1
|
Cote GM, Conley AP, Attia S, Van Tine BA, Seetharam M, Chen YL, Gafoor Z, Heery C, Pico-Navarro C, Adams T. A phase 2 study of a brachyury-targeting vaccine in combination with radiation therapy for the treatment of advanced chordoma. Cancer 2024; 130:3845-3854. [PMID: 38985843 DOI: 10.1002/cncr.35477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND This was a single-arm, phase 2 clinical trial of Bavarian Nordic (BN)-Brachyury vaccine plus radiotherapy (RT) designed to determine the objective response rate (ORR), progression-free survival (PFS), and safety of the combination in chordoma. METHODS A total of 29 adult patients with advanced chordoma were treated with two subcutaneous priming vaccine doses of modified vaccinia Ankara-Bavarian Nordic (MVA-BN)-Brachyury and one vaccine dose of fowlpox virus (FPV)-Brachyury before RT. After RT, booster vaccinations were given with FPV-Brachyury every 4 weeks for 4 doses, then every 12 weeks (week 110). A minimum RT dose of >8 Gy in one fraction for each target was required. Response was evaluated by modified Response Evaluation Criteria in Solid Tumors 1.1 (mRECIST), where only radiated lesions were considered targets, and by standard RECIST 1.1 in a subset of patients. RESULTS Two of 26 evaluable patients experienced durable partial response (PR) (ORR of 7.7%; 90% confidence interval [CI], 2.6-20.8]) by mRECIST 1.1. A total of 21 patients (80.8%; 90% CI, 65.4-90.3) had stable disease, and three patients (11.5%; 90% CI, 4.7-25.6) had progressive disease as best response per mRECIST 1.1. Median PFS was not reached during the study. CONCLUSIONS This trial confirms the safety of BN-Brachyury and RT. Although the study did not meet the predefined study goal of four responses in 29 patients, we did observe two PRs and a PFS of greater than 2 years. For a vaccine-based study in chordoma, an ultra-rare disease where response rates are low, a randomized study or novel trial designs may be required to confirm activity.
Collapse
Affiliation(s)
| | - Anthony P Conley
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven Attia
- Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Brian A Van Tine
- Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Yen-Lin Chen
- Mass General Cancer Center, Boston, Massachusetts, USA
| | - Zarina Gafoor
- BNC Affiliation, Bavarian Nordic Inc, Durham, North Carolina, USA
| | | | | | - Tatiana Adams
- BNM Affiliation, Bavarian Nordic GmbH, Martinsried, Germany
| |
Collapse
|
2
|
Jia X, Carter BW, Duffton A, Harris E, Hobbs R, Li H. Advancing the Collaboration Between Imaging and Radiation Oncology. Semin Radiat Oncol 2024; 34:402-417. [PMID: 39271275 PMCID: PMC11407744 DOI: 10.1016/j.semradonc.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The fusion of cutting-edge imaging technologies with radiation therapy (RT) has catalyzed transformative breakthroughs in cancer treatment in recent decades. It is critical for us to review our achievements and preview into the next phase for future synergy between imaging and RT. This paper serves as a review and preview for fostering collaboration between these two domains in the forthcoming decade. Firstly, it delineates ten prospective directions ranging from technological innovations to leveraging imaging data in RT planning, execution, and preclinical research. Secondly, it presents major directions for infrastructure and team development in facilitating interdisciplinary synergy and clinical translation. We envision a future where seamless integration of imaging technologies into RT will not only meet the demands of RT but also unlock novel functionalities, enhancing accuracy, efficiency, safety, and ultimately, the standard of care for patients worldwide.
Collapse
Affiliation(s)
- Xun Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD..
| | - Brett W Carter
- Department of Thoracic Imaging, Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aileen Duffton
- Beatson West of Scotland Cancer Centre, Glasgow, UK.; Institute of Cancer Science, University of Glasgow, UK
| | - Emma Harris
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Robert Hobbs
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
3
|
Salomon N, Helm A, Selmi A, Fournier C, Diken M, Schrörs B, Scholz M, Kreiter S, Durante M, Vascotto F. Carbon Ion and Photon Radiation Therapy Show Enhanced Antitumoral Therapeutic Efficacy With Neoantigen RNA-LPX Vaccines in Preclinical Colon Carcinoma Models. Int J Radiat Oncol Biol Phys 2024; 119:936-945. [PMID: 38163521 DOI: 10.1016/j.ijrobp.2023.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Personalized liposome-formulated mRNA vaccines (RNA-LPX) are a powerful new tool in cancer immunotherapy. In preclinical tumor models, RNA-LPX vaccines are known to achieve potent results when combined with conventional X-ray radiation therapy (XRT). Densely ionizing radiation used in carbon ion radiation therapy (CIRT) may induce distinct effects in combination with immunotherapy compared with sparsely ionizing X-rays. METHODS AND MATERIALS Within this study, we investigate the potential of CIRT and isoeffective doses of XRT to mediate tumor growth inhibition and survival in murine colon adenocarcinoma models in conjunction with neoantigen (neoAg)-specific RNA-LPX vaccines encoding both major histocompatibility complex (MHC) class I- and class II-restricted tumor-specific neoantigens. We characterize tumor immune infiltrates and antigen-specific T cell responses by flow cytometry and interferon-γ enzyme-linked immunosorbent spot (ELISpot) analyses, respectively. RESULTS NeoAg RNA-LPX vaccines significantly potentiate radiation therapy-mediated tumor growth inhibition. CIRT and XRT alone marginally prime neoAg-specific T cell responses detected in the tumors but not in the blood or spleens of mice. Infiltration and cytotoxicity of neoAg-specific T cells is strongly driven by RNA-LPX vaccines and is accompanied by reduced expression of the inhibitory markers PD-1 and Tim-3 on these cells. The neoAg RNA-LPX vaccine shows similar overall therapeutic efficacy in combination with both CIRT and XRT, even if the physical radiation dose is lower for carbon ions than for X-rays. CONCLUSIONS We hence conclude that the combination of CIRT and neoAg RNA-LPX vaccines is a promising strategy for the treatment of radioresistant tumors.
