1
|
Lye J, Song G, Shaw M, Healy B, Caswell N. Commissioning small fields in lung using Monte Carlo corrected film measurements. Phys Med 2025; 131:104909. [PMID: 39921959 DOI: 10.1016/j.ejmp.2025.104909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/10/2025] Open
Abstract
PURPOSE Current commissioning of radiotherapy treatment planning systems with heterogeneous phantoms generally measures the dose delivered in solid water downstream of the lung material. The dose delivered directly in lung material is important to characterise the uncertainty of lung stereotactic body radiotherapy (SBRT) treatments, but film measurements require a correction to accurately measure dose to lung. METHODS Monte Carlo (MC) modelled corrections were applied to film measurements used for commissioning of lung SBRT. Medium dependent correction factors, kmed, were established using 6 and 10 MV simulations to account for film being calibrated in water but measuring in regions of lung material. The correction factors are dependent on energy, field size, and position. To avoid the onerous requirement of modelling each individual beam to correctly match penumbra an alternative approach is presented where the correction is applied as a function of isodose level for a nominal field size. RESULTS Improvement in central axis dose agreements was seen for all field sizes, with the largest improvement of 7 % observed for 6MV 1 × 1 cm2 field. Application of position dependent corrections improved the percentage of points passing a 5 %/1 mm or 3 %/1 mm gamma assessment in all cases, whilst a uniform central axis correction did not improve the passing rate in most cases. CONCLUSIONS MC simulations provide a method for correcting dose measured in lung materials allowing more accurate comparison with treatment planning system doses. In this work a generic approach to correct small field film lung measurements as a function of isodose levels is presented.
Collapse
Affiliation(s)
- Jessica Lye
- Department Radiation Oncology, Austin Health, Ballarat, Australia; School of Health and Biomedical Sciences, RMIT University, Australia.
| | - Guangli Song
- Department Radiation Oncology, Austin Health, Ballarat, Australia
| | - Maddison Shaw
- School of Health and Biomedical Sciences, RMIT University, Australia; Australian Clinical Dosimetry Service, ARPANSA, Melbourne, Australia
| | - Brendan Healy
- Australian Clinical Dosimetry Service, ARPANSA, Melbourne, Australia
| | - Nikki Caswell
- Department Radiation Oncology, Austin Health, Ballarat, Australia
| |
Collapse
|
2
|
O'Daniel J, Hernandez V, Clark C, Esposito M, Lehmann J, McNiven A, Olaciregui-Ruiz I, Kry S. Which failures do patient-specific quality assurance systems need to catch? Med Phys 2025; 52:88-98. [PMID: 39466302 DOI: 10.1002/mp.17468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND The Joint AAPM-ESTRO TG-360 is developing a quantitative framework to evaluate treatment verification systems used for patient-specific quality assurance (PSQA). A subgroup was commissioned to determine which potential failure modes had the greatest risk to treatment quality and safety, and therefore should be evaluated as part of the PSQA verification. PURPOSE To create an extensive database of potential radiotherapy failure modes that should be detected by PSQA and to determine their relative importance for maximizing treatment quality. METHODS The subgroup consisted of eight physicists from seven countries, including representatives from three international quality assurance groups. We collected error reports from RO-ILS, SAFRON, AAPM TG publications, and other literature, including international audits. We focused on the subset of failure modes that impact whether the planned dose matches the dose received by the patient. We performed a failure-mode-and-effects analysis (FMEA), estimating the severity (S), occurrence (O), and detectability (D) of each failure mode. Detectability was scored assuming that PSQA was not done but other routine clinical QA was performed, which allowed us to see the importance of PSQA for detecting each specific failure mode. We analyzed the risk priority number (RPN = O*S*D), O*S, and severity rankings to determine the priority of each failure mode. RESULTS We collected 394 error reports, which we categorized into 33 failure modes that underwent FMEA. Five failure modes were in the top ranks for both RPN and O*S analysis: four involving treatment planning system (TPS) commissioning and one regarding patient model errors. The highest-ranking RPN failure modes were: TPS algorithm limitations, TPS commissioning errors [multileaf collimator (MLC) modeling, output factor, percent-depth-dose/tissue-maximum-ratio (PDD/TMR), off-axis factor], and patient weight variation. The highest O*S failure modes were similar, with the addition of external patient position variation and incorrect linear accelerator isocenter and cGy/monitor units calibration. RPN and O*S analyses prioritized failure modes that impacted multiple patients with high occurrence and detectability scores, while severity analysis gave higher priority to single-patient modes with high severity scores. The highest-ranking severity modes were MLC sequence deletion, collision, and TPS isocenter incorrect. CONCLUSION We have developed a list of failure modes critical to be detected during PSQA and ranked them in order of importance. The top failure modes emphasize the importance of utilizing a variety of treatment verification systems for PSQA, from secondary dose calculation through in-vivo dosimetry, in order to detect all possible errors. For failure modes in the top quartile, PSQA is critical. Without adequate PSQA, these errors may go undetected unless caught by an external audit. This analysis can be useful for optimizing PSQA workflows and for designing evaluations of treatment verification systems, and will be used by the Joint AAPM-ESTRO TG-360 to determine an appropriate validation strategy.
Collapse
Affiliation(s)
| | - Victor Hernandez
- Hospital Universitari Sant Joan de Reus, IISPV, Reus, Tarragona, Spain
| | - Catharine Clark
- University College London Hospital, London, UK
- University College London, London, UK
- National Physical Laboratory, London, UK
| | - Marco Esposito
- Azienda Sanitaria USL Toscana Centro, Firenze, Italy
- The Abdus Salam International Center for Theoretical, Trieste, Italy
| | - Joerg Lehmann
- Department of Radiation Oncology, Calvary Mater Newcastle, Waratah, Australia
- School of Information and Physical Sciences, University of Newcastle, Newcastle, Australia
- Institute of Medical Physics, University of Sydney, Sydney, Australia
| | - Andrea McNiven
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Tom Baker Cancer Center, Calgary, Alberta, Canada
| | - Igor Olaciregui-Ruiz
- The Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Stephen Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Brunner TB, Boda-Heggemann J, Bürgy D, Corradini S, Dieckmann UK, Gawish A, Gerum S, Gkika E, Grohmann M, Hörner-Rieber J, Kirste S, Klement RJ, Moustakis C, Nestle U, Niyazi M, Rühle A, Lang ST, Winkler P, Zurl B, Wittig-Sauerwein A, Blanck O. Dose prescription for stereotactic body radiotherapy: general and organ-specific consensus statement from the DEGRO/DGMP Working Group Stereotactic Radiotherapy and Radiosurgery. Strahlenther Onkol 2024; 200:737-750. [PMID: 38997440 PMCID: PMC11343978 DOI: 10.1007/s00066-024-02254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 07/14/2024]
Abstract
PURPOSE AND OBJECTIVE To develop expert consensus statements on multiparametric dose prescriptions for stereotactic body radiotherapy (SBRT) aligning with ICRU report 91. These statements serve as a foundational step towards harmonizing current SBRT practices and refining dose prescription and documentation requirements for clinical trial designs. MATERIALS AND METHODS Based on the results of a literature review by the working group, a two-tier Delphi consensus process was conducted among 24 physicians and physics experts from three European countries. The degree of consensus was predefined for overarching (OA) and organ-specific (OS) statements (≥ 80%, 60-79%, < 60% for high, intermediate, and poor consensus, respectively). Post-first round statements were refined in a live discussion for the second round of the Delphi process. RESULTS Experts consented on a total of 14 OA and 17 OS statements regarding SBRT of primary and secondary lung, liver, pancreatic, adrenal, and kidney tumors regarding dose prescription, target coverage, and organ at risk dose limitations. Degree of consent was ≥ 80% in 79% and 41% of OA and OS statements, respectively, with higher consensus for lung compared to the upper abdomen. In round 2, the degree of consent was ≥ 80 to 100% for OA and 88% in OS statements. No consensus was reached for dose escalation to liver metastases after chemotherapy (47%) or single-fraction SBRT for kidney primaries (13%). In round 2, no statement had 60-79% consensus. CONCLUSION In 29 of 31 statements a high consensus was achieved after a two-tier Delphi process and one statement (kidney) was clearly refused. The Delphi process was able to achieve a high degree of consensus for SBRT dose prescription. In summary, clear recommendations for both OA and OS could be defined. This contributes significantly to harmonization of SBRT practice and facilitates dose prescription and reporting in clinical trials investigating SBRT.
Collapse
Affiliation(s)
- Thomas B Brunner
- Department of Radiation Oncology, Medical University of Graz, Auenbruggerplatz 32, 8036, Graz, Austria.
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036, Graz, Austria.
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Bürgy
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Ute Karin Dieckmann
- Department of Radiation Oncology, Medical University of Graz, Auenbruggerplatz 32, 8036, Graz, Austria
| | - Ahmed Gawish
- Department of Radiotherapy, University Medical Center Giessen-Marburg, Marburg, Germany
| | - Sabine Gerum
- Department of Radiation Oncology, Paracelsus University Salzburg, Salzburg, Austria
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Maximilian Grohmann
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Simon Kirste
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany
| | - Christos Moustakis
- Department of Radiation Oncology, University Hospital Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Kliniken Maria Hilf, Moenchengladbach, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, University Hospital Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany
| | - Stephanie-Tanadini Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Peter Winkler
- Department of Radiation Oncology, Medical University of Graz, Auenbruggerplatz 32, 8036, Graz, Austria
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036, Graz, Austria
| | - Brigitte Zurl
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036, Graz, Austria
| | | | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| |
Collapse
|
4
|
Pandu B, Khanna D, Palanisamy M, Jacob S, Manichan S. Dosimetric Impact of Prescription Point Placement in Heterogeneous Medium for Conformal Radiotherapy Dose Calculation with Various Algorithms. J Med Phys 2024; 49:400-409. [PMID: 39526146 PMCID: PMC11548077 DOI: 10.4103/jmp.jmp_71_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 11/16/2024] Open
Abstract
Objective The aim of the study is to compare the accuracy of dose calculation for different dose calculation algorithms with different prescription points (air, tissue, air-tissue interface in carcinoma lung patients and bone, tissue, and bone-tissue interface in carcinoma buccal Mucosa tumors). Materials and Methods Forty-one patients with carcinoma lung and buccal mucosa were retrospectively selected for this study. A three-dimensional conformal radiotherapy reference plan was created using the prescription point in the tissue with Monte Carlo (MC) algorithms for both the groups of patients. The reference plan was modified by changing the prescription point and algorithms in the tissue, air, air-tissue interface for lung patients and tissue, bone, and bone-tissue interface for buccal mucosa patients. The dose received by the target volume and other organs at risk (OAR) structures was compared. To find out the statistical difference between different prescription points and algorithms, the statistical tests were performed with repeated measures ANOVA. Results The target volume receiving 95% dose coverage in lung patients decreased to -3.08%, -5.75%, and -1.87% in the dose prescription point at the air-tissue interface with the dose calculation algorithms like MC, collapsed cone (CC), and pencil beam (PB), respectively, compared to that of the MC tissue. Spinal cord dose was increased in the CC and PB algorithms in all prescription points in patients with lung and buccal mucosa. OAR dose calculated by PB in all prescription points showed a significant deviation compared to MC tissue prescription point. Conclusion This study will help demonstrate the accuracy of dose calculation for the different dose prescription points with the different treatment algorithms in radiotherapy treatment planning.
Collapse
Affiliation(s)
- Bharath Pandu
- Department of Applied Physics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
- Department of Radiotherapy, Bangalore Baptist Hospital, Bengaluru, Karnataka, India
| | - D. Khanna
- Department of Applied Physics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | | | - Saro Jacob
- Department of Radiotherapy, Bangalore Baptist Hospital, Bengaluru, Karnataka, India
| | - Sherin Manichan
- Department of Community Medicine, Bangalore Baptist Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Olch AJ, van Luijk P, Hua CH, Avanzo M, Howell RM, Yorke E, Aznar MC, Kry SF. Physics Considerations for Evaluation of Dose for Dose-Response Models of Pediatric Late Effects From Radiation Therapy: A PENTEC Introductory Review. Int J Radiat Oncol Biol Phys 2024; 119:360-368. [PMID: 37003845 DOI: 10.1016/j.ijrobp.2023.02.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 04/01/2023]
Abstract
PURPOSE We describe the methods used to estimate the accuracy of dosimetric data found in literature sources used to construct the Pediatric Normal Tissue Effects in the Clinic (PENTEC) dose-response models, summarize these findings of each organ-specific task force, describe some of the dosimetric challenges and the extent to which these efforts affected the final modeling results, and provide guidance on the interpretation of the dose-response results given the various dosimetric uncertainties. METHODS AND MATERIALS Each of the PENTEC task force medical physicists reviewed all the journal articles used for dose-response modeling to identify, categorize, and quantify dosimetric uncertainties. These uncertainties fell into 6 broad categories. A uniform nomenclature was developed for describing the "dosimetric quality" of the articles used in the PENTEC reviews. Among the multidisciplinary experts in the PENTEC effort, the medical physicists were charged with the dosimetric evaluation, as they are most expert in this subject. RESULTS The percentage dosimetric uncertainty was estimated for each late effect endpoint for all PENTEC organ reports. Twelve specific sources of dose uncertainty were identified related to the 6 broad categories. The most common reason for organ dose uncertainty was that prescribed dose rather than organ dose was reported. Percentage dose uncertainties ranged from 5% to 200%. Systematic uncertainties were used to correct the dose component of the models. Random uncertainties were also described in each report and in some cases used to modify dose axis error bars. In addition, the potential effects of dose binning were described. CONCLUSIONS PENTEC reports are designed to provide guidance to radiation oncologists and treatment planners for organ dose constraints. It is critical that these dose constraint recommendations are as accurate as possible, acknowledging the large error bars for many. Achieving this accuracy is important as it enables clinicians to better balance target dose coverage with risk of late effects. Evidence-based dose constraints for pediatric patients have been lacking and, in this regard, PENTEC fills an important unmet need. One must be aware of the limitations of our recommendations, and that for some organ systems, large uncertainties exist in the dose-response model because of clinical endpoint uncertainty, dosimetric uncertainty, or both.
