2077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/26/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To analyze cytokine levels and to identify their association with outcome in patients with hepatocellular carcinoma (HCC) treated with radiotherapy (RT).
METHODS Patients with HCC who were treated with RT were eligible for this prospective study. Blood samples were collected before and after RT, and serum cytokine levels including interleukin (IL)-1, IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor-α were analyzed.
RESULTS Between 2008 and 2009, 51 patients were enrolled in this study. Baseline IL-6 level was high in patients with a history of pre-RT treatment. Median survival was 13.9 mo with alpha-fetoprotein (AFP) as a significant factor (P = 0.020). Median failure-free survival (FFS) for infield, outfield-intrahepatic and extrahepatic failures were 23.3, 11.5 and 12.0 mo, respectively. Sex and baseline IL-6 level were associated with infield FFS, and baseline IL-10 level was correlated with outfield-intrahepatic FFS. For extrahepatic FFS, AFP was significant (P = 0.034). Patients with a baseline IL-6 level of ≥ 9.7 pg/mL showed worse infield FFS (P = 0.005), and this significance was observed only in treatment-non-naïve patients (P = 0.022).
CONCLUSION In addition to AFP, cytokines seem useful in predicting infield and outfield-intrahepatic failure. Serum cytokines could be useful biomarkers for predicting RT outcome in HCC.
Collapse
|
22
|
IL-6 controls resistance to radiation by suppressing oxidative stress via the Nrf2-antioxidant pathway in oral squamous cell carcinoma. Br J Cancer 2016; 115:1234-1244. [PMID: 27736845 PMCID: PMC5104896 DOI: 10.1038/bjc.2016.327] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
Background: In promoting tumour malignancy IL-6 signalling is considered to have an important role. However, the biological roles of IL-6 on radiosensitivity in oral squamous cell carcinoma (OSCC) remain largely unclear. The objective of this study is to determine the effects and molecular mechanisms of IL-6 on radiosensitivity in OSCC. Methods: Two OSCC cell lines, and OSCC tissue samples with radioresistant cells were used. We examined the effects of IL-6, or tocilizumab, a humanised anti-human IL-6 receptor antibody, or both on radiosensitivity and DNA damage after X-ray irradiation in vitro. In addition, we investigated the involvement of the Nrf2-antioxidant pathway in IL-6-mediated radioresistant mechanisms using OSCC cell lines and tissues. Results: Increased levels of IL-6 suppressed radiation-induced cell death, and the blockade of IL-6 signalling by tocilizumab sensitised tumour cells to radiation. The radioresistant effect of IL-6 was associated with decreased DNA damage after radiation. We also found that IL-6 promotes the activation of not only the downstream molecule STAT3 but also the Nrf2-antioxidant pathway, leading to a significant decrease in oxidative stress by upregulating Mn-SOD. Conclusions: These results indicate that the blockade of IL-6 signalling combined with conventional radiotherapy could augment the treatment response and survival rate in patients with radioresistant OSCC.
Collapse
|
23
|
Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol 2016; 37:11553-11572. [DOI: 10.1007/s13277-016-5098-7] [Citation(s) in RCA: 430] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/22/2016] [Indexed: 02/07/2023] Open
|
24
|
IL-17 induces radiation resistance of B lymphoma cells by suppressing p53 expression and thereby inhibiting irradiation-triggered apoptosis. Cell Mol Immunol 2014; 12:366-72. [PMID: 25544504 DOI: 10.1038/cmi.2014.122] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/16/2014] [Accepted: 11/16/2014] [Indexed: 01/12/2023] Open
Abstract
p53 is a well-known tumor suppressor. However, the regulatory mechanism(s) for p53 expression in B lymphoma cells, and the possible role of p53 in the development of the radioresistance in tumor cells are largely unknown. A human B lymphoma cell line, Karpas1106 (k1106), was used as a model of radioresistance. Apoptosis of k1106 cells was determined using flow cytometry. Expression of p53 was assessed using real time RT-PCR and western blotting. The results showed that irradiation at 8 Gy induced apoptosis in up to 40% of k1106 cells. At the same time, the irradiation markedly increased IL-6 production of the k1106 cells. When k1106 cells were cocultured with regulatory T cells (Tregs) and irradiated, the rate of apoptotic k1106 cells was significantly reduced, indicating an acquired resistance to irradiation. IL-6 derived from the irradiation-treated k1106 cells induced IL-17 expression in Tregs. The IL-17(+)Foxp3(+) T cells suppressed p53 expression in k1106 cells. Collectively, irradiated k1106 cells induce the expression of IL-17 in Tregs, which interferes with the expression of p53 protein in k1106 cells and thereby represses irradiation-triggered apoptosis in k1106 cells.
Collapse
|
25
|
Wu CT, Chen MF, Chen WC, Hsieh CC. The role of IL-6 in the radiation response of prostate cancer. Radiat Oncol 2013; 8:159. [PMID: 23806095 PMCID: PMC3717100 DOI: 10.1186/1748-717x-8-159] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
Background Hormone-resistant (HR) prostate cancers are highly aggressive and respond poorly to treatment. IL-6/STAT3 signaling has been identified to link with the transition of HR and aggressive tumor behavior. The role of IL-6 in the radiation response of prostate cancer was investigated in the present study. Material and methods The murine prostate cancer cell line (TRAMP-C1) and the hormone-resistant cell sub-line, TRAMP-HR, were used to assess the radiation response using in vitro clonogenic assays and tumor growth delay in vivo. Biological changes following irradiation were investigated by means of experimental manipulation of IL-6 signaling. Correlations among IL-6 levels, tumor regrowth, angiogenesis and myeloid-derived suppressor cell (MDSC) recruitment were examined in an animal model. Results HR prostate cancer cells had a higher expression of IL-6 and more activated STAT3, compared to TRAMP-C1 cells. HR prostate cancer cells had a greater capacity to scavenge reactive oxygen species, suffered less apoptosis, and subsequently were more likely to survive after irradiation. Moreover, IL-6 expression was positively linked to irradiation and radiation resistance. IL-6 inhibition enhanced the radiation sensitivity of prostate cancer, which was associated with increased p53, RT-induced ROS and oxidative DNA damage. Furthermore, when mice were irradiated with a sub-lethal dose, inhibition of IL-6 protein expression attenuated angiogenesis, MDSC recruitment, and decreased tumor regrowth. Conclusion These data demonstrate that IL-6 is important in the biological sequelae following irradiation. Therefore, treatment with concurrent IL-6 inhibition is a potential therapeutic strategy for increasing the radiation response of prostate cancer.
Collapse
Affiliation(s)
- Chun-Te Wu
- Department of Urology, Chang Gung Memorial Hospital, Keelung, Taiwan.
| | | | | | | |
Collapse
|