Collapse
Affiliation(s)
- Nadja Salomon
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Alexander Helm
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Abderaouf Selmi
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Fournier
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Mustafa Diken
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Schrörs
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael Scholz
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Sebastian Kreiter
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marco Durante
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany; Technical University Darmstadt, Institute of Condensed Matter Physics, Darmstadt, Germany; University Federico II, Department of Physics "Ettore Pancini", Naples, Italy
| | - Fulvia Vascotto
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Lillo S, Mirandola A, Vai A, Camarda AM, Ronchi S, Bonora M, Ingargiola R, Vischioni B, Orlandi E. Current Status and Future Directions of Proton Therapy for Head and Neck Carcinoma. Cancers (Basel) 2024; 16:2085. [PMID: 38893203 PMCID: PMC11171191 DOI: 10.3390/cancers16112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The growing interest in proton therapy (PT) in recent decades is justified by the evidence that protons dose distribution allows maximal dose release at the tumor depth followed by sharp distal dose fall-off. But, in the holistic management of head and neck cancer (HNC), limiting the potential of PT to a mere dosimetric advantage appears reductive. Indeed, the precise targeting of PT may help evaluate the effectiveness of de-escalation strategies, especially for patients with human papillomavirus associated-oropharyngeal cancer (OPC) and nasopharyngeal cancer (NPC). Furthermore, PT could have potentially greater immunogenic effects than conventional photon therapy, possibly enhancing both the radiotherapy (RT) capability to activate anti-tumor immune response and the effectiveness of immunotherapy drugs. Based on these premises, the aim of the present paper is to conduct a narrative review reporting the safety and efficacy of PT compared to photon RT focusing on NPC and OPC. We also provide a snapshot of ongoing clinical trials comparing PT with photon RT for these two clinical scenarios. Finally, we discuss new insights that may further develop clinical research on PT for HNC.
Collapse
Affiliation(s)
- Sara Lillo
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Alfredo Mirandola
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.); (A.V.)
| | - Alessandro Vai
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.); (A.V.)
| | - Anna Maria Camarda
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Sara Ronchi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Maria Bonora
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Rossana Ingargiola
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
5
|
Song G, Zheng Z, Zhu Y, Wang Y, Xue S. A review and bibliometric analysis of global research on proton radiotherapy. Medicine (Baltimore) 2024; 103:e38089. [PMID: 38728501 PMCID: PMC11081588 DOI: 10.1097/md.0000000000038089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Proton beam therapy (PBT) has great advantages as tumor radiotherapy and is progressively becoming a more prevalent choice for individuals undergoing radiation therapy. The objective of this review is to pinpoint collaborative efforts among countries and institutions, while also exploring the hot topics and future outlook in the field of PBT. Data from publications were downloaded from the Web of Science Core Collection. CiteSpace and Excel 2016 were used to conduct the bibliometric and knowledge map analysis. A total of 6516 publications were identified, with the total number of articles steadily increasing and the United States being the most productive country. Harvard University took the lead in contributing the highest number of publications. Paganetti Harald published the most articles and had the most cocitations. PHYS MED BIOL published the greatest number of PBT-related articles, while INT J RADIAT ONCOL received the most citations. Paganetti Harald, 2012, PHYS MED BIOL can be classified as classic literature due to its high citation rate. We believe that research on technology development, dose calculation and relative biological effectiveness were the knowledge bases in this field. Future research hotspots may include clinical trials, flash radiotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Ge Song
- Department of Critical Care Medicine, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Zhi Zheng
- Department of Stomatology, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Yingming Zhu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaoting Wang
- Department of Oncology, Dongying People’s Hospital, Dongying, China
| | - Song Xue
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Rajpurohit YS, Sharma DK, Lal M, Soni I. A perspective on tumor radiation resistance following high-LET radiation treatment. J Cancer Res Clin Oncol 2024; 150:226. [PMID: 38696003 PMCID: PMC11065934 DOI: 10.1007/s00432-024-05757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
High-linear energy transfer (LET) radiation is a promising alternative to conventional low-LET radiation for therapeutic gain against cancer owing to its ability to induce complex and clustered DNA lesions. However, the development of radiation resistance poses a significant barrier. The potential molecular mechanisms that could confer resistance development are translesion synthesis (TLS), replication gap suppression (RGS) mechanisms, autophagy, epithelial-mesenchymal transition (EMT) activation, release of exosomes, and epigenetic changes. This article will discuss various types of complex clustered DNA damage, their repair mechanisms, mutagenic potential, and the development of radiation resistance strategies. Furthermore, it highlights the importance of careful consideration and patient selection when employing high-LET radiotherapy in clinical settings.
Collapse
Affiliation(s)
- Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India.
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India.