Collapse
Affiliation(s)
- Arthur J Olch
- Department of Radiation Oncology, University of Southern California and Children's Hospital Los Angeles, Los Angeles, California.
| | - Peter van Luijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michele Avanzo
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Rebecca M Howell
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marianne C Aznar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stephen F Kry
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
6
|
Saw CB, Battin F, Churilla T, Haggerty M, Peters CA. TEAM participation in the irradiation of IROC phantoms for cooperative group clinical trials. Med Dosim 2024; 49:321-327. [PMID: 38735780 DOI: 10.1016/j.meddos.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/16/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
The participation of radiation oncology team members in the irradiation of Imaging and Radiation Oncology Core (IROC) phantom for cooperative group clinical trials is essential to comply with the latest quality management philosophy. Medical dosimetrists are expected to develop treatment plans for the irradiation of IROC phantoms. For advanced treatment techniques, such as three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), and volumetric-modulated arc therapy (VMAT), the irradiation of the IROC phantoms serves as quality audit. If successful, the irradiation processes demonstrate that the institution has the knowledge of the protocol, and has the appropriate equipment to comply with the protocol requirements. This article describes three IROC phantoms used for credentialing external beam photon beam therapy, delivered using conventional medical linear accelerators, to the medical dosimetry community. Guidance and strategies for the development of treatment plans are discussed. Our institutional irradiation of the three IROC phantoms, delivered using the Truebeam medical linear accelerator, resulted in consistent dose accuracy to within ±1%. The participation of the team members may reduce the overall published failing rate stated to be about one-third of all participating institutions.
Collapse
Affiliation(s)
- Cheng B Saw
- Northeast Radiation Oncology Centers (NROC), Dunmore, PA 18512, USA.
| | - Frank Battin
- Northeast Radiation Oncology Centers (NROC), Dunmore, PA 18512, USA
| | - Thomas Churilla
- Northeast Radiation Oncology Centers (NROC), Dunmore, PA 18512, USA
| | - Meghan Haggerty
- Northeast Radiation Oncology Centers (NROC), Dunmore, PA 18512, USA
| | | |
Collapse
|
7
|
Kosaka T, Takatsu J, Inoue T, Iijima K, Suzuki M, Murakami N, Shikama N. Dosimetric evaluation in Helical TomoTherapy for lung SBRT using Monte Carlo-based independent dose verification software. J Appl Clin Med Phys 2024; 25:e14305. [PMID: 38368607 PMCID: PMC11087163 DOI: 10.1002/acm2.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
PURPOSE To elucidate the dosimetric errors caused by a model-based algorithm in lung stereotactic body radiation therapy (SBRT) with Helical TomoTherapy (HT) using Monte Carlo (MC)-based dose verification software. METHODS For 38 plans of lung SBRT, the dose calculation accuracy of a treatment planning system (TPS) of HT was compared with the results of DoseCHECK, the commercial MC-based independent verification software. The following indices were extracted to evaluate the correlation of dosimetric errors: (1) target volume, (2) average computed tomography (CT) value of the planning target volume (PTV) margin, and (3) average CT value of surrounding 2-mm area of the PTV (PTV ring). Receiver operating characteristic (ROC) analyses determined the threshold for 5% of differences in PTV D95%. Then, the 38 plans were classified into two groups using the cutoff values of ROC analysis for these three indices. Dosimetric differences between groups were statistically compared using the Mann-Whitney U test. RESULTS TPS of HT overestimated by more than 5% in the PTV D95% in 16 of 38 plans. The PTV ring showed the strongest correlation with dosimetric differences. The cutoff value for the target volume, the PTV margin, and the PTV ring was 14.7 cc, -754 HU, and -708 HU, respectively. The area under the curve (AUC) for the target volume, the PTV margin, and the PTV ring were 0.835, 0.878, and 0.932, respectively. Dosimetric errors more than 5% were observed when the PTV volume was less than 15 cc or when the CT value around the target was less than -700 HU. CONCLUSION The TPS of HT might overestimate the PTV dose by more than 5% if any the three indices in this study were below threshold. Therefore, independent verification with an MC-based algorithm should be strongly recommended for lung SBRT in HT.
Collapse
Affiliation(s)
- Takahiro Kosaka
- Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Radiology, Juntendo University Urayasu Hospital, Urayasu-shi, Chiba, Japan
| | - Jun Takatsu
- Department of Radiation Oncology, Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Tatsuya Inoue
- Department of Radiology, Juntendo University Urayasu Hospital, Urayasu-shi, Chiba, Japan
- Department of Radiation Oncology, Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Kotaro Iijima
- Department of Radiation Oncology, Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Michimasa Suzuki
- Department of Radiology, Juntendo University Urayasu Hospital, Urayasu-shi, Chiba, Japan
| | - Naoya Murakami
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Naoto Shikama
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
8
|
Callens D, Aerts K, Berkovic P, Vandewinckele L, Lambrecht M, Crijns W. Are offline ART decisions for NSCLC impacted by the type of dose calculation algorithm? Tech Innov Patient Support Radiat Oncol 2024; 29:100236. [PMID: 38313556 PMCID: PMC10835600 DOI: 10.1016/j.tipsro.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction Decisions for plan-adaptations may be impacted by a transitioning from one dose-calculation algorithm to another. This study examines the impact on dosimetric-triggered offline adaptation in LA-NSCLC in the context of a transition from superposition/convolution dose calculation algorithm (Type-B) to linear Boltzmann equation solver dose calculation algorithms (Type-C). Materials & Methods Two dosimetric-triggered offline adaptive treatment workflows are compared in a retrospective planning study on 30 LA-NSCLC patients. One workflow uses a Type-B dose calculation algorithm and the other uses Type-C. Treatment plans were re-calculated on the anatomy of a mid-treatment synthetic-CT utilizing the same algorithm utilized for pre-treatment planning. Assessment for plan-adaptation was evaluated through a decision model based on target coverage and OAR constraint violation. The impact of algorithm during treatment planning was controlled for by recalculating the Type-B plan with Type-C. Results In the Type-B approach, 13 patients required adaptation due to OAR-constraint violations, while 15 patients required adaptation in the Type-C approach. For 8 out of 30 cases, the decision to adapt was opposite in both approaches. None of the patients in our dataset encountered CTV-target underdosage that necessitated plan-adaptation. Upon recalculating the Type-B approach with the Type-C algorithm, it was shown that 10 of the original Type-B plans revealed clinically relevant dose reductions (≥3%) on the CTV in their original plans. This re-calculation identified 21 plans in total that required ART. Discussion In our study, nearly one-third of the cases would have a different decision for plan-adaption when utilizing Type-C instead of Type-B. There was no substantial increase in the total number of plan-adaptations for LA-NSCLC. However, Type-C is more sensitive to altered anatomy during treatment compared to Type-B. Recalculating Type-B plans with the Type-C algorithm revealed an increase from 13 to 21 cases triggering ART.
Collapse
Affiliation(s)
- Dylan Callens
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| | - Karel Aerts
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
| | - Patrick Berkovic
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| | - Liesbeth Vandewinckele
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| | - Maarten Lambrecht
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| | - Wouter Crijns
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Shaw M, Lye J, Alves A, Lehmann J, Sanagou M, Geso M, Brown R. Measuring dose in lung identifies peripheral tumour dose inaccuracy in SBRT audit. Phys Med 2023; 112:102632. [PMID: 37406592 DOI: 10.1016/j.ejmp.2023.102632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/25/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
PURPOSE Stereotactic Body Radiotherapy (SBRT) for lung tumours has become a mainstay of clinical practice worldwide. Measurements in anthropomorphic phantoms enable verification of patient dose in clinically realistic scenarios. Correction factors for reporting dose to the tissue equivalent materials in a lung phantom are presented in the context of a national dosimetry audit for SBRT. Analysis of dosimetry audit results is performed showing inaccuracies of common dose calculation algorithms in soft tissue lung target, inhale lung material and at tissue interfaces. METHODS Monte Carlo based simulation of correction factors for detectors in non-water tissue was performed for the soft tissue lung target and inhale lung materials of a modified CIRS SBRT thorax phantom. The corrections were determined for Gafchromic EBT3 Film and PTW 60019 microDiamond detectors used for measurements of 168 SBRT lung plans in an end-to-end dosimetry audit. Corrections were derived for dose to medium (Dm,m) and dose to water (Dw,w) scenarios. RESULTS Correction factors were up to -3.4% and 9.2% for in field and out of field lung respectively. Overall, application of the correction factors improved the measurement-to-plan dose discrepancy. For the soft tissue lung target, agreement between planned and measured dose was within average of 3% for both film and microDiamond measurements. CONCLUSIONS The correction factors developed for this work are provided for clinical users to apply to commissioning measurements using a commercially available thorax phantom where inhomogeneity is present. The end-to-end dosimetry audit demonstrates dose calculation algorithms can underestimate dose at lung tumour/lung tissue interfaces by an average of 2-5%.
Collapse
Affiliation(s)
- Maddison Shaw
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| | - Jessica Lye
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia; Olivia Newton John Cancer Wellness and Research Centre, Austin Health, Australia
| | - Andrew Alves
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia
| | - Joerg Lehmann
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, Australia; School of Science, RMIT University, Melbourne, Australia; School of Mathematical and Physical Sciences, University of Newcastle, Australia; Institute of Medical Physics, University of Sydney, Australia
| | - Masoumeh Sanagou
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia
| | - Moshi Geso
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Rhonda Brown
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia
| |
Collapse
|
10
|
Taylor PA, Miles E, Hoffmann L, Kelly SM, Kry SF, Sloth Møller D, Palmans H, Akbarov K, Aznar MC, Clementel E, Corning C, Effeney R, Healy B, Moore A, Nakamura M, Patel S, Shaw M, Stock M, Lehmann J, Clark CH. Prioritizing clinical trial quality assurance for photons and protons: A failure modes and effects analysis (FMEA) comparison. Radiother Oncol 2023; 182:109494. [PMID: 36708923 DOI: 10.1016/j.radonc.2023.109494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND PURPOSE The Global Clinical Trials RTQA Harmonization Group (GHG) set out to evaluate and prioritize clinical trial quality assurance. METHODS The GHG compiled a list of radiotherapy quality assurance (QA) tests performed for proton and photon therapy clinical trials. These tests were compared between modalities to assess whether there was a need for different types of assessments per modality. A failure modes and effects analysis (FMEA) was performed to assess the risk of each QA failure. RESULTS The risk analysis showed that proton and photon therapy shared four out of five of their highest-risk failures (end-to-end anthropomorphic phantom test, phantom tests using respiratory motion, pre-treatment patient plan review of contouring/outlining, and on-treatment/post-treatment patient plan review of dosimetric coverage). While similar trends were observed, proton therapy had higher risk failures, driven by higher severity scores. A sub-analysis of occurrence × severity scores identified high-risk scores to prioritize for improvements in RTQA detectability. A novel severity scaler was introduced to account for the number of patients affected by each failure. This scaler did not substantially alter the ranking of tests, but it elevated the QA program evaluation to the top 20th percentile. This is the first FMEA performed for clinical trial quality assurance. CONCLUSION The identification of high-risk errors associated with clinical trials is valuable to prioritize and reduce errors in radiotherapy and improve the quality of trial data and outcomes, and can be applied to optimize clinical radiotherapy QA.
