1
|
Altergot A, Schürmann M, Jungert T, Auerbach H, Nüsken F, Palm J, Rübe C, Rübe CE, Dzierma Y. Imaging doses for different CBCT protocols on the Halcyon 3.0 linear accelerator - TLD measurements in an anthropomorphic phantom. Z Med Phys 2024; 34:580-595. [PMID: 37088675 PMCID: PMC11624401 DOI: 10.1016/j.zemedi.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Image guided radiotherapy allows for particularly conformal tumour irradiation through precise patient positioning. Becoming the standard for radiotherapy, this increases imaging doses to the patient. The Halcyon 3.0 linear accelerator (Varian Medical Systems, Palo Alto, CA) requires daily imaging due to its geometry. For this reason, the accelerator is equipped with on-line kV and MV imaging. However, daily CBCT images required for irradiation apply additional radiation, which increases the dose to normal tissue and therefore can affect the patient's secondary cancer risk. In this study, actual organ doses were measured for the kV system, and a comparison of normal tissue doses for all available kV CBCT protocols was presented to demonstrate differences in imaging doses across entities and protocols. In addition, effective dose and secondary cancer risk from imaging are evaluated. MATERIAL AND METHODS Measurements were performed with thermoluminescent dosimeters in an anthropomorphic phantom positioned according to each entity (brain, head and neck, breast, lung, pelvis). CBCT images were obtained, using all available pre-set protocols without further adjustment of the parameters. Measured doses for each position and each protocol were then compared and secondary cancer risk of relevant and specifically radiosensitive organs was calculated. RESULTS It was found that imaging doses for protocols such as Pelvis and Head could be reduced by up to half using the corresponding Fast and Low Dose modes, respectively. On the other hand, larger field sizes or the Large mode yielded higher doses than their initial protocols. Image Gently was found to spare normal tissue best, however it is not suitable for certain entities due to low image quality or insufficient projection data. DISCUSSION By using appropriate kV-CBCT protocols, it is possible to reduce imaging doses to a significant extent and therefore spare healthy tissue. Combined with studies of image quality, the results of this study could lead to adjustments in workflow regarding the choice of protocols used in daily routine. This could prevent unnecessary radiation exposure and reduce secondary cancer risk.
Collapse
Affiliation(s)
- Angelika Altergot
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany.
| | - Michaela Schürmann
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Tanja Jungert
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Hendrik Auerbach
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Frank Nüsken
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Jan Palm
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Claudia E Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| |
Collapse
|
2
|
Abuhaimed A, Mujammami H, AlEnazi K, Abanomy A, Alashban Y, Martin CJ. Estimation of organ and effective doses of CBCT scans of radiotherapy using size-specific field of view (FOV): a Monte Carlo study. Phys Eng Sci Med 2024; 47:895-906. [PMID: 38536632 DOI: 10.1007/s13246-024-01413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/04/2024] [Indexed: 09/18/2024]
Abstract
The kV cone beam computed tomography (CBCT) is one of the most common imaging modalities used for image-guided radiation therapy (IGRT) procedures. Additional doses are delivered to patients, thus assessment and optimization of the imaging doses should be taken into consideration. This study aimed to investigate the influence of using fixed and patient-specific FOVs on the patient dose. Monte Carlo simulations were performed to simulate kV beams of the imaging system integrated into Truebeam linear accelerator using BEAMnrc code. Organ and size-specific effective doses resulting from chest and pelvis scanning protocols were estimated with DOSXYZnrc code using a phantom library developed by the National Cancer Institute (NCI) of the US. The library contains 193 (100 male and 93 female) mesh-type computational human adult phantoms, and it covers a large ratio of patient sizes with heights and weights ranging from 150 to 190 cm and 40 to 125 kg. The imaging doses were assessed using variable FOV of three sizes, small (S), medium (M), and large (L) for each scan region. The results show that the FOV and the patient size played a major role in the scan dose. The average percentage differences (PDs) for doses of organs that were fully inside the different FOVs were relatively low, all within 11% for both protocols. However, doses to organs that were scanned partially or near the FOVs were affected significantly. For the chest protocol, the inclusion of the thyroid in the scan field could give a dose of 1-7 mGy/100 mAs to the thyroid, compared to 0.4-1 mGy/100 mAs when it was excluded. Similarly, on average, testes doses could be 6 mGy/100 mAs for the male pelvis protocol compared to 3 mGy/100 mAs when it did not lie in the field irradiated. These dose differences resulted in an average increase of up to 27% in the size-specific effective dose of the protocols. Since changing the field size is possible for CBCT scans, the results suggest that patient-specific scanning protocols could be applied for each scan area in a manner similar to that used for CT scans. Adjustment of the FOV size should be subject to the clinical needs, and assist in improving the treatment accuracy. The patient's height and weight might be considered as the main factors upon which, the selection of the appropriate patient-specific protocol is based. This approach should optimize the imaging doses used for IGRT procedures by minimizing doses of a large ratio of patients.