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Mitu Lal
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Ishu Soni
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India
| |
Collapse
|
7
|
Gaikwad U, Bajpai J, Jalali R. Combinatorial approach of immuno-proton therapy in cancer: Rationale and potential impact. Asia Pac J Clin Oncol 2024; 20:188-197. [PMID: 37194387 DOI: 10.1111/ajco.13966] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/23/2022] [Accepted: 04/02/2023] [Indexed: 05/18/2023]
Abstract
Cancer management is an expansive, growing, and evolving field. In the last decade or so, immunotherapy (IT) and particle beam therapy have made a tremendous impact in this domain. IT has already established itself as the fourth pillar of oncology. Recent emphasis has been centred around combination therapy, postulating additive or multiplicative effects of combining IT with one or more of the three conventional "pillars," that is, surgery, chemotherapy, and radiotherapy. Radio-IT is being increasingly explored and has shown promising outcomes in both preclinical and clinical settings. Particle beam therapy such as protons, when used as the radiotherapeutic modality in conjunction with IT, can potentially limit toxicities and improve this synergism further. Modern proton therapy has demonstrated a reduction in integral dose of radiation and radiation-induced lymphopenia in various sites. Protons, by virtue of their inherent clinically desirable physical and biological characteristics, namely, high linear energy transfer, relative biological effectiveness of range 1.1-1.6, and proven anti-metastatic and immunogenic potential in preclinical studies, might have a superior immunogenic profile than photons. Proton-IT combination is being studied currently by various groups in lung , head neck and brain tumors, and should be evaluated further in other subsites to replicate preclinical outcomes in a clinical setting. In this review, we summarize the currently available evidence for combinatorial approaches and feasibility of proton and IT combination, and thereafter highlight the emerging challenges for practical application of the same in clinics, while also proposing plausible solutions.
Collapse
Affiliation(s)
- Utpal Gaikwad
- Department of Radiation Oncology, Apollo Proton Cancer Center, Chennai, India
| | - Jyoti Bajpai
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Rakesh Jalali
- Department of Radiation Oncology, Apollo Proton Cancer Center, Chennai, India
| |
Collapse
|
8
|
Harken AD, Deoli NT, Perez Campos C, Ponnaiya B, Garty G, Lee GS, Casper MJ, Dhingra S, Li W, Johnson GW, Amundson SA, Grabham PW, Hillman EMC, Brenner DJ. Combined ion beam irradiation platform and 3D fluorescence microscope for cellular cancer research. BIOMEDICAL OPTICS EXPRESS 2024; 15:2561-2577. [PMID: 38633084 PMCID: PMC11019671 DOI: 10.1364/boe.522969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
To improve particle radiotherapy, we need a better understanding of the biology of radiation effects, particularly in heavy ion radiation therapy, where global responses are observed despite energy deposition in only a subset of cells. Here, we integrated a high-speed swept confocally-aligned planar excitation (SCAPE) microscope into a focused ion beam irradiation platform to allow real-time 3D structural and functional imaging of living biological samples during and after irradiation. We demonstrate dynamic imaging of the acute effects of irradiation on 3D cultures of U87 human glioblastoma cells, revealing characteristic changes in cellular movement and intracellular calcium signaling following ionizing irradiation.
Collapse
Affiliation(s)
- Andrew D Harken
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Naresh T Deoli
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Citlali Perez Campos
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Brian Ponnaiya
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Grace S Lee
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Malte J Casper
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Shikhar Dhingra
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Wenze Li
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Gary W Johnson
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Peter W Grabham
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - David J Brenner
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| |
Collapse
|
9
|
Qi Y, Huang X, Ji C, Wang C, Yao Y. The co-inhibitory immune checkpoint proteins B7-H1(PD-L1) and B7-H4 in high grade glioma: From bench to bedside. Transl Oncol 2024; 39:101793. [PMID: 37844479 PMCID: PMC10587763 DOI: 10.1016/j.tranon.2023.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
Co-inhibitory immune checkpoints play a crucial role in tumor progression, and PD-1/PD-L1 inhibitor has been a breakthrough for treating multiple refractory tumors in last decade. Nevertheless, results of several phase III clinical trials of PD-1/PD-L1 inhibitor are unsatisfactory in high grade gliomas recently. This article reviews the promising biomarkers which can predict the efficacy of PD-1/PD-L1 blockade immunotherapy and current status of emerging strategies involving PD-1/PD-L1 inhibitors, especially the combination treatment and neoadjuvant PD-1 therapy in gliomas. In addition, B7-H4, one of the most promising immune checkpoints, is also briefly reviewed here for its clinical significance, regulatory mechanism and developing immunotherapeutic strategies in pre-clinical glioma models.
Collapse
Affiliation(s)
- Ying Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Xiaoming Huang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Chunxia Ji
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | | | - Yu Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| |
Collapse
|
10
|
Seo SH, Pyo H, Ahn YC, Oh D, Yang K, Kim N, Sun JM, Park S, Jung HA, Lee SH, Ahn JS, Ahn MJ, Noh JM. Pulmonary function and toxicities of proton versus photon for limited-stage small cell lung cancer. Radiat Oncol J 2023; 41:274-282. [PMID: 38185932 PMCID: PMC10772597 DOI: 10.3857/roj.2023.00773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 01/09/2024] Open
Abstract
PURPOSE We aimed to compare the oncological outcomes and toxicities of definitive proton beam therapy (PBT) and photon beam therapy in patients with limited-stage small cell lung cancer (LS-SCLC). MATERIALS AND METHODS We retrospectively reviewed 262 patients with newly diagnosed LS-SCLC who underwent definitive PBT (n = 20; proton group) or photon beam therapy (n = 242; photon group) with concurrent chemotherapy between January 2016 and February 2021 and compared overall survival (OS), progression-free survival (PFS), dose-volume parameters, and toxicities between the groups. RESULTS The median follow-up duration was 24.5 months (range, 3.7 to 78.7). Baseline lung function was significantly worse and clinical target volume (CTV) was larger in the proton group (CTV: 296.6 vs. 215.3 mL; p = 0.080). The mean lung V10 was 37.7% ± 16.8% and 51.6% ± 24.5% in the proton and photon groups, respectively (p = 0.002). Two-year OS and PFS rates were 57.2% and 35.7% in the proton group and 65.3% and 40.8% in the photon group, respectively (p = 0.542 and 0.748, respectively). Grade ≥2 radiation pneumonitis and esophagitis occurred in 5 (25.0%) and 7 (35.0%) PBT-treated patients and 66 (27.3%) and 40 (16.5%) photon beam therapy-treated patients, respectively (p = 0.826 and 0.062, respectively). CONCLUSION Although the proton group had poorer lung function and a larger CTV than that in the photon group, both groups exhibited comparable treatment outcomes and radiation-related toxicities in LS-SCLC. PBT may be a valuable therapeutic modality in patients with poor pulmonary function or extensive disease burden owing to its lung-sparing ability.