Collapse
Affiliation(s)
- Paige A Taylor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Imaging and Radiation Oncology Core, USA.
| | - Elizabeth Miles
- National Radiotherapy Trials Quality Assurance (RTTQA) Group, Mount Vernon Cancer Centre, Northwood, UK
| | - Lone Hoffmann
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Sarah M Kelly
- SIOP Europe, The European Society for Paediatric Oncology, Clos Chapelle-aux-Champs 30, Brussels, Belgium; EORTC Headquarters, European Organisation for Research and Treatment of Cancer, Avenue E. Mounier 83, Brussels, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Imaging and Radiation Oncology Core, USA
| | - Ditte Sloth Møller
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Hugo Palmans
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria; Metrology for Medical Physics, National Physical Laboratory, Teddington, UK
| | - Kamal Akbarov
- Division of Human Health, Department of Nuclear Sciences and Applications, IAEA, Vienna, Austria
| | - Marianne C Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Enrico Clementel
- EORTC Headquarters, European Organisation for Research and Treatment of Cancer, Avenue E. Mounier 83, Brussels, Belgium
| | - Coreen Corning
- EORTC Headquarters, European Organisation for Research and Treatment of Cancer, Avenue E. Mounier 83, Brussels, Belgium
| | | | - Brendan Healy
- Australian Clinical Dosimetry Service, ARPANSA, Melbourne, Australia
| | | | - Mitsuhiro Nakamura
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Samir Patel
- Division of Radiation Oncology, Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Maddison Shaw
- Australian Clinical Dosimetry Service, ARPANSA, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Markus Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria; Karl Landsteiner University for Health Sciences, Austria
| | - Joerg Lehmann
- TROG Cancer Research, Newcastle, Australia; Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, Australia; School of Information and Physical Sciences, University of Newcastle, Newcastle, Australia; Institute of Medical Physics, University of Sydney, Sydney, Australia
| | - Catharine H Clark
- Metrology for Medical Physics, National Physical Laboratory, Teddington, UK; National Radiotherapy Trials Quality Assurance (RTTQA) Group, Mount Vernon Cancer Centre, Northwood, UK; Radiotherapy Physics, University College London Hospital, London, UK; Medical Physics and Bioengineering Department, University College London, London, UK
| |
Collapse
|
11
|
Mehrens H, Nguyen T, Edward S, Hartzell S, Glenn M, Branco D, Hernandez N, Alvarez P, Molineu A, Taylor P, Kry S. The current status and shortcomings of stereotactic radiosurgery. Neurooncol Adv 2022; 4:vdac058. [PMID: 35664554 PMCID: PMC9154323 DOI: 10.1093/noajnl/vdac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Stereotactic radiosurgery (SRS) is a common treatment for intracranial lesions. This work explores the state of SRS treatment delivery to characterize current treatment accuracy based on treatment parameters. Methods NCI clinical trials involving SRS rely on an end-to-end treatment delivery on a patient surrogate (credentialing phantom) from the Imaging and Radiation Oncology Core (IROC) to test their treatment accuracy. The results of 1072 SRS phantom irradiations between 2012 and 2020 were retrospectively analyzed. Univariate analysis and random forest models were used to associate irradiation conditions with phantom performance. The following categories were evaluated in terms of how they predicted outcomes: year of irradiation, TPS algorithm, machine model, energy, and delivered field size. Results Overall, only 84.6% of irradiations have met the IROC/NCI acceptability criteria. Pass rate has remained constant over time, while dose calculation accuracy has slightly improved. Dose calculation algorithm (P < .001), collimator (P = .024), and field size (P < .001) were statistically significant predictors of pass/fail. Specifically, pencil beam algorithms and cone collimators were more likely to be associated with failing phantom results. Random forest modeling identified the size of the field as the most important factor for passing or failing followed by algorithm. Conclusion Constant throughout this retrospective study, approximately 15% of institutions fail to meet IROC/NCI standards for SRS treatment. In current clinical practice, this is particularly associated with smaller fields that yielded less accurate results. There is ongoing need to improve small field dosimetry, beam modeling, and QA to ensure high treatment quality, patient safety, and optimal clinical trials.
Collapse
Affiliation(s)
- Hunter Mehrens
- Department of Outreach Physics, UT MD Anderson Cancer Center, Houston, TX
- Imaging and Radiation Oncology Core
| | - Trang Nguyen
- Department of Outreach Physics, UT MD Anderson Cancer Center, Houston, TX
- Imaging and Radiation Oncology Core
| | - Sharbacha Edward
- Department of Outreach Physics, UT MD Anderson Cancer Center, Houston, TX
- Imaging and Radiation Oncology Core
| | - Shannon Hartzell
- Department of Outreach Physics, UT MD Anderson Cancer Center, Houston, TX
- Imaging and Radiation Oncology Core
| | - Mallory Glenn
- Department of Outreach Physics, UT MD Anderson Cancer Center, Houston, TX
- Imaging and Radiation Oncology Core
| | - Daniela Branco
- Department of Outreach Physics, UT MD Anderson Cancer Center, Houston, TX
- Imaging and Radiation Oncology Core
| | - Nadia Hernandez
- Department of Outreach Physics, UT MD Anderson Cancer Center, Houston, TX
- Imaging and Radiation Oncology Core
| | - Paola Alvarez
- Department of Outreach Physics, UT MD Anderson Cancer Center, Houston, TX
- Imaging and Radiation Oncology Core
| | - Andrea Molineu
- Department of Outreach Physics, UT MD Anderson Cancer Center, Houston, TX
- Imaging and Radiation Oncology Core
| | - Paige Taylor
- Department of Outreach Physics, UT MD Anderson Cancer Center, Houston, TX
- Imaging and Radiation Oncology Core
| | - Stephen Kry
- Department of Outreach Physics, UT MD Anderson Cancer Center, Houston, TX
- Imaging and Radiation Oncology Core
| |
Collapse
|
12
|
Olaciregui-Ruiz I, Osinga-Blaettermann JM, Ortega-Marin K, Mijnheer B, Mans A. Extending in aqua portal dosimetry with dose inhomogeneity conversion maps for accurate patient dose reconstruction in external beam radiotherapy. Phys Imaging Radiat Oncol 2022; 22:20-27. [PMID: 35493851 PMCID: PMC9038561 DOI: 10.1016/j.phro.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
|
13
|
Erickson BG, Ackerson BG, Kelsey CR, Yin FF, Adamson J, Cui Y. The effect of various dose normalization strategies when implementing linear Boltzmann transport equation dose calculation for lung SBRT planning. Pract Radiat Oncol 2022; 12:446-456. [DOI: 10.1016/j.prro.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
|
14
|
Impact of stringent tolerance criteria on verification of absorbed dose distributions and evaluation through inhomogeneous media. NUCLEAR TECHNOLOGY AND RADIATION PROTECTION 2022. [DOI: 10.2298/ntrp2202138o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Advances of radiation delivery devices have increased the complexity of the
radiation oncology treatments. Herewith, outcome of the treatment, as well
as patient safety, strongly depend on the consistency of absorbed dose
delivery. Both can be ensured by comprehensive system of verification of
calculated absorbed dose distributions. Standard method is evaluation of
calculated absorbed dose distribution according to gamma method, using a 2-D
detector and a homogeneous phantom, to obtain measured dose distribution.
Purpose of this research was to investigate the influence of tolerance
criteria on gamma passing rate. Additionally, the agreement in heterogeneous
phantom was analysed. Absorbed dose calculations were performed using systems Monaco and XiO. Detector with 1020 ionization chambers in homogeneous
phantom and semi-anthropomorphic phantom was used for measurements. Absorbed
dose distributions of around 3500 patients were analysed using gamma method.
In homogeneous phantom, average gamma passing rates were within tolerance
for 3 %/2 mm. For measurements in heterogeneous media, the highest average
gamma passing rate was obtained for small volumes of medium treatment
complexity (??=93.84%), while large volumes of treatment with low
complexity yielded the lowest gamma passing rates (??= 83.22%).
Collapse
|
15
|
Kinkopf P, Modiri A, Yu KC, Yan Y, Mohindra P, Timmerman R, Sawant A, Vicente E. Virtual bronchoscopy-guided lung SAbR: dosimetric implications of using AAA versus Acuros XB to calculate dose in airways. Biomed Phys Eng Express 2021; 7. [PMID: 34488197 DOI: 10.1088/2057-1976/ac240c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/06/2021] [Indexed: 11/12/2022]
Abstract
In previous works, we showed that incorporating individual airways as organs-at-risk (OARs) in the treatment of lung stereotactic ablative radiotherapy (SAbR) patients potentially mitigates post-SAbR radiation injury. However, the performance of common clinical dose calculation algorithms in airways has not been thoroughly studied. Airways are of particular concern because their small size and the density differences they create have the potential to hinder dose calculation accuracy. To address this gap in knowledge, here we investigate dosimetric accuracy in airways of two commonly used dose calculation algorithms, the anisotropic analytical algorithm (AAA) and Acuros-XB (AXB), recreating clinical treatment plans on a cohort of four SAbR patients. A virtual bronchoscopy software was used to delineate 856 airways on a high-resolution breath-hold CT (BHCT) image acquired for each patient. The planning target volumes (PTVs) and standard thoracic OARs were contoured on an average CT (AVG) image over the breathing cycle. Conformal and intensity-modulated radiation therapy plans were recreated on the BHCT image and on the AVG image, for a total of four plan types per patient. Dose calculations were performed using AAA and AXB, and the differences in maximum and mean dose in each structure were calculated. The median differences in maximum dose among all airways were ≤0.3Gy in magnitude for all four plan types. With airways grouped by dose-to-structure or diameter, median dose differences were still ≤0.5Gy in magnitude, with no clear dependence on airway size. These results, along with our previous airway radiosensitivity works, suggest that dose differences between AAA and AXB correspond to an airway collapse variation ≤0.7% in magnitude. This variation in airway injury risk can be considered as not clinically relevant, and the use of either AAA or AXB is therefore appropriate when including patient airways as individual OARs so as to reduce risk of radiation-induced lung toxicity.
Collapse
Affiliation(s)
- P Kinkopf
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - A Modiri
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Kun-Chang Yu
- Broncus Medical, Inc., San Jose, CA, United States of America
| | - Y Yan
- UT Southwestern Medical Center, Dallas, TX, United States of America
| | - P Mohindra
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - R Timmerman
- UT Southwestern Medical Center, Dallas, TX, United States of America
| | - A Sawant
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - E Vicente
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
16
|
Zhu TC, Stathakis S, Clark JR, Feng W, Georg D, Holmes SM, Kry SF, Ma CMC, Miften M, Mihailidis D, Moran JM, Papanikolaou N, Poppe B, Xiao Y. Report of AAPM Task Group 219 on independent calculation-based dose/MU verification for IMRT. Med Phys 2021; 48:e808-e829. [PMID: 34213772 DOI: 10.1002/mp.15069] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 11/06/2022] Open
Abstract
Independent verification of the dose per monitor unit (MU) to deliver the prescribed dose to a patient has been a mainstay of radiation oncology quality assurance (QA). We discuss the role of secondary dose/MU calculation programs as part of a comprehensive QA program. This report provides guidelines on calculation-based dose/MU verification for intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) provided by various modalities. We provide a review of various algorithms for "independent/second check" of monitor unit calculations for IMRT/VMAT. The report makes recommendations on the clinical implementation of secondary dose/MU calculation programs; on commissioning and acceptance of various commercially available secondary dose/MU calculation programs; on benchmark QA and periodic QA; and on clinically reasonable action levels for agreement of secondary dose/MU calculation programs.