Collapse
Affiliation(s)
- Abdullah Abuhaimed
- King Abdulaziz City for Science and Technology (KACST), P.O Box 6086, 11442, Riyadh, Saudi Arabia.
| | - Huda Mujammami
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, 4545, Riyadh, Saudi Arabia
| | - Khaled AlEnazi
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, 4545, Riyadh, Saudi Arabia
| | - Ahmed Abanomy
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, 4545, Riyadh, Saudi Arabia
| | - Yazeed Alashban
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, 4545, Riyadh, Saudi Arabia
| | - Colin J Martin
- Department of Clinical Physics and Bio-Engineering, Gartnavel Royal Hospital, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
3
|
Auerbach H, Dzierma Y, Schürmann M, Rübe C, Rübe CE. Measuring out-of-field dose to the hippocampus in common radiotherapy indications. Radiat Oncol 2023; 18:64. [PMID: 37029409 PMCID: PMC10080875 DOI: 10.1186/s13014-023-02242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/06/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND The high susceptibility of the hippocampus region to radiation injury is likely the causal factor of neurocognitive dysfunctions after exposure to ionizing radiation. Repetitive exposures with even low doses have been shown to impact adult neurogenesis and induce neuroinflammation. We address the question whether the out-of-field doses during radiotherapy of common tumour entities may pose a risk for the neuronal stem cell compartment in the hippocampus. METHODS The dose to the hippocampus was determined for a single fraction according to different treatment plans for the selected tumor entities: Point dose measurements were performed in an anthropomorphic Alderson phantom and the out-of-field dose to the hippocampus was measured using thermoluminescence dosimeters. RESULTS For carcinomas in the head and neck region the dose exposure to the hippocampal region for a single fraction ranged from to 37.4 to 154.8 mGy. The hippocampal dose was clearly different for naso-, oro- and hypopharynx, with maximal values for nasopharynx carcinoma. In contrast, hippocampal dose levels for breast and prostate cancer ranged between 2.7 and 4.1 mGy, and therefore significantly exceeded the background irradiation level. CONCLUSION The mean dose to hippocampus for treatment of carcinomas in the head and neck region is high enough to reduce neurocognitive functions. In addition, care must be taken regarding the out of field doses. The mean dose is mainly related to scattering effects, as is confirmed by the data from breast or prostate treatments, with a very different geometrical set-up but similar dosimetric results.
Collapse
Affiliation(s)
- Hendrik Auerbach
- Department of Radiation Oncology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - Yvonne Dzierma
- Department of Radiation Oncology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Michaela Schürmann
- Department of Radiation Oncology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Christian Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Claudia E Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg, Saar, Germany
| |
Collapse
|
4
|
Abuhaimed A, Martin CJ. Assessment of organ and size-specific effective doses from cone beam CT (CBCT) in image-guided radiotherapy (IGRT) based on body mass index (BMI). Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Duan YH, Gu HL, Yang XH, Chen H, Wang H, Shao Y, Li XY, Feng AH, Ying YC, Fu XL, Ma K, Zhou T, Xu ZY. Evaluation of IGRT-Induced Imaging Doses and Secondary Cancer Risk for SBRT Early Lung Cancer Patients In Silico Study. Technol Cancer Res Treat 2021; 20:15330338211016472. [PMID: 34184567 PMCID: PMC8251513 DOI: 10.1177/15330338211016472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES This study performed dosimetry studies and secondary cancer risk assessments on using electronic portal imaging device (EPID) and cone beam computed tomography (CBCT) as image guided tools for the early lung cancer patients treated with SBRT. METHODS The imaging doses from MV-EPID and kV-CBCT of the Edge accelerator were retrospectively added to sixty-one SBRT treatment plans of early lung cancer patients. The MV-EPID imaging dose (6MV Photon beam) was calculated in Pinnacle TPS, and the kV-CBCT imaging dose was simulated and calculated by modeling of the kV energy beam in TPS using Pinnacle automatic modeling program. Three types of plans, namely PlanEPID, PlanCBCT and Planorigin, were generated with incorporating doses of