Collapse
Affiliation(s)
- Sang Hoon Seo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hongryull Pyo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Chan Ahn
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dongryul Oh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyungmi Yang
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Myoung Noh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Uematsu M, Nakajima H, Hosono A, Kiyohara H, Hirota A, Takahashi N, Fukuda M, Kusuhara S, Nakao T, Funasaka C, Kondoh C, Harano K, Matsubara N, Naito Y, Akimoto T, Mukohara T. Safety of immune checkpoint inhibitors after proton beam therapy in head and neck mucosal melanoma: a case series. Melanoma Res 2023; 33:547-552. [PMID: 37696254 DOI: 10.1097/cmr.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Proton beam therapy (PBT) has shown promising efficacy in treating locally advanced head and neck mucosal melanoma despite its poor prognosis. Although PBT may improve the efficacy of subsequent immune checkpoint inhibitors (ICIs), the safety of ICIs in patients who have previously received PBT has not been established. Hence, this study evaluated the safety of ICIs in patients who had recurrent mucosal melanoma after PBT. Between April 2013 and June 2022, we retrospectively reviewed the medical records of patients diagnosed with cutaneous or mucosal melanoma at the National Cancer Center Hospital East. Seven patients were treated with ICIs after their head and neck mucosal melanoma (HNMM) recurred after PBT. Four of the seven patients experienced grade immune-related adverse events (irAEs). Due to irAE in the irradiation field, two patients had grade 3 hypopituitarism. Other grade 3 or higher irAEs included an increase in serum alanine aminotransferase in two patients and gastritis in one, and two patients discontinued ICI due to the irAEs. All irAEs were resolved with appropriate management. Although administering ICIs after PBT may increase the risk of irAEs, especially in the irradiation field, they appear manageable. These findings could help in the development of a treatment strategy for locally advanced HNMM that includes PBT and subsequent ICIs.
Collapse
Affiliation(s)
- Mao Uematsu
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo
- Department of Medical Oncology, National Cancer Center Hospital East
| | - Hiromichi Nakajima
- Department of Medical Oncology, National Cancer Center Hospital East
- Department of Experimental Therapeutics, National Cancer Center Hospital East
| | - Ako Hosono
- Department of Medical Oncology, National Cancer Center Hospital East
- Department of Pediatric Oncology, National Cancer Center Hospital East
| | - Hikari Kiyohara
- Department of Medical Oncology, National Cancer Center Hospital East
| | - Akira Hirota
- Department of Medical Oncology, National Cancer Center Hospital East
| | | | - Misao Fukuda
- Department of Medical Oncology, National Cancer Center Hospital East
| | - Shota Kusuhara
- Department of Medical Oncology, National Cancer Center Hospital East
| | - Takehiro Nakao
- Department of Medical Oncology, National Cancer Center Hospital East
| | - Chikako Funasaka
- Department of Medical Oncology, National Cancer Center Hospital East
- Department of Experimental Therapeutics, National Cancer Center Hospital East
| | - Chihiro Kondoh
- Department of Medical Oncology, National Cancer Center Hospital East
| | - Kenichi Harano
- Department of Medical Oncology, National Cancer Center Hospital East
- Department of Experimental Therapeutics, National Cancer Center Hospital East
| | - Nobuaki Matsubara
- Department of Medical Oncology, National Cancer Center Hospital East
| | - Yoichi Naito
- Department of Medical Oncology, National Cancer Center Hospital East
- Department of Experimental Therapeutics, National Cancer Center Hospital East
- Department of General Internal Medicine, National Cancer Center Hospital East
| | - Tetsuo Akimoto
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Toru Mukohara
- Department of Medical Oncology, National Cancer Center Hospital East
| |
Collapse
|
12
|
Jeon SH, Song C, Eom KY, Kim IA, Kim JS. Modulation of CD8 + T Cell Responses by Radiotherapy-Current Evidence and Rationale for Combination with Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:16691. [PMID: 38069014 PMCID: PMC10706388 DOI: 10.3390/ijms242316691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Radiotherapy for cancer has been known to affect the responses of immune cells, especially those of CD8+ T cells that play a pivotal role in anti-tumor immunity. Clinical success of immune checkpoint inhibitors led to an increasing interest in the ability of radiation to modulate CD8+ T cell responses. Recent studies that carefully analyzed CD8+ T cell responses following radiotherapy suggest the beneficial roles of radiotherapy on anti-tumor immunity. In addition, numerous clinical trials to evaluate the efficacy of combining radiotherapy with immune checkpoint inhibitors are currently undergoing. In this review, we summarize the current status of knowledge regarding the changes in CD8+ T cells following radiotherapy from various preclinical and clinical studies. Furthermore, key biological mechanisms that underlie such modulation, including both direct and indirect effects, are described. Lastly, we discuss the current evidence and essential considerations for harnessing radiotherapy as a combination partner for immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Jae-Sung Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea; (S.H.J.); (C.S.); (K.-Y.E.); (I.A.K.)