Collapse
Affiliation(s)
- Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Wenzheng Feng
- Department of Radiation Oncology, Columbia University, New York, NY, USA
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University Vienna, Vienna, Austria
| | | | - Stephen F Kry
- IROC, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Moyed Miften
- Department of Radiation Oncology, University of Colorado Denver, Aurora, CO, USA
| | - Dimitris Mihailidis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean M Moran
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Bjorn Poppe
- Pius Hospital & Carl von Ossietzky University, Oldenburg, Germany
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Das IJ, Francescon P, Moran JM, Ahnesjö A, Aspradakis MM, Cheng CW, Ding GX, Fenwick JD, Saiful Huq M, Oldham M, Reft CS, Sauer OA. Report of AAPM Task Group 155: Megavoltage photon beam dosimetry in small fields and non-equilibrium conditions. Med Phys 2021; 48:e886-e921. [PMID: 34101836 DOI: 10.1002/mp.15030] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Small-field dosimetry used in advance treatment technologies poses challenges due to loss of lateral charged particle equilibrium (LCPE), occlusion of the primary photon source, and the limited choice of suitable radiation detectors. These challenges greatly influence dosimetric accuracy. Many high-profile radiation incidents have demonstrated a poor understanding of appropriate methodology for small-field dosimetry. These incidents are a cause for concern because the use of small fields in various specialized radiation treatment techniques continues to grow rapidly. Reference and relative dosimetry in small and composite fields are the subject of the International Atomic Energy Agency (IAEA) dosimetry code of practice that has been published as TRS-483 and an AAPM summary publication (IAEA TRS 483; Dosimetry of small static fields used in external beam radiotherapy: An IAEA/AAPM International Code of Practice for reference and relative dose determination, Technical Report Series No. 483; Palmans et al., Med Phys 45(11):e1123, 2018). The charge of AAPM task group 155 (TG-155) is to summarize current knowledge on small-field dosimetry and to provide recommendations of best practices for relative dose determination in small megavoltage photon beams. An overview of the issue of LCPE and the changes in photon beam perturbations with decreasing field size is provided. Recommendations are included on appropriate detector systems and measurement methodologies. Existing published data on dosimetric parameters in small photon fields (e.g., percentage depth dose, tissue phantom ratio/tissue maximum ratio, off-axis ratios, and field output factors) together with the necessary perturbation corrections for various detectors are reviewed. A discussion on errors and an uncertainty analysis in measurements is provided. The design of beam models in treatment planning systems to simulate small fields necessitates special attention on the influence of the primary beam source and collimating devices in the computation of energy fluence and dose. The general requirements for fluence and dose calculation engines suitable for modeling dose in small fields are reviewed. Implementations in commercial treatment planning systems vary widely, and the aims of this report are to provide insight for the medical physicist and guidance to developers of beams models for radiotherapy treatment planning systems.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paolo Francescon
- Department of Radiation Oncology, Ospedale Di Vicenza, Vicenza, Italy
| | - Jean M Moran
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria M Aspradakis
- Institute of Radiation Oncology, Cantonal Hospital of Graubünden, Chur, Switzerland
| | - Chee-Wai Cheng
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John D Fenwick
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh, School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Chester S Reft
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Otto A Sauer
- Department of Radiation Oncology, Klinik fur Strahlentherapie, University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Taylor PA, Alvarez PE, Mehrens H, Followill DS. Failure Modes in IROC Photon Liver Phantom Irradiations. Pract Radiat Oncol 2021; 11:e322-e328. [PMID: 33271351 PMCID: PMC8102375 DOI: 10.1016/j.prro.2020.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/23/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Our purpose was to analyze and classify the patterns of failure for irradiations of the Imaging and Radiation Oncology Core photon liver phantom. METHODS AND MATERIALS Imaging and Radiation Oncology Core's anthropomorphic liver phantom simulates multitarget liver disease with respiratory motion. Two hundred forty-nine liver phantom results from 2013 to 2019 were analyzed. Phantom irradiations that failed were categorized by the error attributed to the failure. Phantom results were also compared by demographic data, such as machine type, treatment planning system, motion management technique, number of isocenters, and whether the phantom was a first time or repeat irradiation. RESULTS The failure rate for the liver phantom was 27%. From the 68 irradiations that did not pass, 5 failure modes were identified. The most common failure mode was localization errors in the direction of motion, with over 50% of failures attributed to this mode. The second-most common failure mode was systematic dose errors. The internal target volume technique performed worse than other motion management techniques. Failure modes were different by the number of isocenters used, with multi-isocenter irradiations having more failure modes in a single phantom irradiation. CONCLUSIONS Motion management techniques and proper alignment of moving targets play a large role in the successful irradiation of the liver phantom. These errors should be examined to ensure accurate patient treatment for liver disease or other sites where multiple moving targets are present.
Collapse
Affiliation(s)
- Paige A Taylor
- IROC Houston Quality Assurance Center, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paola E Alvarez
- IROC Houston Quality Assurance Center, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Hunter Mehrens
- IROC Houston Quality Assurance Center, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Followill
- IROC Houston Quality Assurance Center, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
19
|
Report dose-to-medium in clinical trials where available; a consensus from the Global Harmonisation Group to maximize consistency. Radiother Oncol 2021; 159:106-111. [PMID: 33741471 DOI: 10.1016/j.radonc.2021.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE To promote consistency in clinical trials by recommending a uniform framework as it relates to radiation transport and dose calculation in water versus in medium. METHODS The Global Quality Assurance of Radiation Therapy Clinical Trials Harmonisation Group (GHG; www.rtqaharmonization.org) compared the differences between dose to water in water (Dw,w), dose to water in medium (Dw,m), and dose to medium in medium (Dm,m). This was done based on a review of historical frameworks, existing literature and standards, clinical issues in the context of clinical trials, and the trajectory of radiation dose calculations. Based on these factors, recommendations were developed. RESULTS No framework was found to be ideal or perfect given the history, complexity, and current status of radiation therapy. Nevertheless, based on the evidence available, the GHG established a recommendation preferring dose to medium in medium (Dm,m). CONCLUSIONS Dose to medium in medium (Dm,m) is the preferred dose calculation and reporting framework. If an institution's planning system can only calculate dose to water in water (Dw,w), this is acceptable.
Collapse
|
20
|
Radojcic DS, Casar B, Rajlic D, Kolacio MS, Mendez I, Obajdin N, Debeljuh DD, Jurkovic S. Experimental validation of Monte Carlo based treatment planning system in bone density equivalent media. Radiol Oncol 2020; 54:495-504. [PMID: 32936784 PMCID: PMC7585341 DOI: 10.2478/raon-2020-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/09/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction Advanced, Monte Carlo (MC) based dose calculation algorithms, determine absorbed dose as dose to medium-in-medium (Dm,m) or dose to water-in-medium (Dw,m). Some earlier studies identified the differences in the absorbed doses related to the calculation mode, especially in the bone density equivalent (BDE) media. Since the calculation algorithms built in the treatment planning systems (TPS) should be dosimetrically verified before their use, we analyzed dose differences between two calculation modes for the Elekta Monaco TPS. We compared them with experimentally determined values, aiming to define a supplement to the existing TPS verification methodology. Materials and methods In our study, we used a 6 MV photon beam from a linear accelerator. To evaluate the accuracy of the TPS calculation approaches, measurements with a Farmer type chamber in a semi-anthropomorphic phantom were compared to those obtained by two calculation options. The comparison was made for three parts of the phantom having different densities, with a focus on the BDE part. Results Measured and calculated doses were in agreement for water and lung equivalent density materials, regardless of the calculation mode. However, in the BDE part of the phantom, mean dose differences between the calculation options ranged from 5.7 to 8.3%, depending on the method used. In the BDE part of the phantom, neither of the two calculation options were consistent with experimentally determined absorbed doses. Conclusions Based on our findings, we proposed a supplement to the current methodology for the verification of commercial MC based TPS by performing additional measurements in BDE material.
Collapse
Affiliation(s)
- Djeni Smilovic Radojcic
- Medical Physics Department, University Hospital Rijeka, Rijeka, Croatia
- Department of Medical Physics and Biophysics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Bozidar Casar
- Department for Dosimetry and Quality of Radiological procedures, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - David Rajlic
- Medical Physics Department, University Hospital Rijeka, Rijeka, Croatia
| | | | - Ignasi Mendez
- Department for Dosimetry and Quality of Radiological procedures, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Nevena Obajdin
- Medical Physics Department, University Hospital Rijeka, Rijeka, Croatia
| | - Dea Dundara Debeljuh
- Medical Physics Department, University Hospital Rijeka, Rijeka, Croatia
- General Hospital Pula, Radiology Department, Pula, Croatia
| | - Slaven Jurkovic
- Medical Physics Department, University Hospital Rijeka, Rijeka, Croatia
- Department of Medical Physics and Biophysics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
21
|
Edward SS, Alvarez PE, Taylor PA, Molineu HA, Peterson CB, Followill DS, Kry SF. Differences in the Patterns of Failure Between IROC Lung and Spine Phantom Irradiations. Pract Radiat Oncol 2020; 10:372-381. [PMID: 32413413 DOI: 10.1016/j.prro.2020.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/16/2020] [Accepted: 04/17/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Our purpose was to investigate and classify the reasons why institutions fail the Imaging and Radiation Oncology Core (IROC) stereotactic body radiation therapy (SBRT) spine and moving lung phantoms, which are used to credential institutions for clinical trial participation. METHODS AND MATERIALS All IROC moving lung and SBRT spine phantom irradiation failures recorded from January 2012 to December 2018 were evaluated in this study. A failure was a case where the institution did not meet the established IROC criteria for agreement between planned and delivered dose. We analyzed the reports for all failing irradiations, including point dose disagreement, dose profiles, and gamma analyses. Classes of failure patterns were created and used to categorize each instance. RESULTS There were 158 failing cases analyzed: 116 of 1052 total lung irradiations and 42 of 263 total spine irradiations. Seven categories were required to describe the lung phantom failures, whereas 4 were required for the spine. Types of errors present in both phantom groups included systematic dose and localization errors. Fifty percent of lung failures were due to a superior-inferior localization error, that is, error in the direction of major motion. Systematic dose errors, however, contributed to only 22% of lung failures. In contrast, the majority (60%) of spine phantom failures were due to systematic dose errors, with localization errors (in any direction) accounting for only 14% of failures. CONCLUSIONS There were 2 distinct patterns of failure between the IROC moving lung and SBRT spine phantoms. The majority of the lung phantom failures were due to localization errors, whereas the spine phantom failures were largely attributed to systematic dose errors. Both of these errors are clinically relevant and could manifest as errors in patient cases. These findings highlight the value of independent end-to-end dosimetry audits and can help guide the community in improving the quality of radiation therapy by focusing attention on where errors manifest in the community.
Collapse
Affiliation(s)
- Sharbacha S Edward
- UT Health Graduate School of Biomedical Sciences, Houston, Texas; IROC Houston Quality Assurance Center, Houston, Texas; Department of Radiation Physics, Houston, Texas
| | - Paola E Alvarez
- IROC Houston Quality Assurance Center, Houston, Texas; Department of Radiation Physics, Houston, Texas
| | - Paige A Taylor
- UT Health Graduate School of Biomedical Sciences, Houston, Texas; IROC Houston Quality Assurance Center, Houston, Texas; Department of Radiation Physics, Houston, Texas
| | - H Andrea Molineu
- IROC Houston Quality Assurance Center, Houston, Texas; Department of Radiation Physics, Houston, Texas
| | - Christine B Peterson
- UT Health Graduate School of Biomedical Sciences, Houston, Texas; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Followill
- UT Health Graduate School of Biomedical Sciences, Houston, Texas; IROC Houston Quality Assurance Center, Houston, Texas; Department of Radiation Physics, Houston, Texas
| | - Stephen F Kry
- UT Health Graduate School of Biomedical Sciences, Houston, Texas; IROC Houston Quality Assurance Center, Houston, Texas; Department of Radiation Physics, Houston, Texas.
| |
Collapse
|
22
|
Kishore V, Kumar L, Bhushan M, Yadav G. A study for the development of a low density heterogeneous phantom for dose verification in high energy photon beam. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Cabanas ML, Yan C, Lalonde RJ, Heron DE, Huq MS. Which Dose Specification Should Be Used for NRG Radiation Therapy Trials: Dose-to-Medium or Dose-to-Water? Pract Radiat Oncol 2020; 10:e103-e110. [DOI: 10.1016/j.prro.2019.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/06/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
|
24
|
Galpayage Dona KNU, Shang C, Leventouri T. Dosimetric Comparison of Treatment Plans Computed With Finite Size Pencil Beam and Monte Carlo Algorithms Using the InCise™ Multileaf Collimator-Equipped Cyberknife ® System. J Med Phys 2020; 45:7-15. [PMID: 32355430 PMCID: PMC7185708 DOI: 10.4103/jmp.jmp_64_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/02/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: InCise™ multileaf collimator (MLC) was introduced for CyberKnife® (CK) Robotic Radiosurgery System (CK-MLC) in 2015, and finite size pencil beam (FSPB) was the only available dose computation algorithm for treatment plans of CK-MLC system. The more advanced Monte Carlo (MC) dose calculation algorithm of lnCise™ was initially released in 2017 for the CK Precision™ treatment planning system (TPS) (v1.1) with new graphic processing unit (GPU) platform. GPU based TPS of the CK offers more accurate, faster treatment planning time and intuitive user interface with smart three-dimensional editing tools and fully automated autosegmentation tools. The MC algorithm used in CK TPS simulates the energy deposited by each individual photon and secondary particles to calculate more accurate dose. In the present study, the dose disparities between MC and FSPB algorithms for selected Stereotactic Ablative Radiation Therapy (SABR) CK-MLC treatment plans are quantified. Materials and Methods: A total of 80 CK-MLC SABR plans computed with FSPB were retrospectively reviewed and compared with MC computed results, including plans for detached lung cancer (or tumors fully surrounded by lung tissues, n = 21), nondetached lung cancer (or tumor touched the chest wall or mediastinum, n = 23), intracranial (n = 21), and pancreas lesions (n = 15). Dosimetric parameters of each planning target volume and major organs at risk (OAR) are compared in terms of normalized percentage deviations (Ndev). Results: This study revealed an average of 24.4% overestimated D95 values in plans using FSPB over MC for detached lung (n = 21) and 14.9% for nondetached lung (n = 23) lesions. No significant dose differences are found in intracranial (0.3%, n = 21) and pancreatic (0.9%, n = 15) cases. Furthermore, no significant differences were found in Ndev of OARs. Conclusion: In this study, it was found that FSPB overestimates dose to inhomogeneous treatment sites. This indicates, the employment of MC algorithm in CK-MLC-based lung SABR treatment plans is strongly suggested.