EPID, CBCT and no imaging, respectively, for analysis. The effects of imaging doses on dose-volume-histogram (DVH) and plan quality were analyzed, and the excess absolute risk (EAR) of secondary cancer for ipsilateral lung was evaluated. RESULTS The regions that received less than 50 cGy were significantly impacted by the imaging doses, while the isodose lines greater than 1000 cGy were barely changed. The DVH values of ipsilateral lung increased the most in PlanEPID, followed by PlanCBCT. Compared to Planorigin on the average, the estimated EAR of ipsilateral lung in PlanEPID increased by 3.43%, while the corresponding EAR increase in PlanCBCT was much smaller (about 0.4%). Considering only the contribution of the imaging dose, the EAR values for the ipsilateral lung due to the MV-EPID dose in 5 years,10 years and 15 years were 1.49 cases, 2.09 cases and 2.88 cases per 104PY respectively, and those due to the kV-CBCT dose were about 9 times lower, correspondingly. CONCLUSIONS The imaging doses produced by MV-EPID and kV-CBCT had little effects on the target dose coverage. The secondary cancer risk caused by MV-EPID dose is more than 8.5 times that of kV-CBCT.
Collapse
Affiliation(s)
- Yan-Hua Duan
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Le Gu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Hui Yang
- Department of Engineering, Beijing Jingfang Technologies Co. Ltd, Beijing, China
| | - Hua Chen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Shao
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Yang Li
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ai-Hui Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Chen Ying
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Long Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kui Ma
- Clinical helpdesk, Varian Medical Systems, China
| | - Tao Zhou
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Zhi-Yong Xu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Moeckli R, Baillod A, Gibellieri D, Conrad M, Marsolat F, Schiappacasse L, Jumeau R, Jeanneret‐Sozzi W, Bourhis J, Bochud FO, Germond J. Dose indicator for CyberKnife image‐guided radiation therapy. Med Phys 2020; 47:2309-2316. [DOI: 10.1002/mp.14103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Raphaël Moeckli
- Institute of Radiation Physics Lausanne University Hospital Rue du Grand‐Pré 1 CH‐1007Lausanne Switzerland
| | - Antoine Baillod
- Institute of Radiation Physics Lausanne University Hospital Rue du Grand‐Pré 1 CH‐1007Lausanne Switzerland
| | - Dora Gibellieri
- Institute of Radiation Physics Lausanne University Hospital Rue du Grand‐Pré 1 CH‐1007Lausanne Switzerland
| | - Mireille Conrad
- Department of Nuclear and Corpuscular Physics University of Geneva Quai Ernest‐Ansermet 24 CH‐1211Geneva Switzerland
| | - Fanny Marsolat
- Institute of Radiation Physics Lausanne University Hospital Rue du Grand‐Pré 1 CH‐1007Lausanne Switzerland
| | - Luis Schiappacasse
- Department of Radiation Oncology Lausanne University Hospital Rue du Bugnon 46 CH‐1011Lausanne Switzerland
| | - Raphaël Jumeau
- Department of Radiation Oncology Lausanne University Hospital Rue du Bugnon 46 CH‐1011Lausanne Switzerland
| | - Wendy Jeanneret‐Sozzi
- Department of Radiation Oncology Lausanne University Hospital Rue du Bugnon 46 CH‐1011Lausanne Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology Lausanne University Hospital Rue du Bugnon 46 CH‐1011Lausanne Switzerland
| | - François O. Bochud
- Institute of Radiation Physics Lausanne University Hospital Rue du Grand‐Pré 1 CH‐1007Lausanne Switzerland
| | - Jean‐François Germond
- Institute of Radiation Physics Lausanne University Hospital Rue du Grand‐Pré 1 CH‐1007Lausanne Switzerland
| |
Collapse
|
7
|
Bell K, Licht N, Rübe C, Dzierma Y. Image guidance and positioning accuracy in clinical practice: influence of positioning errors and imaging dose on the real dose distribution for head and neck cancer treatment. Radiat Oncol 2018; 13:190. [PMID: 30285806 PMCID: PMC6167812 DOI: 10.1186/s13014-018-1141-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Modern radiotherapy offers the possibility of highly accurate tumor treatment. To benefit from this precision at its best, regular positioning verification is necessary. By the use of image-guided radiotherapy and the application of safety margins the influence of positioning inaccuracies can be counteracted. In this study the effect of additional imaging dose by set-up verification is compared with the effect of dose smearing by