| |
Collapse
|
13
|
Karapetyan L, Iheagwara UK, Olson AC, Chmura SJ, Skinner HK, Luke JJ. Radiation dose, schedule, and novel systemic targets for radio-immunotherapy combinations. J Natl Cancer Inst 2023; 115:1278-1293. [PMID: 37348864 PMCID: PMC10637035 DOI: 10.1093/jnci/djad118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023] Open
Abstract
Immunotherapy combinations are being investigated to expand the benefit of immune checkpoint blockade across many cancer types. Radiation combinations, in particular using stereotactic body radiotherapy, are of keen interest because of underlying mechanistic rationale, safety, and availability as a standard of care in certain cancers. In addition to direct tumor cytotoxicity, radiation therapy has immunomodulatory effects such as induction of immunogenic cell death, enhancement of antigen presentation, and expansion of the T-cell receptor repertoire as well as recruitment and increased activity of tumor-specific effector CD8+ cells. Combinations of radiation with cytokines and/or chemokines and anti-programmed death 1 and anticytotoxic T-lymphocyte antigen 4 therapies have demonstrated safety and feasibility, as well as the potential to improve long-term outcomes and possibly induce out of irradiated field or abscopal responses. Novel immunoradiotherapy combinations represent a promising therapeutic approach to overcome radioresistance and further enhance systemic immunotherapy. Potential benefits include reversing CD8+ T-cell exhaustion, inhibiting myeloid-derived suppressor cells, and reversing M2 macrophage polarization as well as decreasing levels of colony-stimulating factor-1 and transforming growth factor-β. Here, we discuss current data and mechanistic rationale for combining novel immunotherapy agents with radiation therapy.
Collapse
Affiliation(s)
- Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Uzoma K Iheagwara
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Olson
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven J Chmura
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Heath K Skinner
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason J Luke
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Buonaguro L, Tagliamonte M. Peptide-based vaccine for cancer therapies. Front Immunol 2023; 14:1210044. [PMID: 37654484 PMCID: PMC10467431 DOI: 10.3389/fimmu.2023.1210044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Different strategies based on peptides are available for cancer treatment, in particular to counter-act the progression of tumor growth and disease relapse. In the last decade, in the context of therapeutic strategies against cancer, peptide-based vaccines have been evaluated in different tumor models. The peptides selected for cancer vaccine development can be classified in two main type: tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs), which are captured, internalized, processed and presented by antigen-presenting cells (APCs) to cell-mediated immunity. Peptides loaded onto MHC class I are recognized by a specific TCR of CD8+ T cells, which are activated to exert their cytotoxic activity against tumor cells presenting the same peptide-MHC-I complex. This process is defined as active immunotherapy as the host's immune system is either de novo activated or restimulated to mount an effective, tumor-specific immune reaction that may ultimately lead to tu-mor regression. However, while the preclinical data have frequently shown encouraging results, therapeutic cancer vaccines clinical trials, including those based on peptides have not provided satisfactory data to date. The limited efficacy of peptide-based cancer vaccines is the consequence of several factors, including the identification of specific target tumor antigens, the limited immunogenicity of peptides and the highly immunosuppressive tumor microenvironment (TME). An effective cancer vaccine can be developed only by addressing all such different aspects. The present review describes the state of the art for each of such factors.
Collapse
Affiliation(s)
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - “Fond G. Pascale”, Naples, Italy
| |
Collapse
|
15
|
Paganetti H. A review on lymphocyte radiosensitivity and its impact on radiotherapy. Front Oncol 2023; 13:1201500. [PMID: 37601664 PMCID: PMC10435323 DOI: 10.3389/fonc.2023.1201500] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
It is well known that radiation therapy causes lymphopenia in patients and that this is correlated with a negative outcome. The mechanism is not well understood because radiation can have both immunostimulatory and immunosuppressive effects. How tumor dose conformation, dose fractionation, and selective lymph node irradiation in radiation therapy does affect lymphopenia and immune response is an active area of research. In addition, understanding the impact of radiation on the immune system is important for the design and interpretation of clinical trials combining radiation with immune checkpoint inhibitors, both in terms of radiation dose and treatment schedules. Although only a few percent of the total lymphocyte population are circulating, it has been speculated that their increased radiosensitivity may contribute to, or even be the primary cause of, lymphopenia. This review summarizes published data on lymphocyte radiosensitivity based on human, small animal, and in vitro studies. The data indicate differences in radiosensitivity among lymphocyte subpopulations that affect their relative contribution and thus the dynamics of the immune response. In general, B cells appear to be more radiosensitive than T cells and NK cells appear to be the most resistant. However, the reported dose-response data suggest that in the context of lymphopenia in patients, aspects other than cell death must also be considered. Not only absolute lymphocyte counts, but also lymphocyte diversity and activity are likely to be affected by radiation. Taken together, the reviewed data suggest that it is unlikely that radiation-induced cell death in lymphocytes is the sole factor in radiation-induced lymphopenia.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston MA, United States
- Harvard Medical School, Boston MA, United States
| |
Collapse
|
16
|