Collapse
Affiliation(s)
| | - Charles Shang
- Department of Physics, Florida Atlantic University, Boca Raton, Florida, USA.,South Florida Proton Therapy Institute, Delray Beach, Florida, USA
| | - Theodora Leventouri
- Department of Physics, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
25
|
Lye J, Kry S, Shaw M, Gibbons F, Keehan S, Lehmann J, Kron T, Followill D, Williams I. A comparison of IROC and ACDS on-site audits of reference and non-reference dosimetry. Med Phys 2019; 46:5878-5887. [PMID: 31494941 PMCID: PMC6916618 DOI: 10.1002/mp.13800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Consistency between different international quality assurance groups is important in the progress toward similar standards and expectations in radiotherapy dosimetry around the world, and in the context of consistent clinical trial data from international trial participants. This study compares the dosimetry audit methodology and results of two international quality assurance groups performing a side-by-side comparison at the same radiotherapy department, and interrogates the ability of the audits to detect deliberately introduced errors. METHODS A comparison of the core dosimetry components of reference and non-reference audits was conducted by the Imaging and Radiation Oncology Core (IROC, Houston, USA) and the Australian Clinical Dosimetry Service (ACDS, Melbourne, Australia). A set of measurements were conducted over 2 days at an Australian radiation therapy facility in Melbourne. Each group evaluated the reference dosimetry, output factors, small field output factors, percentage depth dose (PDD), wedge, and off-axis factors according to their standard protocols. IROC additionally investigated the Electron PDD and the ACDS investigated the effect of heterogeneities. In order to evaluate and compare the performance of these audits under suboptimal conditions, artificial errors in percentage depth dose (PDD), EDW, and small field output factors were introduced into the 6 MV beam model to simulate potential commissioning/modeling errors and both audits were tested for their sensitivity in detecting these errors. RESULTS With the plans from the clinical beam model, almost all results were within tolerance and at an optimal pass level. Good consistency was found between the two audits as almost all findings were consistent between them. Only two results were different between the results of IROC and the ACDS. The measurements of reference FFF photons showed a discrepancy of 0.7% between ACDS and IROC due to the inclusion of a 0.5% nonuniformity correction by the ACDS. The second difference between IROC and the ACDS was seen with the lung phantom. The asymmetric field behind lung measured by the ACDS was slightly (0.3%) above the ACDS's pass (optimal) level of 3.3%. IROC did not detect this issue because their measurements were all assessed in a homogeneous phantom. When errors were deliberately introduced neither audit was sensitive enough to pick up a 2% change to the small field output factors. The introduced PDD change was flagged by both audits. Similarly, the introduced error of using 25° wedge instead of 30° wedge was detectible in both audits as out of tolerance. CONCLUSIONS Despite different equipment, approach, and scope of measurements in on-site audits, there were clear similarities between the results from the two groups. This finding is encouraging in the context of a global harmonized approach to radiotherapy quality assurance and dosimetry audit.
Collapse
Affiliation(s)
- Jessica Lye
- Australian Clinical Dosimetry ServiceARPANSAMelbourneAustralia
| | - Stephen Kry
- Imaging and Radiation Oncology Core Houston QA CenterMD Anderson Cancer CenterHoustonTXUSA
| | - Maddison Shaw
- Australian Clinical Dosimetry ServiceARPANSAMelbourneAustralia
| | - Francis Gibbons
- Australian Clinical Dosimetry ServiceARPANSAMelbourneAustralia
- Sunshine Coast Hospital and Health ServiceBirtinyaQldAustralia
| | | | - Joerg Lehmann
- Australian Clinical Dosimetry ServiceARPANSAMelbourneAustralia
- Department of Radiation OncologyCalvary Mater NewcastleNewcastleAustralia
| | - Tomas Kron
- Peter MacCallum Cancer CentreMelbourneAustralia
| | - David Followill
- Imaging and Radiation Oncology Core Houston QA CenterMD Anderson Cancer CenterHoustonTXUSA
| | - Ivan Williams
- Australian Clinical Dosimetry ServiceARPANSAMelbourneAustralia
| |
Collapse
|
26
|
Lambrecht ML, Eaton DJ, Sonke JJ, Nestle U, Peulen H, Weber DC, Verheij M, Hurkmans CW. Results of a multicentre dosimetry audit using a respiratory phantom within the EORTC LungTech trial. Radiother Oncol 2019; 138:106-113. [PMID: 31252291 DOI: 10.1016/j.radonc.2019.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The EORTC 22113-08113 LungTech trial assesses the safety and efficacy of SBRT for centrally located NSCLC. To insure protocol compliance an extensive RTQA procedure was implemented. METHODS Twelve centres were audited using a CIRS008A phantom. The phantom was scanned using target inserts of 7.5 mm and 12.5 mm radius in static condition. For the 7.5 mm insert a 4DCT was acquired while moving according to a cos6 function. Treatment plans were measured using film and an ionization chamber. Wilcoxon's signed-rank tests were performed to compare the three plans across institutions. A Spearman correlation was calculated to evaluate the influence of factors such as PTV, slice thickness and total number of monitor units on the dosimetric results. RESULTS The reference output dose median [min, max] variation was 0.5% [-1.1, +1.5]. The median deviations between chamber doses and point-planned doses were 1.8% [-0.1; 6.7] for the 7.5 mm and 1.1% [-2.8; 5.0] for the 12.5 mm sphere in static situation and 3.2% [-3.2; 15.7] for the dynamic situation. Film gamma median pass rates were 92.0% [68.0, 99.0] for 7.5 mm static, 96.2% [73.0, 99.0] for 12.5 mm static and 71.0% [40.0, 99.0] for 7.5 mm dynamic. Wilcoxon's signed-rank tests showed that the dynamic irradiations resulted in significantly lower gamma pass rates compared to the 12.5 mm static plan (p = 0.001). The total number of MUs per plan was correlated to both film and IC results. CONCLUSION An end-to-end audit was successfully performed, revealing important variations between institutions especially in dynamic irradiations. This shows the importance of dosimetry audits and the potentials for further technique and methodology improvements.
Collapse
Affiliation(s)
- Marie Lara Lambrecht
- Department of Radiation Oncology, Catharina Hospital, Eindhoven, The Netherlands
| | - David J Eaton
- Radiotherapy Trials QA Group, Mount Vernon Hospital, Northwood, United Kingdom
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherland Cancer Institute, Amsterdam, The Netherlands
| | - Ursula Nestle
- Department of Radiation Oncology, KlinikenMaria Hilf, Mönchengladbach, Germany
| | - Heike Peulen
- Department of Radiation Oncology, Catharina Hospital, Eindhoven, The Netherlands
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Marcel Verheij
- Department of Radiation Oncology, The Netherland Cancer Institute, Amsterdam, The Netherlands
| | - Coen W Hurkmans
- Department of Radiation Oncology, Catharina Hospital, Eindhoven, The Netherlands.
| |
Collapse
|
27
|
Phantom Verification of AAA and Acuros Dose Calculations for Lung Cancer: Do Tumor Size and Regression Matter? Pract Radiat Oncol 2019; 9:29-37. [DOI: 10.1016/j.prro.2018.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/22/2018] [Accepted: 06/10/2018] [Indexed: 12/14/2022]
|
28
|
De Roover R, Crijns W, Poels K, Michiels S, Nulens A, Vanstraelen B, Petillion S, De Brabandere M, Haustermans K, Depuydt T. Validation and IMRT/VMAT delivery quality of a preconfigured fast‐rotating O‐ring linac system. Med Phys 2018; 46:328-339. [DOI: 10.1002/mp.13282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Robin De Roover
- Department of Oncology Laboratory of Experimental Radiotherapy KU Leuven – University of Leuven Herestraat 49 B‐3000 Leuven Belgium
| | - Wouter Crijns
- Department of Oncology Laboratory of Experimental Radiotherapy KU Leuven – University of Leuven Herestraat 49 B‐3000 Leuven Belgium
- Department of Radiation Oncology University Hospitals Leuven Herestraat 49 B‐3000 Leuven Belgium
| | - Kenneth Poels
- Department of Radiation Oncology University Hospitals Leuven Herestraat 49 B‐3000 Leuven Belgium
| | - Steven Michiels
- Department of Oncology Laboratory of Experimental Radiotherapy KU Leuven – University of Leuven Herestraat 49 B‐3000 Leuven Belgium
| | - An Nulens
- Department of Radiation Oncology University Hospitals Leuven Herestraat 49 B‐3000 Leuven Belgium
| | - Bianca Vanstraelen
- Department of Radiation Oncology University Hospitals Leuven Herestraat 49 B‐3000 Leuven Belgium
| | - Saskia Petillion
- Department of Radiation Oncology University Hospitals Leuven Herestraat 49 B‐3000 Leuven Belgium
| | - Marisol De Brabandere
- Department of Radiation Oncology University Hospitals Leuven Herestraat 49 B‐3000 Leuven Belgium
| | - Karin Haustermans
- Department of Oncology Laboratory of Experimental Radiotherapy KU Leuven – University of Leuven Herestraat 49 B‐3000 Leuven Belgium
- Department of Radiation Oncology University Hospitals Leuven Herestraat 49 B‐3000 Leuven Belgium
| | - Tom Depuydt
- Department of Oncology Laboratory of Experimental Radiotherapy KU Leuven – University of Leuven Herestraat 49 B‐3000 Leuven Belgium
- Department of Radiation Oncology University Hospitals Leuven Herestraat 49 B‐3000 Leuven Belgium
| |
Collapse
|
29
|
Bouacid SS, Kharfi F, Boulakhssaim F. Comparison of measured and calculated doses in a Rando phantom with a realistic lung radiotherapy treatment plan including heterogeneities. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:365-373. [PMID: 30206695 DOI: 10.1007/s00411-018-0755-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
In this work, dose measurements were performed to evaluate an external radiotherapy treatment plan and, particularly, to validate dose calculations for a lung lesion case. Doses were calculated by the Varian Eclipse treatment planning system using the AAA anisotropic analytical algorithm. The measurements were performed using a Rando anthropomorphic phantom and TLD700 thermoluminescent dosimeters. The comparison between doses calculated and doses measured by means of thermoluminescence (TL) shows compatibility except for a few points, due to the limitations in the heterogeneity correction used for the case studied here. The deviation between the calculated and measured doses is about 6.5% for low (< 0.5 Gy) doses and about 1% for higher doses (> 0.5 Gy).The deviation between AAA-calculated and TL-measured doses was also found to be higher in proximity to heterogeneous tissue interfaces.
Collapse
Affiliation(s)
- Serine Sarra Bouacid
- Department of Physics, University of Ferhat Abbas-Setif1, Campus El-Bèz, 19000, Sétif, Algeria
- Laboratory of Dosing, Analysis and Characterization with High Resolution (DAC), Campus El-Bèz, 19000, Sétif, Algeria
| | - Fayçal Kharfi
- Department of Physics, University of Ferhat Abbas-Setif1, Campus El-Bèz, 19000, Sétif, Algeria.
- Laboratory of Dosing, Analysis and Characterization with High Resolution (DAC), Campus El-Bèz, 19000, Sétif, Algeria.
| | | |
Collapse
|
30
|
Vassiliev ON, Kry SF, Wang HC, Peterson CB, Chang JY, Mohan R. Radiotherapy of lung cancers: FFF beams improve dose coverage at tumor periphery compromised by electronic disequilibrium. Phys Med Biol 2018; 63:195007. [PMID: 30189421 DOI: 10.1088/1361-6560/aadf7d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this work was to investigate radiotherapy underdosing at the periphery of lung tumors, and differences in dose for treatments delivered with flattening filter-free (FFF) beams and with conventional flattened (FF) beams. The true differences between these delivery approaches, as assessed with Monte Carlo simulations, were compared to the apparent differences seen with clinical treatment planning algorithms AAA and Acuros XB. Dose was calculated in a phantom comprised of a chest wall, lung parenchyma, and a spherical tumor (tested diameters: 1, 3, and 5 cm). Three lung densities were considered: 0.26, 0.2, and 0.1 g cm-3, representing normal lung, lung at full inspiration, and emphysematous lung, respectively. The dose was normalized to 50 Gy to the tumor center and delivered with 7 coplanar, unmodulated 6 MV FFF or FF beams. Monte Carlo calculations used EGSnrc and phase space files for the TrueBeam accelerator provided by Varian Medical Systems. Voxel sizes were 0.5 mm for the 1 cm tumor and 1 mm for the larger tumors. AAA and Acuros XB dose calculations were performed in Eclipse™ with a 2.5 mm dose grid, the resolution normally used clinically. Monte Carlo dose distributions showed that traditional FF beams underdosed the periphery of the tumor by up to ~2 Gy as compared to FFF beams; the latter provided a more uniform dose throughout the tumor. In all cases, the underdosed region was a spherical shell about 5 mm thick around the tumor and extending into the tumor by 2-3 mm. The effect was most pronounced for smaller tumors and lower lung densities. The underdosing observed with conventional FF beams was not captured by the clinical treatment planning systems. We concluded that FFF beams mitigate dose loss at tumor periphery and current clinical practice fails to capture tumor periphery underdosing and possible ways to mitigate it.