positioning inaccuracies for a collective of head-and-neck cancer patients. METHODS This study is based on treatment plans of 40 head-and-neck cancer patients. To evaluate the imaging dose several image guidance scenarios with different energies, techniques and frequencies were simulated and added to the original plan. The influence of the positioning inaccuracies was assessed by the use of real applied table shifts for positioning. The isocenters were shifted back appropriately to these values to simulate that no positioning correction had been performed. For the single fractions the shifted plans were summed considering three different scenarios: The summation of only shifted plans, the consideration of the original plan for the fractions with set-up verification, and the addition of the extra imaging dose to the latter. For both effects (additional imaging dose and dose smearing), plans were analyzed and compared considering target coverage, sparing of organs at risk (OAR) and normal tissue complication probability (NTCP). RESULTS Daily verification of the patient positioning using 3D imaging with MV energies result in non-negligible high doses. kV imaging has only marginal influence on plan quality, primarily related to sparing of organs at risk, even with daily 3D imaging. For this collective, sparing of organs at risk and NTCP are worse due to potential positioning errors. CONCLUSION Regular set-up verification is essential for precise radiation treatment. Relating to the additional dose, the use of kV modalities is uncritical for any frequency and technique. Dose smearing due to positioning errors for this collective mainly resulted in a decrease of OAR sparing. Target coverage also suffered from the positioning inaccuracies, especially for individual patients. Taking into account both examined effects the relevance of an extensive IGRT is clearly present, even at the expense of additional imaging dose and time expenditure.
Collapse
Affiliation(s)
- Katharina Bell
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5/Saar, D-66421 Homburg, Germany
| | - Norbert Licht
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5/Saar, D-66421 Homburg, Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5/Saar, D-66421 Homburg, Germany
| | - Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5/Saar, D-66421 Homburg, Germany
| |
Collapse
|
8
|
Dzierma Y, Mikulla K, Richter P, Bell K, Melchior P, Nuesken F, Rübe C. Imaging dose and secondary cancer risk in image-guided radiotherapy of pediatric patients. Radiat Oncol 2018; 13:168. [PMID: 30185206 PMCID: PMC6125956 DOI: 10.1186/s13014-018-1109-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Daily image-guided radiotherapy (IGRT) can contribute to cover extended body volumes with low radiation dose. The effect of additional imaging dose on secondary cancer development is modelled for a collective of children with Morbus Hodgkin. METHODS Eleven radiotherapy treatment plans from pediatric patients with Hodgkin's lymphoma were retrospectively analyzed, including imaging dose from scenarios using different energies (kV/MV) and planar/cone-beam computed tomography (CBCT) techniques. In addition to assessing the effect of imaging dose on organs at risk, the excess average risk (EAR) for developing a secondary carcinoma of the lung or breast was modelled. RESULTS Although the variability between the patients is relatively large due to the different target volumes, the additional EAR due to imaging can be consistently determined. For daily 6MV CBCT, the EAR for developing a secondary cancer at age 50 is over 3 cases per 104 PY (patient-years) for the female breast and 0.7-0.8 per 104 PY for the lungs. This can be decreased by using only planar images (< 1 per 104 PY for the breast and 0.1 for the lungs). Similar values are achieved by daily 360° kV CBCT (0.44-0.57 per 104 PY for the breast and 0.08 per 104 PY for the lungs), which is again reduced for daily 200° kV CBCT (0.02 per 104 PY for the lungs and 0.07-0.08 per 104 PY for the breast). These values increase if an older attained age is considered (e.g., for 70 years, by a factor of four for the lungs). CONCLUSIONS Daily imaging can be performed with an additional secondary cancer risk of less than 1 per 104 PY if kV CBCT is applied. If MV modalities must be chosen, a similar EAR can be achieved with planar images. A further reduction in risk is possible if the imaging geometry allows for sparing of the breast by a partial rotation underneath the patient.