Galluzzi L, Aryankalayil MJ, Coleman CN, Formenti SC. Emerging evidence for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00782-x. [PMID: 37280366 DOI: 10.1038/s41571-023-00782-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Immunotherapy has revolutionized the clinical management of many malignancies but is infrequently associated with durable objective responses when used as a standalone treatment approach, calling for the development of combinatorial regimens with superior efficacy and acceptable toxicity. Radiotherapy, the most commonly used oncological treatment, has attracted considerable attention as a combination partner for immunotherapy owing to its well-known and predictable safety profile, widespread clinical availability, and potential for immunostimulatory effects. However, numerous randomized clinical trials investigating radiotherapy-immunotherapy combinations have failed to demonstrate a therapeutic benefit compared with either modality alone. Such a lack of interaction might reflect suboptimal study design, choice of end points and/or administration of radiotherapy according to standard schedules and target volumes. Indeed, radiotherapy has empirically evolved towards radiation doses and fields that enable maximal cancer cell killing with manageable toxicity to healthy tissues, without much consideration of potential radiation-induced immunostimulatory effects. Herein, we propose the concept that successful radiotherapy-immunotherapy combinations might require modifications of standard radiotherapy regimens and target volumes to optimally sustain immune fitness and enhance the antitumour immune response in support of meaningful clinical benefits.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
17
|
Koukourakis IM, Platoni K, Tiniakos D, Kouloulias V, Zygogianni A. Immune Response and Immune Checkpoint Molecules in Patients with Rectal Cancer Undergoing Neoadjuvant Chemoradiotherapy: A Review. Curr Issues Mol Biol 2023; 45:4495-4517. [PMID: 37232754 DOI: 10.3390/cimb45050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
It is well-established that tumor antigens and molecules expressed and secreted by cancer cells trigger innate and adaptive immune responses. These two types of anti-tumor immunity lead to the infiltration of the tumor's microenvironment by immune cells with either regulatory or cytotoxic properties. Whether this response is associated with tumor eradication after radiotherapy and chemotherapy or regrowth has been a matter of extensive research through the years, mainly focusing on tumor-infiltrating lymphocytes and monocytes and their subtypes, and the expression of immune checkpoint and other immune-related molecules by both immune and cancer cells in the tumor microenvironment. A literature search has been conducted on studies dealing with the immune response in patients with rectal cancer treated with neoadjuvant radiotherapy or chemoradiotherapy, assessing its impact on locoregional control and survival and underlying the potential role of immunotherapy in the treatment of this cancer subtype. Here, we provide an overview of the interactions between local/systemic anti-tumor immunity, cancer-related immune checkpoint, and other immunological pathways and radiotherapy, and how these affect the prognosis of rectal cancer patients. Chemoradiotherapy induces critical immunological changes in the tumor microenvironment and cancer cells that can be exploited for therapeutic interventions in rectal cancer.
Collapse
Affiliation(s)
- Ioannis M Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dina Tiniakos
- Department of Pathology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Vassilis Kouloulias
- Radiotherapy Unit, 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece
| |
Collapse
|
18
|
Nelson BE, Adashek JJ, Lin SH, Subbiah V. On target methods to induce abscopal phenomenon for Off-Target effects: From happenstance to happenings. Cancer Med 2023; 12:6451-6465. [PMID: 36411943 PMCID: PMC10067075 DOI: 10.1002/cam4.5454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Although the "abscopal phenomenon" has been described several decades ago, this phenomenon lately has been obtaining momentous traction with the dawn of immune-based therapies. There has been increased cross talk among radiation oncologists, oncologists and immunologists and consequently a surge in the number of prospective clinical trials. This must be coupled with translation work from these clinical trials to aid in eventual identification of patients who may benefit. Abscopal effects may be induced by local and systemic methods, conventional radiotherapy, particle radiation, radionucleotide methods, cryoablation and brachytherapy. These approaches have all been reported to be stimulate abscopal effect. Immune induction by immune checkpoint therapy, immune adjuvants, cellular therapy including CAR and NK cell therapies may generate systemic abscopal response. With increasing recognition of this effect, there remains a lot of work to explore the modalities of inducing abscopal responses and ultimate prediction or prognostication on stratifying who may benefit. Ultimately, there is an urgent need for prospective studies and data to tease apart which one of these modalities can be applied to the appropriate candidate, to the appropriate cancer at the appropriate setting. This review seeks to elucidate readers on the different modalities of radiation, systemic therapies and other techniques rarely explored to potentiate the abscopal effect from a mere coincidence to a finite occurrence.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jacob J. Adashek
- Department of OncologyThe Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins HospitalBaltimoreMarylandUSA
| | - Steven H. Lin
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Vivek Subbiah
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
19
|
Radiotherapy, PARP Inhibition, and Immune-Checkpoint Blockade: A Triad to Overcome the Double-Edged Effects of Each Single Player. Cancers (Basel) 2023; 15:cancers15041093. [PMID: 36831435 PMCID: PMC9954050 DOI: 10.3390/cancers15041093] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Radiotherapy and, more recently, PARP inhibitors (PARPis) and immune-checkpoint inhibitors represent effective tools in cancer therapy. Radiotherapy exerts its effects not only by damaging DNA and inducing tumor cell death, but also stimulating anti-tumor immune responses. PARPis are known to exert their therapeutic effects by inhibiting DNA repair, and they may be used in combination with radiotherapy. Both radiotherapy and PARPis modulate inflammatory signals and stimulate type I IFN (IFN-I)-dependent immune activation. However, they can also support the development of an immunosuppressive tumor environment and upregulate PD-L1 expression on tumor cells. When provided as monotherapy, immune-checkpoint inhibitors (mainly antibodies to CTLA-4 and the PD-1/PD-L1 axis) result particularly effective only in immunogenic tumors. Combinations of immunotherapy with therapies that favor priming of the immune response to tumor-associated antigens are, therefore, suitable strategies. The widely explored association of radiotherapy and immunotherapy has confirmed this benefit for several cancers. Association with PARPis has also been investigated in clinical trials. Immunotherapy counteracts the immunosuppressive effects of radiotherapy and/or PARPis and synergies with their immunological effects, promoting and unleashing immune responses toward primary and metastatic lesions (abscopal effect). Here, we discuss the beneficial and counterproductive effects of each therapy and how they can synergize to overcome single-therapy limitations.