Collapse
Affiliation(s)
- Oleg N Vassiliev
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
31
|
Elcim Y, Dirican B, Yavas O. Dosimetric comparison of pencil beam and Monte Carlo algorithms in conformal lung radiotherapy. J Appl Clin Med Phys 2018; 19:616-624. [PMID: 30079474 PMCID: PMC6123106 DOI: 10.1002/acm2.12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 11/24/2022] Open
Abstract
PURPOSE In this study, lung radiotherapy target volumes as well as critical organs such as the lungs, spinal cord, esophagus, and heart doses calculated using pencil beam (PB) and Monte Carlo (MC) algorithm-based treatment planning systems (TPSs) were compared. The main aim was the evaluation of calculated dose differences between the PB and MC algorithms in a highly heterogeneous medium. METHODS A total of 6 MV photon energy conformal treatment plans were created for a RANDO lung phantom using one PB algorithm-based Precise Plan Release 2.16 TPS and one MC algorithm-based Monaco TPS. Thermoluminescence dosimeters (TLDs) were placed into appropriate slices within the RANDO phantom and then irradiated with an Elekta-Synergy® Linear Accelerator for dose verification. Doses were calculated for the V5, V10, V20, and mean lung doses (MLDs) in bilateral lungs and D50, D98, D2, and mean doses in the target volume (planning target volume, PTV). RESULTS The minimum, maximum, and mean doses of the target volumes and critical organs in two treatment plans were compared using dose volume histograms (DVHs). The mean dose difference between the PB and MC algorithms for the PTV was 0.3%, whereas the differences in V5, V10, V20, and MLD were 12.5%, 15.8%, 14.4%, and 9.1%, respectively. The differences in PTV coverage between the two algorithms were 0.9%, 2.7% and 0.7% for D50, D98 and D2, respectively. CONCLUSIONS A comparison of the dose data acquired in this study reveals that the MC algorithm calculations are closer to the 60 Gy prescribed dose for PTV, while the difference between the PB and MC algorithms was found to be non-significant. Because of the major difference arising from the dose calculation techniques by TPS that was observed in the MLD with significant medium heterogeneity, we recommend the use of the MC algorithm in such heterogeneous sites.
Collapse
Affiliation(s)
- Yelda Elcim
- Department of Radiation OncologyGulhane Training and Research HospitalAnkaraTurkey
| | - Bahar Dirican
- Department of Radiation OncologyGulhane Training and Research HospitalAnkaraTurkey
| | - Omer Yavas
- Department of Engineering PhysicsAnkara UniversityAnkaraTurkey
| |
Collapse
|
32
|
[P173] Proposal of a comprehensive pre-treatment QA procedure in IMRT/VMAT techniques. Phys Med 2018. [DOI: 10.1016/j.ejmp.2018.06.473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Radojcic ĐS, Rajlic D, Casar B, Kolacio MS, Obajdin N, Faj D, Jurkovic S. Evaluation of two-dimensional dose distributions for pre-treatment patient-specific IMRT dosimetry. Radiol Oncol 2018; 52:346-352. [PMID: 30210046 PMCID: PMC6137356 DOI: 10.2478/raon-2018-0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/13/2018] [Indexed: 11/22/2022] Open
Abstract
Background The accuracy of dose calculation is crucial for success of the radiotherapy treatment. One of the methods that represent the current standard for patient-specific dosimetry is the evaluation of dose distributions measured with an ionization chamber array inside a homogeneous phantom using gamma method. Nevertheless, this method does not replicate the realistic conditions present when a patient is undergoing therapy. Therefore, to more accurately evaluate the treatment planning system (TPS) capabilities, gamma passing rates were examined for beams of different complexity passing through inhomogeneous phantoms. Materials and methods The research was performed using Siemens Oncor Expression linear accelerator, Siemens Somatom Open CT simulator and Elekta Monaco TPS. A 2D detector array was used to evaluate dose distribution accuracy in homogeneous, semi-anthropomorphic and anthropomorphic phantoms. Validation was based on gamma analysis with 3%/3mm and 2%/2mm criteria, respectively. Results Passing rates of the complex dose distributions degrade depending on the thickness of non-water equivalent material. They also depend on dose reporting mode used. It is observed that the passing rate decreases with plan complexity. Comparison of the data for all set-ups of semi-anthropomorphic and anthropomorphic phantoms shows that passing rates are higher in the anthropomorphic phantom. Conclusions Presented results raise a question of possible limits of dose distribution verification in assessment of plan delivery quality. Consequently, good results obtained using standard patient specific dosimetry methodology do not guarantee the accuracy of delivered dose distribution in real clinical cases.
Collapse
Affiliation(s)
| | - David Rajlic
- University Hospital Rijeka, Medical Physics Department, Rijeka, Croatia
| | - Bozidar Casar
- Institute of Oncology LJubljana, Department of Radiation Physics, Ljubljana, Slovenia
| | | | - Nevena Obajdin
- University Hospital Rijeka, Medical Physics Department, Rijeka, Croatia
| | - Dario Faj
- Faculty of Medicine, University of Osijek, Osijek, Croatia
- Faculty of Dental Medicine and Health, University of Osijek, Osijek, Croatia
| | - Slaven Jurkovic
- University Hospital Rijeka, Medical Physics Department, Rijeka, Croatia
- Department of Medical Physics and Biophysics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
34
|
Lehmann J, Alves A, Dunn L, Shaw M, Kenny J, Keehan S, Supple J, Gibbons F, Manktelow S, Oliver C, Kron T, Williams I, Lye J. Dosimetric end-to-end tests in a national audit of 3D conformal radiotherapy. Phys Imaging Radiat Oncol 2018; 6:5-11. [PMID: 33458381 PMCID: PMC7807562 DOI: 10.1016/j.phro.2018.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Independent dosimetry audits improve quality and safety of radiation therapy. This work reports on design and findings of a comprehensive 3D conformal radiotherapy (3D-CRT) Level III audit. MATERIALS AND METHODS The audit was conducted as onsite audit using an anthropomorphic thorax phantom in an end-to-end test by the Australian Clinical Dosimetry Service (ACDS). Absolute dose point measurements were performed with Farmer-type ionization chambers. The audited treatment plans included open and half blocked fields, wedges and lung inhomogeneities. Audit results were determined as Pass Optimal Level (deviations within 3.3%), Pass Action Level (greater than 3.3% but within 5%) and Out of Tolerance (beyond 5%), as well as Reported Not Scored (RNS). The audit has been performed between July 2012 and January 2018 on 94 occasions, covering approximately 90% of all Australian facilities. RESULTS The audit pass rate was 87% (53% optimal). Fifty recommendations were given, mainly related to planning system commissioning. Dose overestimation behind low density inhomogeneities by the analytical anisotropic algorithm (AAA) was identified across facilities and found to extend to beam setups which resemble a typical breast cancer treatment beam placement. RNS measurements inside lung showed a variation in the opposite direction: AAA under-dosed a target beyond lung and over-dosed the lung upstream and downstream of the target. Results also highlighted shortcomings of some superposition and convolution algorithms in modelling large angle wedges. CONCLUSIONS This audit showed that 3D-CRT dosimetry audits remain relevant and can identify fundamental global and local problems that also affect advanced treatments.
Collapse
Affiliation(s)
- Joerg Lehmann
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
- Institute of Medical Physics, School of Physics A28, University of Sydney NSW 2006, Australia
- School of Mathematical and Physical Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- School of Science, Royal Melbourne Institute of Technology (RMIT) University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Andrew Alves
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Leon Dunn
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Maddison Shaw
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
- School of Science, Royal Melbourne Institute of Technology (RMIT) University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - John Kenny
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Stephanie Keehan
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
- School of Science, Royal Melbourne Institute of Technology (RMIT) University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Jeremy Supple
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Francis Gibbons
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Sophie Manktelow
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Chris Oliver
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Tomas Kron
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
- School of Science, Royal Melbourne Institute of Technology (RMIT) University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Center, 305 Grattan Street, Melbourne, VIC 3000, Australia
| | - Ivan Williams
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Jessica Lye
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| |
Collapse
|
35
|
Radojčić ÐS, Kolacio MŠ, Radojčić M, Rajlić D, Casar B, Faj D, Jurković S. Comparison of calculated dose distributions reported as dose-to-water and dose-to-medium for intensity-modulated radiotherapy of nasopharyngeal cancer patients. Med Dosim 2018; 43:363-369. [PMID: 29306538 DOI: 10.1016/j.meddos.2017.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/25/2022]
Abstract
Advanced dose calculation algorithms for radiation therapy treatment planning can report external beam photon dose 2-sided, in terms of dose-to-medium (Dm) and dose-to-water (Dw). The purpose of our study was to determinate the effect of Dw and Dm reporting modes built in Elekta Monaco treatment planning system on intensity-modulated radiotherapy dose distributions for patients with nasopharyngeal cancer. For 13 patients involved in this retrospective study, 2 plans were created: 1 using Dw and another according to Dm reporting mode. Treatment plans were normalized such that 100% planning target volume should be covered by 95% of prescribed dose. Dose-volume constraints were assigned according to international standards. The comparison between dose distributions was performed evaluating quantities important for respective volumes of interest. For target volumes, heterogeneity index and conformity index methodology were used along with the maximum dose concept. Also, for the comparisons over particular organ at risk, maximum dose or mean dose as well as dose-volume concepts were used. For all target volumes and majority of organs at risk, the differences between 2 reporting modes are statistically insignificant, but this is not the case for bony structured organs at risks: mandible and cochlea. It was observed that Dw is higher than Dm with mean difference of 9.91% (p = 0.000009) of the mandible volume covered with 70 Gy. The same trend was observed for left and right cochlea with difference in mean dose of 8.74% (p = 0.037) and 6.87% (p = 0.029), respectively. The comparative analysis of dosimetric parameters in this study shows that the selection of reporting modes in Monaco treatment planning system can produce dose differences up to 15% in high-density volumes such as mandible and cochlea, which might have clinical consequences.
Collapse
Affiliation(s)
| | | | - Milan Radojčić
- Clinic for Radiotherapy and Oncology, University Hospital Rijeka, Rijeka, Croatia
| | - David Rajlić
- Medical Physics Department, University Hospital Rijeka, Rijeka, Croatia
| | - Božidar Casar
- Department of Radiation Physics, Institute of Oncology, Ljubljana, Slovenia
| | - Dario Faj
- Faculty of Medicine, University of Osijek, Osijek, Croatia; Faculty of Dental Medicine and Health, University of Osijek, Osijek, Croatia
| | - Slaven Jurković
- Medical Physics Department, University Hospital Rijeka, Rijeka, Croatia; Department of Physics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
36
|
Affiliation(s)
- Catharine H. Clark
- Medical Physics Department, Royal Surrey County Hospital, Guildford Surrey, UK
- Metrology for Medical Physics, National Physical Laboratory, Teddington, Middx, UK
| |
Collapse
|
37
|
A multi-centre dosimetry audit on advanced radiotherapy in lung as part of the Isotoxic IMRT study. Phys Imaging Radiat Oncol 2017. [DOI: 10.1016/j.phro.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
38
|
De Ruysscher D, Faivre-Finn C, Moeller D, Nestle U, Hurkmans CW, Le Péchoux C, Belderbos J, Guckenberger M, Senan S. European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol 2017; 124:1-10. [PMID: 28666551 DOI: 10.1016/j.radonc.2017.06.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/25/2017] [Accepted: 06/05/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE To update literature-based recommendations for techniques used in high-precision thoracic radiotherapy for lung cancer, in both routine practice and clinical trials. METHODS A literature search was performed to identify published articles that were considered clinically relevant and practical to use. Recommendations were categorised under the following headings: patient positioning and immobilisation, Tumour and nodal changes, CT and FDG-PET imaging, target volumes definition, radiotherapy treatment planning and treatment delivery. An adapted grading of evidence from the Infectious Disease Society of America, and for models the TRIPOD criteria, were used. RESULTS Recommendations were identified for each of the above categories. CONCLUSION Recommendations for the clinical implementation of high-precision conformal radiotherapy and stereotactic body radiotherapy for lung tumours were identified from the literature. Techniques that were considered investigational at present are highlighted.