Collapse
Affiliation(s)
- Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Katharina Mikulla
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Patrick Richter
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Katharina Bell
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Patrick Melchior
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Frank Nuesken
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| |
Collapse
|
9
|
Ding GX, Alaei P, Curran B, Flynn R, Gossman M, Mackie TR, Miften M, Morin R, Xu XG, Zhu TC. Image guidance doses delivered during radiotherapy: Quantification, management, and reduction: Report of the AAPM Therapy Physics Committee Task Group 180. Med Phys 2018; 45:e84-e99. [PMID: 29468678 DOI: 10.1002/mp.12824] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND With radiotherapy having entered the era of image guidance, or image-guided radiation therapy (IGRT), imaging procedures are routinely performed for patient positioning and target localization. The imaging dose delivered may result in excessive dose to sensitive organs and potentially increase the chance of secondary cancers and, therefore, needs to be managed. AIMS This task group was charged with: a) providing an overview on imaging dose, including megavoltage electronic portal imaging (MV EPI), kilovoltage digital radiography (kV DR), Tomotherapy MV-CT, megavoltage cone-beam CT (MV-CBCT) and kilovoltage cone-beam CT (kV-CBCT), and b) providing general guidelines for commissioning dose calculation methods and managing imaging dose to patients. MATERIALS & METHODS We briefly review the dose to radiotherapy (RT) patients resulting from different image guidance procedures and list typical organ doses resulting from MV and kV image acquisition procedures. RESULTS We provide recommendations for managing the imaging dose, including different methods for its calculation, and techniques for reducing it. The recommended threshold beyond which imaging dose should be considered in the treatment planning process is 5% of the therapeutic target dose. DISCUSSION Although the imaging dose resulting from current kV acquisition procedures is generally below this threshold, the ALARA principle should always be applied in practice. Medical physicists should make radiation oncologists aware of the imaging doses delivered to patients under their care. CONCLUSION Balancing ALARA with the requirement for effective target localization requires that imaging dose be managed based on the consideration of weighing risks and benefits to the patient.
Collapse
Affiliation(s)
- George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Parham Alaei
- University of Minnesota, Minneapolis, MN, 55455, USA
| | - Bruce Curran
- Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Ryan Flynn
- University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | | | | - X George Xu
- Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Timothy C Zhu
- University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
10
|
Abuhaimed A, Martin CJ, Sankaralingam M. A Monte Carlo study of organ and effective doses of cone beam computed tomography (CBCT) scans in radiotherapy. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:61-80. [PMID: 28952463 DOI: 10.1088/1361-6498/aa8f61] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cone-beam CT (CBCT) scans utilised for image guided radiation therapy (IGRT) procedures have become an essential part of radiotherapy. The aim of this study was to assess organ and effective doses resulting from new CBCT scan protocols (head, thorax, and pelvis) released with a software upgrade of the kV on-board-imager (OBI) system. Organ and effective doses for protocols of the new software (V2.5) and a previous version (V1.6) were assessed using Monte Carlo (MC) simulations for the International Commission on Radiological Protection (ICRP) adult male and female reference computational phantoms. The number of projections and the mAs values were increased and the size of the scan field was extended in the new protocols. Influence of these changes on organ and effective doses of the scans was investigated. The OBI system was modelled in EGSnrc/BEAMnrc, and organ doses were estimated using EGSnrc/DOSXYZnrc. The MC model was benchmarked against experimental measurements. Organ doses resulting from the V2.5 protocols were higher than those of V1.6 for organs that were partially or fully inside the scans fields, and increased by (3-13)%, (10-77)%, and (13-21)% for the head, thorax, and pelvis protocols for both phantoms, respectively. As a result, effective doses rose by 14%, 17%, and 16% for the male phantom, and 13%, 18%, and 17% for the female phantom for the three scan protocols, respectively. The scan field extension for the V2.5 protocols contributed significantly in the dose increases, especially for organs that were partially irradiated such as the thyroid in head and thorax scans and colon in the pelvic scan. The contribution of the mAs values and projection numbers was minimal in the dose increases, up to 2.5%. The field size extension plays a major role in improving the treatment output by including more markers in the field of view to match between CBCT and CT images and hence setting up the patient precisely. Therefore, a trade-off between the risk and benefits of CBCT scans should be considered, and the dose increases should be monitored. Several recommendations have been made for optimisation of the patient dose involved for IGRT procedures.