Collapse
|
20
|
Yuan H, Gui R, Wang Z, Fang F, Zhao H. Gut microbiota: A novel and potential target for radioimmunotherapy in colorectal cancer. Front Immunol 2023; 14:1128774. [PMID: 36798129 PMCID: PMC9927011 DOI: 10.3389/fimmu.2023.1128774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, with a high mortality rate, and is a major burden on human health worldwide. Gut microbiota regulate human immunity and metabolism through producing numerous metabolites, which act as signaling molecules and substrates for metabolic reactions in various biological processes. The importance of host-gut microbiota interactions in immunometabolic mechanisms in CRC is increasingly recognized, and interest in modulating the microbiota to improve patient's response to therapy has been raising. However, the specific mechanisms by which gut microbiota interact with immunotherapy and radiotherapy remain incongruent. Here we review recent advances and discuss the feasibility of gut microbiota as a regulatory target to enhance the immunogenicity of CRC, improve the radiosensitivity of colorectal tumor cells and ameliorate complications such as radiotoxicity. Currently, great breakthroughs in the treatment of non-small cell lung cancer and others have been achieved by radioimmunotherapy, but radioimmunotherapy alone has not been effective in CRC patients. By summarizing the recent preclinical and clinical evidence and considering regulatory roles played by microflora in the gut, such as anti-tumor immunity, we discuss the potential of targeting gut microbiota to enhance the efficacy of radioimmunotherapy in CRC and expect this review can provide references and fresh ideas for the clinical application of this novel strategy.
Collapse
Affiliation(s)
- Hanghang Yuan
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China,National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Gui
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China,National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhicheng Wang
- National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Fang Fang
- National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China,*Correspondence: Fang Fang, ; Hongguang Zhao,
| | - Hongguang Zhao
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China,*Correspondence: Fang Fang, ; Hongguang Zhao,
| |
Collapse
|
21
|
Chen MF, Chen PT, Hsieh CC, Wang CC. Effect of Proton Therapy on Tumor Cell Killing and Immune Microenvironment for Hepatocellular Carcinoma. Cells 2023; 12:cells12020332. [PMID: 36672266 PMCID: PMC9857172 DOI: 10.3390/cells12020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/31/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Radiotherapy with proton therapy (PT) has dosimetric advantages over photon therapy, which helps to enlarge the therapeutic window of radiotherapy for hepatocellular carcinoma (HCC). We evaluated the response of HCC to PT and examined the underlying mechanisms. The human liver cancer cell lines HepG2 and HuH7 and the murine liver cancer cell line Hepa1-6 were selected for cell and animal experiments to examine the response induced by PT irradiation. Biological changes and the immunological response following PT irradiation were examined. In vitro experiments showed no significant difference in cell survival following PT compared with photon radiotherapy. In a murine tumor model, the tumors were obviously smaller in size 12 days after PT irradiation. The underlying changes included increased DNA damage, upregulated IL-6 levels, and a regulated immune tumor microenvironment. Protein analysis in vitro and in vivo showed that PT increased the level of programmed cell death ligand 1 (PD-L1) expressed in tumor cells and recruited myeloid-derived suppressor cells (MDSCs). The increase in PD-L1 was positively correlated with the irradiation dose. In Hepa1-6 syngeneic mouse models, the combination of PT with anti-PD-L1 increased tumor growth delay compared with PT alone, which was associated with increased tumor-infiltrating T cells and attenuated MDSC recruitment in the microenvironment. Furthermore, when PT was applied to the primary HCC tumor, anti-PD-L1 antibody-treated mice showed smaller synchronous unirradiated tumors. In conclusion, the response of HCC to PT was determined by tumor cell killing and the immunological response in the tumor microenvironment. The combination with the anti-PD-L1 antibody to enhance antitumor immunity was responsible for the therapeutic synergism for HCC treated with PT. Based on our results, we suggest that PT combined with anti-PD-L1 may be a promising therapeutic policy for HCC.
Collapse
Affiliation(s)
- Miao-Fen Chen
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linko, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan333, Taiwan
- Correspondence: (M.-F.C.); (C.-C.W.); Tel.: +886-3-3281000 (ext. 7008) (M.-F.C.)
| | - Ping-Tsung Chen
- Department of Medical Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ching-Chuan Hsieh
- College of Medicine, Chang Gung University, Taoyuan333, Taiwan
- Department of Surgery, Chang Gung Memorial Hospital at Chiayi, Chiayi 613, Taiwan
| | - Chih-Chi Wang
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Correspondence: (M.-F.C.); (C.-C.W.); Tel.: +886-3-3281000 (ext. 7008) (M.-F.C.)
| |
Collapse
|
22
|
Helm A, Totis C, Durante M, Fournier C. Are charged particles a good match for combination with immunotherapy? Current knowledge and perspectives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:1-36. [PMID: 36997266 DOI: 10.1016/bs.ircmb.2023.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Charged particle radiotherapy, mainly using protons and carbon ions, provides physical characteristics allowing for a volume conformal irradiation and a reduction of the integral dose to normal tissue. Carbon ion therapy additionally features an increased biological effectiveness resulting in peculiar molecular effects. Immunotherapy, mostly performed with immune checkpoint inhibitors, is nowadays considered a pillar in cancer therapy. Based on the advantageous features of charged particle radiotherapy, we review pre-clinical evidence revealing a strong potential of its combination with immunotherapy. We argue that the combination therapy deserves further investigation with the aim of translation in clinics, where a few studies have been set up already.