Collapse
Affiliation(s)
- Dirk De Ruysscher
- Maastricht University Medical Center+, Department of Radiation Oncology (Maastro Clinic), GROW Research Institute, The Netherlands; KU Leuven, Radiation Oncology, Belgium.
| | - Corinne Faivre-Finn
- Division of Cancer Sciences University of Manchester, Christie NHS Foundation Trust, UK
| | - Ditte Moeller
- Aarhus University Hospital, Department of Oncology, Denmark
| | - Ursula Nestle
- Freiburg University Medical Center (DKTK partner site), Department of Radiation Oncology, Germany; Department of Radiation Oncology, Kliniken Maria Hilf, Moenchengladbach, Germany
| | - Coen W Hurkmans
- Catharina Hospital, Department of Radiation Oncology, Eindhoven, The Netherlands
| | | | - José Belderbos
- Netherlands Cancer Institute, Department of Radiation Oncology, Amsterdam, The Netherlands
| | | | - Suresh Senan
- VU University Medical Center, Department of Radiation Oncology, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Faught AM, Davidson SE, Popple R, Kry SF, Etzel C, Ibbott GS, Followill DS. Development of a flattening filter free multiple source model for use as an independent, Monte Carlo, dose calculation, quality assurance tool for clinical trials. Med Phys 2017; 44:4952-4960. [PMID: 28657114 DOI: 10.1002/mp.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The Imaging and Radiation Oncology Core-Houston (IROC-H) Quality Assurance Center (formerly the Radiological Physics Center) has reported varying levels of compliance from their anthropomorphic phantom auditing program. IROC-H studies have suggested that one source of disagreement between institution submitted calculated doses and measurement is the accuracy of the institution's treatment planning system dose calculations and heterogeneity corrections used. In order to audit this step of the radiation therapy treatment process, an independent dose calculation tool is needed. METHODS Monte Carlo multiple source models for Varian flattening filter free (FFF) 6 MV and FFF 10 MV therapeutic x-ray beams were commissioned based on central axis depth dose data from a 10 × 10 cm2 field size and dose profiles for a 40 × 40 cm2 field size. The models were validated against open-field measurements in a water tank for field sizes ranging from 3 × 3 cm2 to 40 × 40 cm2 . The models were then benchmarked against IROC-H's anthropomorphic head and neck phantom and lung phantom measurements. RESULTS Validation results, assessed with a ±2%/2 mm gamma criterion, showed average agreement of 99.9% and 99.0% for central axis depth dose data for FFF 6 MV and FFF 10 MV models, respectively. Dose profile agreement using the same evaluation technique averaged 97.8% and 97.9% for the respective models. Phantom benchmarking comparisons were evaluated with a ±3%/2 mm gamma criterion, and agreement averaged 90.1% and 90.8% for the respective models. CONCLUSIONS Multiple source models for Varian FFF 6 MV and FFF 10 MV beams have been developed, validated, and benchmarked for inclusion in an independent dose calculation quality assurance tool for use in clinical trial audits.
Collapse
Affiliation(s)
- Austin M Faught
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Scott E Davidson
- Department of Radiation Oncology, The University of Texas Medical Branch of Galveston, Galveston, TX, 77555, USA
| | - Richard Popple
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Carol Etzel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Consortium of Rheumatology Researchers of North America (CORRONA), Inc., Southborough, MA, 01772, USA
| | - Geoffrey S Ibbott
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - David S Followill
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| |
Collapse
|
40
|
Faught AM, Davidson SE, Fontenot J, Kry SF, Etzel C, Ibbott GS, Followill DS. Development of a Monte Carlo multiple source model for inclusion in a dose calculation auditing tool. Med Phys 2017. [PMID: 28640950 DOI: 10.1002/mp.12426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The Imaging and Radiation Oncology Core Houston (IROC-H) (formerly the Radiological Physics Center) has reported varying levels of agreement in their anthropomorphic phantom audits. There is reason to believe one source of error in this observed disagreement is the accuracy of the dose calculation algorithms and heterogeneity corrections used. To audit this component of the radiotherapy treatment process, an independent dose calculation tool is needed. METHODS Monte Carlo multiple source models for Elekta 6 MV and 10 MV therapeutic x-ray beams were commissioned based on measurement of central axis depth dose data for a 10 × 10 cm2 field size and dose profiles for a 40 × 40 cm2 field size. The models were validated against open field measurements consisting of depth dose data and dose profiles for field sizes ranging from 3 × 3 cm2 to 30 × 30 cm2 . The models were then benchmarked against measurements in IROC-H's anthropomorphic head and neck and lung phantoms. RESULTS Validation results showed 97.9% and 96.8% of depth dose data passed a ±2% Van Dyk criterion for 6 MV and 10 MV models respectively. Dose profile comparisons showed an average agreement using a ±2%/2 mm criterion of 98.0% and 99.0% for 6 MV and 10 MV models respectively. Phantom plan comparisons were evaluated using ±3%/2 mm gamma criterion, and averaged passing rates between Monte Carlo and measurements were 87.4% and 89.9% for 6 MV and 10 MV models respectively. CONCLUSIONS Accurate multiple source models for Elekta 6 MV and 10 MV x-ray beams have been developed for inclusion in an independent dose calculation tool for use in clinical trial audits.
Collapse
Affiliation(s)
- Austin M Faught
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.,Department of Radiation Oncology, University of Colorado School of Medicine, Denver, CO, 80045, USA
| | - Scott E Davidson
- Department of Radiation Oncology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jonas Fontenot
- Department of Physics, Mary Bird Perkins Cancer Center, Baton Rouge, LA, 70809, USA
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Carol Etzel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Consortium of Rheumatology Researchers of North America (CORRONA), Inc., Southborough, MA, 01772, USA
| | - Geoffrey S Ibbott
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - David S Followill
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| |
Collapse
|
41
|
Taylor PA, Kry SF, Followill DS. Pencil Beam Algorithms Are Unsuitable for Proton Dose Calculations in Lung. Int J Radiat Oncol Biol Phys 2017; 99:750-756. [PMID: 28843371 DOI: 10.1016/j.ijrobp.2017.06.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/16/2017] [Accepted: 06/05/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To compare analytic and Monte Carlo-based algorithms for proton dose calculations in the lung, benchmarked against anthropomorphic lung phantom measurements. METHODS AND MATERIALS A heterogeneous anthropomorphic moving lung phantom has been irradiated at numerous proton therapy centers. At 5 centers the treatment plan could be calculated with both an analytic and Monte Carlo algorithm. The doses calculated in the treatment plans were compared with the doses delivered to the phantoms, which were measured using thermoluminescent dosimeters and film. Point doses were compared, as were planar doses using a gamma analysis. RESULTS The analytic algorithms overestimated the dose to the center of the target by an average of 7.2%, whereas the Monte Carlo algorithms were within 1.6% of the physical measurements on average. In some regions of the target volume, the analytic algorithm calculations differed from the measurement by up to 31% in the internal gross target volume (iGTV) (46% in the planning target volume), over-predicting the dose. All comparisons showed a region of at least 15% dose discrepancy within the iGTV between the analytic calculation and the measured dose. The Monte Carlo algorithm recalculations showed dramatically improved agreement with the measured doses, showing mean agreement within 4% for all cases and a maximum difference of 12% within the iGTV. CONCLUSIONS Analytic algorithms often do a poor job predicting proton dose in lung tumors, over-predicting the dose to the target by up to 46%, and should not be used unless extensive validation counters the consistent results of the present study. Monte Carlo algorithms showed dramatically improved agreement with physical measurements and should be implemented to better reflect actual delivered dose distributions.
Collapse
Affiliation(s)
- Paige A Taylor
- The Imaging and Radiation Oncology Core Houston Quality Assurance Center, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Stephen F Kry
- The Imaging and Radiation Oncology Core Houston Quality Assurance Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Followill
- The Imaging and Radiation Oncology Core Houston Quality Assurance Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
42
|
Peterlin P, Stanič K, Méndez I, Strojnik A. Treating lung cancer with dynamic conformal arc therapy: a dosimetric study. Radiat Oncol 2017; 12:93. [PMID: 28578699 PMCID: PMC5457634 DOI: 10.1186/s13014-017-0823-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lung cancer patients are often in poor physical condition, and a shorter treatment time would reduce their discomfort. Dynamic conformal arc therapy (DCAT) offers a shorter treatment time than conventional 3D conformal radiotherapy (3D CRT) and is usually available even in departments without inverse planning possibilities. We examined its suitability as a treatment modality for lung cancer patients. METHODS On a cohort of 35 lung cancer patients, relevant dosimetric parameters were compared in respective DCAT and 3D CRT treatment plans. Radiochromic film dosimetry in an anthropomorphic phantom was used to compare both DCAT and 3D CRT dose distributions against their planned counterparts. RESULTS In comparison with their 3D CRT counterparts, DCAT plans equal or exceed the agreement between the calculated dose and the dose measured using film dosimetry. In dosimetric comparison, DCAT performed significantly better than 3D CRT in dose conformity to PTV and the number of monitor units used per plan, and significantly worse in dose homogeneity, mean lung dose and lung volume exposed to 5 Gy or more (V5Gy). No significant difference was found in the V20Gy value to lung, dose to 1 cm3 of spinal cord, and the mean dose to oesophagus. Improvements in V20Gy and V5Gy were found to be negatively correlated. DCAT plans differ from 3D CRT by exhibiting a moderate negative correlation between target volume sphericity and dose homogeneity. CONCLUSIONS With respect to the agreement between the planned and the irradiated dose distribution, DCAT appears at least as reliable as 3D CRT. In specific conditions concerning the patient anatomy and treatment prescription, DCAT may yield more favourable dosimetric parameters. On average, however, conventional 3D CRT usually obtains better dosimetric parameters. We can thus only recommend DCAT as a complementary technique to the conventional 3D CRT.
Collapse
Affiliation(s)
- Primož Peterlin
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, SI-1000, Slovenia.
| | - Karmen Stanič
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, SI-1000, Slovenia
| | - Ignasi Méndez
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, SI-1000, Slovenia
| | - Andrej Strojnik
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, SI-1000, Slovenia
| |
Collapse
|
43
|
Clark CH, Hurkmans CW, Kry SF. The role of dosimetry audit in lung SBRT multi-centre clinical trials. Phys Med 2017; 44:171-176. [PMID: 28391958 DOI: 10.1016/j.ejmp.2017.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/20/2017] [Accepted: 04/01/2017] [Indexed: 11/29/2022] Open
Abstract
Stereotactic Body Radiotherapy (SBRT) in the lung is a challenging technique which requires high quality clinical trials to answer the un-resolved clinical questions. Quality assurance of these clinical trials not only ensures the safety of the treatment of the participating patients but also minimises the variation in treatment, thus allowing the lowest number of patient treatments to answer the trial question. This review addresses the role of dosimetry audits in the quality assurance process and considers what can be done to ensure the highest accuracy of dose calculation and delivery and it's assessment in multi-centre trials.
Collapse
Affiliation(s)
- Catharine H Clark
- Royal Surrey County Hospital, Guildford, UK; National Physical Laboratory, Teddington, UK; National Radiotherapy Trials QA (RTTQA) Group, Mount Vernon Hospital, Northwood, UK.
| | - Coen W Hurkmans
- Catharina Ziekenhuis, Eindhoven, The Netherlands; European Organisation for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| | - Stephen F Kry
- MD Andersen Cancer Center, Houston, TX, USA; Imaging and Radiation Oncology Core (IROC), Houston, USA
| | | |
Collapse
|
44
|
Distefano G, Lee J, Jafari S, Gouldstone C, Baker C, Mayles H, Clark CH. A national dosimetry audit for stereotactic ablative radiotherapy in lung. Radiother Oncol 2017; 122:406-410. [PMID: 28117079 DOI: 10.1016/j.radonc.2016.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 11/16/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE A UK national dosimetry audit was carried out to assess the accuracy of Stereotactic Ablative Body Radiotherapy (SABR) lung treatment delivery. METHODS AND MATERIALS This mail-based audit used an anthropomorphic thorax phantom containing nine alanine pellets positioned in the lung region for dosimetry, as well as EBT3 film in the axial plane for isodose comparison. Centres used their local planning protocol/technique, creating 27 SABR plans. A range of delivery techniques including conformal, volumetric modulated arc therapy (VMAT) and Cyberknife (CK) were used with six different calculation algorithms (collapsed cone, superposition, pencil-beam (PB), AAA, Acuros and Monte Carlo). RESULTS The mean difference between measured and calculated dose (excluding PB results) was 0.4±1.4% for alanine and 1.4±3.4% for film. PB differences were -6.1% and -12.9% respectively. The median of the absolute maximum isodose-to-isodose distances was 3mm (-6mm to 7mm) and 5mm (-10mm to +19mm) for the 100% and 50% isodose lines respectively. CONCLUSIONS Alanine and film is an effective combination for verifying dosimetric and geometric accuracy. There were some differences across dose algorithms, and geometric accuracy was better for VMAT and CK compared with conformal techniques. The alanine dosimetry results showed that planned and delivered doses were within ±3.0% for 25/27 SABR plans.