Collapse
Affiliation(s)
- Abdullah Abuhaimed
- The National Centre for Applied Physics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
11
|
Dzierma Y, Minko P, Ziegenhain F, Bell K, Buecker A, Rübe C, Jagoda P. Abdominal imaging dose in radiology and radiotherapy - Phantom point dose measurements, effective dose and secondary cancer risk. Phys Med 2017; 43:49-56. [PMID: 29195562 DOI: 10.1016/j.ejmp.2017.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To compare abdominal imaging dose from 3D imaging in radiology (standard/low-dose/dual-energy CT) and radiotherapy (planning CT, kV cone-beam CT (CBCT)). METHODS Dose was measured by thermoluminescent dosimeters (TLD's) placed at 86 positions in an anthropomorphic phantom. Point, organ and effective dose were assessed, and secondary cancer risk from imaging was estimated. RESULTS Overall dose and mean organ dose comparisons yield significantly lower dose for the optimized radiology protocols (dual-source and care kV), with an average dose of 0.34±0.01 mGy and 0.54±0.01 mGy (average ± standard deviation), respectively. Standard abdominal CT and planning CT involve considerably higher dose (13.58 ± 0.18 mGy and 18.78±0.27 mGy, respectively). The CBCT dose show a dose fall-off near the field edges. On average, dose is reduced as compared with the planning or standard CT (3.79 ± 0.21 mGy for 220° rotation and 7.76 ± 0.37 mGy for 360°), unless the high-quality setting is chosen (20.30 ± 0.96 mGy). The mean organ doses show a similar behavior, which translates to the estimated secondary cancer risk. The modelled risk is in the range between 0.4 cases per million patient years (PY) for the radiological scans dual-energy and care kV, and 300 cases per million PY for the high-quality CBCT setting. CONCLUSIONS Modern radiotherapy imaging techniques (while much lower in dose than radiotherapy), involve considerably more dose to the patient than modern radiology techniques. Given the frequency of radiotherapy imaging, a further reduction in radiotherapy imaging dose appears to be both desirable and technically feasible.
Collapse
Affiliation(s)
- Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Str. Geb. 6.5, D-66421 Homburg/Saar, Germany.
| | - Peter Minko
- Department of Diagnostic and Interventional Radiology, Saarland University Medical Center, Kirrberger Str. Geb. 50.1, D-66421 Homburg/Saar, Germany
| | - Franziska Ziegenhain
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Str. Geb. 6.5, D-66421 Homburg/Saar, Germany
| | - Katharina Bell
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Str. Geb. 6.5, D-66421 Homburg/Saar, Germany
| | - Arno Buecker
- Department of Diagnostic and Interventional Radiology, Saarland University Medical Center, Kirrberger Str. Geb. 50.1, D-66421 Homburg/Saar, Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Str. Geb. 6.5, D-66421 Homburg/Saar, Germany
| | - Philippe Jagoda
- Department of Diagnostic and Interventional Radiology, Saarland University Medical Center, Kirrberger Str. Geb. 50.1, D-66421 Homburg/Saar, Germany
| |
Collapse
|
12
|
Bell K, Heitfeld M, Licht N, Rübe C, Dzierma Y. Influence of daily imaging on plan quality and normal tissue toxicity for prostate cancer radiotherapy. Radiat Oncol 2017; 12:7. [PMID: 28069053 PMCID: PMC5223448 DOI: 10.1186/s13014-016-0757-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Modern radiotherapy offers various possibilities for image guided verification of patient positioning. Different clinically relevant IGRT (image guided radiotherapy) scenarios were considered with regard to their influence on dosimetric plan quality and normal tissue complication probability (NTCP). Methods This study is based on treatment plans of 50 prostate patients. We evaluate the clinically performed IGRT and simulate the influence of different daily IGRT scenarios on plan quality. Imaging doses of planar and cone-beam-CT (CBCT) images for three different energies (6 MV, 1 MV and 121 kV) were added to the treatment plans. The plan quality of the different scenarios was assessed by a visual inspection of the dose distribution and dose-volume-histogram (DVH) and a statistical analysis of DVH criteria. In addition, an assessment of the normal tissue complication probability was performed. Results Daily 1MV-CBCTs result in undesirable high dose regions in the target volume. The DVH shows that the scenarios with actual imaging performed, daily kV-CBCT and daily 6MV imaging (1x CBCT, 4x planar images per week) do not differ exceedingly from the original plan; especially imaging with daily kV-CBCT has little influence to the sparing of organs at risk. In contrast, daily 1MV- CBCT entails an additional dose of up to two fraction doses. Due to the additional dose amount some DVH constraints for plan acceptability could no longer be satisfied, especially for the daily 1MV-CBCT scenario. This scenario also shows increased NTCP for the rectum. Conclusion Daily kV-CBCT has negligible influence on plan quality and is commendable for the clinical routine. If no kV-modality is available, a daily IGRT scenario with one CBCT per week and planar axial images on the other days should be preferred over daily MV-CBCT.
Collapse
Affiliation(s)
- Katharina Bell
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, D-66421, Homburg/Saar, Germany.
| | - Marina Heitfeld
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, D-66421, Homburg/Saar, Germany
| | - Norbert Licht
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, D-66421, Homburg/Saar, Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, D-66421, Homburg/Saar, Germany
| | - Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, D-66421, Homburg/Saar, Germany
| |
Collapse
|
13
|
Set-up errors and planning margins in planar and CBCT image-guided radiotherapy using three different imaging systems: A clinical study for prostate and head-and-neck cancer. Phys Med 2015; 31:1055-1059. [DOI: 10.1016/j.ejmp.2015.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/18/2015] [Accepted: 09/06/2015] [Indexed: 11/19/2022] Open
|
14
|
Alaei P, Spezi E. Imaging dose from cone beam computed tomography in radiation therapy. Phys Med 2015; 31:647-58. [PMID: 26148865 DOI: 10.1016/j.ejmp.2015.06.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/26/2022] Open
Abstract
Imaging dose in radiation therapy has traditionally been ignored due to its low magnitude and frequency in comparison to therapeutic dose used to treat patients. The advent of modern, volumetric, imaging modalities, often as an integral part of linear accelerators, has facilitated the implementation of image-guided radiation therapy (IGRT), which is often accomplished by daily imaging of patients. Daily imaging results in additional dose delivered to patient that warrants new attention be given to imaging dose. This review summarizes the imaging dose delivered to patients as the result of cone beam computed tomography (CBCT) imaging performed in radiation therapy using current methods and equipment. This review also summarizes methods to calculate the imaging dose, including the use of Monte Carlo (MC) and treatment planning systems (TPS). Peripheral dose from CBCT imaging, dose reduction methods, the use of effective dose in describing imaging dose, and the measurement of CT dose index (CTDI) in CBCT systems are also reviewed.
Collapse
Affiliation(s)
| | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff, Wales, UK; Velindre Cancer Centre, Cardiff, Wales, UK
| |
Collapse
|
15
|
Image quality and dose distributions of three linac-based imaging modalities. Strahlenther Onkol 2014; 191:365-74. [PMID: 25527311 DOI: 10.1007/s00066-014-0798-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND PURPOSE Linac-based patient imaging is possible with a variety of techniques using different photon energies. The purpose of this work is to compare three imaging systems operating at 6 MV, flattening free filter (FFF) 1 MV, and 121 kV. PATIENTS AND METHODS The dose distributions of all pretreatment set-up images (over 1,000) were retrospectively calculated on the planning computed tomography (CT) images for all patients with prostate and head-and-neck cancer treated at our institution in 2013. We analyzed the dose distribution and the dose to organs at risk. RESULTS For head-and-neck cancer patients, the imaging dose from 6-MV cone beam CT (CBCT) reached maximum values at around 8 cGy. The 1-MV CBCT dose was about 63-79 % of the 6-MV CBCT dose for all organs at risk. Planar imaging reduced the imaging dose from CBCT to 30-40 % for both megavoltage modalities. The dose from the kilovoltage CBCT was 4-10 % of the 6-MV CBCT dose. For prostate cancer patients, the maximum dose from 6-MV CBCT reached 13-15 cGy, and was reduced to 66-73 % for 1 MV. Planar imaging reduces the MV CBCT dose to 10-20 %. The kV CBCT dose is 15-20 % of the 6-MV CBCT dose, slightly higher than the dose from MV axes. The dose distributions differ markedly in response to the different beam profiles and dose-depth characteristics.
Collapse
|