Collapse
Affiliation(s)
- Gail Distefano
- Department of Medical Physics, Royal Surrey County Hospital NHS Trust, Guildford, UK.
| | - Jonny Lee
- Clatterbridge Cancer Centre, Liverpool, UK
| | - Shakardokht Jafari
- Department of Physics, University of Surrey, Guildford, UK; Radiology Department, Faculty of Medicine, Kabul Medical University, Afghanistan
| | | | - Colin Baker
- Clatterbridge Cancer Centre, Liverpool, UK; Radiotherapy Physics, Royal Berkshire NHS Foundation Trust, Reading, UK
| | | | - Catharine H Clark
- Department of Medical Physics, Royal Surrey County Hospital NHS Trust, Guildford, UK; Department of Physics, University of Surrey, Guildford, UK; National Physical Laboratory, Teddington, UK
| |
Collapse
|
45
|
Izewska J, Wesolowska P, Azangwe G, Followill DS, Thwaites DI, Arib M, Stefanic A, Viegas C, Suming L, Ekendahl D, Bulski W, Georg D. Testing the methodology for dosimetry audit of heterogeneity corrections and small MLC-shaped fields: Results of IAEA multi-center studies. Acta Oncol 2016; 55:909-16. [PMID: 26934916 PMCID: PMC4926790 DOI: 10.3109/0284186x.2016.1139180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The International Atomic Energy Agency (IAEA) has a long tradition of supporting development of methodologies for national networks providing quality audits in radiotherapy. A series of co-ordinated research projects (CRPs) has been conducted by the IAEA since 1995 assisting national external audit groups developing national audit programs. The CRP ‘Development of Quality Audits for Radiotherapy Dosimetry for Complex Treatment Techniques’ was conducted in 2009–2012 as an extension of previously developed audit programs. Material and methods. The CRP work described in this paper focused on developing and testing two steps of dosimetry audit: verification of heterogeneity corrections, and treatment planning system (TPS) modeling of small MLC fields, which are important for the initial stages of complex radiation treatments, such as IMRT. The project involved development of a new solid slab phantom with heterogeneities containing special measurement inserts for thermoluminescent dosimeters (TLD) and radiochromic films. The phantom and the audit methodology has been developed at the IAEA and tested in multi-center studies involving the CRP participants. Results. The results of multi-center testing of methodology for two steps of dosimetry audit show that the design of audit procedures is adequate and the methodology is feasible for meeting the audit objectives. A total of 97% TLD results in heterogeneity situations obtained in the study were within 3% and all results within 5% agreement with the TPS predicted doses. In contrast, only 64% small beam profiles were within 3 mm agreement between the TPS calculated and film measured doses. Film dosimetry results have highlighted some limitations in TPS modeling of small beam profiles in the direction of MLC leave movements. Discussion. Through multi-center testing, any challenges or difficulties in the proposed audit methodology were identified, and the methodology improved. Using the experience of these studies, the participants could incorporate the auditing procedures in their national programs.
Collapse
Affiliation(s)
| | | | | | | | | | - Mehenna Arib
- Centre De Recherche Nucleaire D’alger, Alger Gare, Algeria
| | | | | | - Luo Suming
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | | | - Wojciech Bulski
- Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
| | - Dietmar Georg
- Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Vienna, Austria
| |
Collapse
|
46
|
Giglioli FR, Strigari L, Ragona R, Borzì GR, Cagni E, Carbonini C, Clemente S, Consorti R, El Gawhary R, Esposito M, Falco MD, Fedele D, Fiandra C, Frassanito MC, Landoni V, Loi G, Lorenzini E, Malisan MR, Marino C, Menghi E, Nardiello B, Nigro R, Oliviero C, Pastore G, Quattrocchi M, Ruggieri R, Redaelli I, Reggiori G, Russo S, Villaggi E, Casati M, Mancosu P. Lung stereotactic ablative body radiotherapy: A large scale multi-institutional planning comparison for interpreting results of multi-institutional studies. Phys Med 2016; 32:600-6. [DOI: 10.1016/j.ejmp.2016.03.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/15/2016] [Accepted: 03/19/2016] [Indexed: 12/25/2022] Open
|
47
|
Lo SS, Foote M, Siva S, Slotman BJ, Teh BS, Guckenberger M, Tan D, Mayr NA, Sahgal A. Technical know-how in stereotactic ablative radiotherapy (SABR). J Med Radiat Sci 2016; 63:5-8. [PMID: 27087969 PMCID: PMC4775826 DOI: 10.1002/jmrs.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 11/20/2022] Open
Abstract
Stereotactic ablative radiotherapy (SABR) is an addition to the armamentarium against cancer. The technical requirements for SABR are very stringent, given its very narrow therapeutic window. However, when the principles are strictly followed, it is possible to deliver SABR to extracranial tumours safely and effectively.![]()
Collapse
Affiliation(s)
- Simon S Lo
- Department of Radiation Oncology University Hospitals Seidman Cancer Center Case Comprehensive Cancer Center Cleveland Ohio USA
| | - Matthew Foote
- Department of Radiation Oncology Princess Alexandra Hospital School of Medicine University of Queensland Queensland Australia
| | - Shankar Siva
- Division of Radiation Oncology Peter MacCallum Cancer Centre East Melbourne Victoria Australia
| | - Ben J Slotman
- Department of Radiation Oncology VU University Medical Center Amsterdam Netherlands
| | - Bin S Teh
- Department of Radiation Oncology Houston Methodist Hospital Weill Cornell Medical College Houston Texas USA
| | | | - Daniel Tan
- Asian American Radiation Oncology Singapore
| | - Nina A Mayr
- Department of Radiation Oncology University of Washington Seattle Washington USA
| | - Arjun Sahgal
- Department of Radiation Oncology Sunnybrook Health Sciences Center University of Toronto Toronto Ontario Canada
| |
Collapse
|
48
|
Taylor PA, Kry SF, Alvarez P, Keith T, Lujano C, Hernandez N, Followill DS. Results From the Imaging and Radiation Oncology Core Houston's Anthropomorphic Phantoms Used for Proton Therapy Clinical Trial Credentialing. Int J Radiat Oncol Biol Phys 2016; 95:242-248. [PMID: 27084644 DOI: 10.1016/j.ijrobp.2016.01.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE The purpose of this study was to summarize the findings of anthropomorphic proton phantom irradiations analyzed by the Imaging and Radiation Oncology Core Houston QA Center (IROC Houston). METHODS AND MATERIALS A total of 103 phantoms were irradiated by proton therapy centers participating in clinical trials. The anthropomorphic phantoms simulated heterogeneous anatomy of a head, liver, lung, prostate, and spine. Treatment plans included those for scattered, uniform scanning, and pencil beam scanning beam delivery modalities using 5 different treatment planning systems. For every phantom irradiation, point doses and planar doses were measured using thermoluminescent dosimeters (TLD) and film, respectively. Differences between measured and planned doses were studied as a function of phantom, beam delivery modality, motion, repeat attempt, treatment planning system, and date of irradiation. RESULTS The phantom pass rate (overall, 79%) was high for simple phantoms and lower for phantoms that introduced higher levels of difficulty, such as motion, multiple targets, or increased heterogeneity. All treatment planning systems overestimated dose to the target, compared to TLD measurements. Errors in range calculation resulted in several failed phantoms. There was no correlation between treatment planning system and pass rate. The pass rates for each individual phantom are not improving over time, but when individual institutions received feedback about failed phantom irradiations, pass rates did improve. CONCLUSIONS The proton phantom pass rates are not as high as desired and emphasize potential deficiencies in proton therapy planning and/or delivery. There are many areas for improvement with the proton phantom irradiations, such as treatment planning system dose agreement, range calculations, accounting for motion, and irradiation of multiple targets.
Collapse
Affiliation(s)
- Paige A Taylor
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Stephen F Kry
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paola Alvarez
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tyler Keith
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carrie Lujano
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nadia Hernandez
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Followill
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
49
|
Smilowitz JB, Das IJ, Feygelman V, Fraass BA, Kry SF, Marshall IR, Mihailidis DN, Ouhib Z, Ritter T, Snyder MG, Fairobent L. AAPM Medical Physics Practice Guideline 5.a.: Commissioning and QA of Treatment Planning Dose Calculations - Megavoltage Photon and Electron Beams. J Appl Clin Med Phys 2015; 16:14–34. [PMID: 26699330 PMCID: PMC5690154 DOI: 10.1120/jacmp.v16i5.5768] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/10/2015] [Accepted: 06/13/2015] [Indexed: 12/02/2022] Open
Abstract
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines:• Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline.• Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.
Collapse
|
50
|
Bibault JE, Mirabel X, Lacornerie T, Tresch E, Reynaert N, Lartigau E. Adapted Prescription Dose for Monte Carlo Algorithm in Lung SBRT: Clinical Outcome on 205 Patients. PLoS One 2015. [PMID: 26207808 PMCID: PMC4514775 DOI: 10.1371/journal.pone.0133617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Purpose SBRT is the standard of care for inoperable patients with early-stage lung cancer without lymph node involvement. Excellent local control rates have been reported in a large number of series. However, prescription doses and calculation algorithms vary to a great extent between studies, even if most teams prescribe to the D95 of the PTV. Type A algorithms are known to produce dosimetric discrepancies in heterogeneous tissues such as lungs. This study was performed to present a Monte Carlo (MC) prescription dose for NSCLC adapted to lesion size and location and compare the clinical outcomes of two cohorts of patients treated with a standard prescription dose calculated by a type A algorithm or the proposed MC protocol. Patients and Methods Patients were treated from January 2011 to April 2013 with a type B algorithm (MC) prescription with 54 Gy in three fractions for peripheral lesions with a diameter under 30 mm, 60 Gy in 3 fractions for lesions with a diameter over 30 mm, and 55 Gy in five fractions for central lesions. Clinical outcome was compared to a series of 121 patients treated with a type A algorithm (TA) with three fractions of 20 Gy for peripheral lesions and 60 Gy in five fractions for central lesions prescribed to the PTV D95 until January 2011. All treatment plans were recalculated with both algorithms for this study. Spearman’s rank correlation coefficient was calculated for GTV and PTV. Local control, overall survival and toxicity were compared between the two groups. Results 205 patients with 214 lesions were included in the study. Among these, 93 lesions were treated with MC and 121 were treated with TA. Overall survival rates were 86% and 94% at one and two years, respectively. Local control rates were 79% and 93% at one and two years respectively. There was no significant difference between the two groups for overall survival (p = 0.785) or local control (p = 0.934). Fifty-six patients (27%) developed grade I lung fibrosis without clinical consequences. GTV size was a prognostic factor for overall survival (HR = 1.026, IC95% [1.01–1.041], p<0.001) and total dose was a prognostic factor for local control (HR = 0.924, IC95% [0.870–0.982], p = 0.011). D50 of the GTV calculated with MC correlated poorly with the D95 of the PTV calculated with TA (r = 0.116) for lesions with a diameter of 20 mm or less. For lesions larger than 20 mm, spearman correlation was higher (r = 0.618), but still insufficient. Conclusion No difference in local control or overall survival was found between patients treated with a type A or a type B algorithm in our cohort. A size and location adapted GTV-based prescription method could be used with a type B algorithm. External validation of these results is warranted.
Collapse
Affiliation(s)
- Jean-Emmanuel Bibault
- Academic Radiation Oncology Department, Oscar Lambret Comprehensive Cancer Center, 3 rue Frédéric Combemale, Lille, France
- Faculty of Medicine, University Lille 2, Lille, France
- ONCOLille, maison régionale de la recherche Clinique, Lille, France
| | - Xavier Mirabel
- Academic Radiation Oncology Department, Oscar Lambret Comprehensive Cancer Center, 3 rue Frédéric Combemale, Lille, France
- Faculty of Medicine, University Lille 2, Lille, France
- ONCOLille, maison régionale de la recherche Clinique, Lille, France
| | - Thomas Lacornerie
- Academic Radiation Oncology Department, Oscar Lambret Comprehensive Cancer Center, 3 rue Frédéric Combemale, Lille, France
- Faculty of Medicine, University Lille 2, Lille, France
- ONCOLille, maison régionale de la recherche Clinique, Lille, France
| | - Emmanuelle Tresch
- Biostatistics Department, Oscar Lambret Comprehensive Cancer Center, 3 rue Frédéric Combemale, Lille, France
- ONCOLille, maison régionale de la recherche Clinique, Lille, France
| | - Nick Reynaert
- Academic Radiation Oncology Department, Oscar Lambret Comprehensive Cancer Center, 3 rue Frédéric Combemale, Lille, France
- Faculty of Medicine, University Lille 2, Lille, France
- ONCOLille, maison régionale de la recherche Clinique, Lille, France
| | - Eric Lartigau
- Academic Radiation Oncology Department, Oscar Lambret Comprehensive Cancer Center, 3 rue Frédéric Combemale, Lille, France
- Faculty of Medicine, University Lille 2, Lille, France
- ONCOLille, maison régionale de la recherche Clinique, Lille, France
- * E-mail:
| |
Collapse
|