Collapse
Affiliation(s)
- A Helm
- Biophysics Department, GSI, Darmstadt, Germany
| | - C Totis
- Biophysics Department, GSI, Darmstadt, Germany
| | - M Durante
- Biophysics Department, GSI, Darmstadt, Germany.
| | - C Fournier
- Biophysics Department, GSI, Darmstadt, Germany
| |
Collapse
|
23
|
Kowalczyk JT, Fabian KP, Padget MR, Lopez DC, Hoke ATK, Allen CT, Hermsen M, London, NR, Hodge JW. Exploiting the immunogenic potential of standard of care radiation or cisplatin therapy in preclinical models of HPV-associated malignancies. J Immunother Cancer 2022; 10:jitc-2022-005752. [PMID: 36564129 PMCID: PMC9791467 DOI: 10.1136/jitc-2022-005752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND While radiation and chemotherapy are primarily purposed for their cytotoxic effects, a growing body of preclinical and clinical evidence demonstrates an immunogenic potential for these standard therapies. Accordingly, we sought to characterize the immunogenic potential of radiation and cisplatin in human tumor models of HPV-associated malignancies. These studies may inform rational combination immuno-oncology (IO) strategies to be employed in the clinic on the backbone of standard of care, and in so doing exploit the immunogenic potential of standard of care to improve durable responses in HPV-associated malignancies. METHODS Retroviral transduction with HPV16 E7 established a novel HPV-associated sinonasal squamous cell carcinoma (SNSCC) cell line. Three established HPV16-positive cell lines were also studied (cervical carcinoma and head and neck squamous cell carcinoma). Following determination of sensitivities to standard therapies using MTT assays, flow cytometry was used to characterize induction of immunogenic cell stress following sublethal exposure to radiation or cisplatin, and the functional consequence of this induction was determined using impedance-based real time cell analysis cytotoxicity assays employing HPV16 E7-specific cytotoxic lymphocytes (CTLs) with or without N803 (IL-15/IL-15-Rα superagonist) or exogenous death receptor ligands. In vitro observations were translated using an in vivo xenograft NSG mouse model of human cervical carcinoma evaluating cisplatin in combination with CTL adoptive cell transfer. RESULTS We showed that subpopulations surviving clinically relevant doses of radiation or cisplatin therapy were more susceptible to CTL-mediated lysis in four of four tumor models of HPV-associated malignancies, serving as a model for HPV therapeutic vaccine or T-cell receptor adoptive cell transfer. This increased killing was further amplified by IL-15 agonism employing N803. We further characterized that radiation or cisplatin induced immunogenic cell stress in three of three cell lines, and consequently demonstrated that upregulated surface expression of Fas and TRAIL-R2 death receptors at least in part mediated enhanced CTL-mediated lysis. In vivo, cisplatin-induced immunogenic cell stress synergistically potentiated CTL-mediated tumor control in a human model of HPV-associated malignancy. CONCLUSION Standard of care radiation or cisplatin therapy induced immunogenic cell stress in preclinical models of HPV-associated malignancies, presenting an opportunity poised for exploitation by employing IO strategies in combination with standard of care.
Collapse
Affiliation(s)
- Joshua T Kowalczyk
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kellsye P Fabian
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Michelle R Padget
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Diana C Lopez
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Austin TK Hoke
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Clint T Allen
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mario Hermsen
- Department Head and Neck Cancer, Centro de Investigación Biomédica en Red, Madrid, Spain
| | - Nyall R London,
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA,Sinonasal and Skull Base Tumor Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James W Hodge
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
24
|
Photon- and Proton-Mediated Biological Effects: What Has Been Learned? LIFE (BASEL, SWITZERLAND) 2022; 13:life13010030. [PMID: 36675979 PMCID: PMC9866122 DOI: 10.3390/life13010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The current understanding of the effects of radiation is gradually becoming broader. However, it still remains unclear why some patients respond to radiation with a pronounced positive response, while in some cases the disease progresses. This is the motivation for studying the effects of radiation therapy not only on tumor cells, but also on the tumor microenvironment, as well as studying the systemic effects of radiation. In this framework, we review the biological effects of two types of radiotherapy: photon and proton irradiations. Photon therapy is a commonly used type of radiation therapy due to its wide availability and long-term history, with understandable and predictable outcomes. Proton therapy is an emerging technology, already regarded as the method of choice for many cancers in adults and children, both dosimetrically and biologically. This review, written after the analysis of more than 100 relevant literary sources, describes the local effects of photon and proton therapy and shows the mechanisms of tumor cell damage, interaction with tumor microenvironment cells and effects on angiogenesis. After systematic analysis of the literature, we can conclude that proton therapy has potentially favorable toxicological profiles compared to photon irradiation, explained mainly by physical but also biological properties of protons. Despite the fact that radiobiological effects of protons and photons are generally similar, protons inflict reduced damage to healthy tissues surrounding the tumor and hence promote fewer adverse events, not only local, but also systemic.
Collapse
|
25
|
Voronova V, Vislobokova A, Mutig K, Samsonov M, Peskov K, Sekacheva M, Materenchuk M, Bunyatyan N, Lebedeva S. Combination of immune checkpoint inhibitors with radiation therapy in cancer: A hammer breaking the wall of resistance. Front Oncol 2022; 12:1035884. [PMID: 36544712 PMCID: PMC9760959 DOI: 10.3389/fonc.2022.1035884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Immuno-oncology is an emerging field in the treatment of oncological diseases, that is based on recruitment of the host immune system to attack the tumor. Radiation exposure may help to unlock the potential of the immune activating agents by enhancing the antigen release and presentation, attraction of immunocompetent cells to the inflammation site, and eliminating the tumor cells by phagocytosis, thereby leading to an overall enhancement of the immune response. Numerous preclinical studies in mouse models of glioma, murine melanoma, extracranial cancer, or colorectal cancer have contributed to determination of the optimal radiotherapy fractionation, as well as the radio- and immunotherapy sequencing strategies for maximizing the antitumor activity of the treatment regimen. At the same time, efficacy of combined radio- and immunotherapy has been actively investigated in clinical trials of metastatic melanoma, non-small-cell lung cancer and renal cell carcinoma. The present review summarizes the current advancements and challenges related to the aforementioned treatment approach.
Collapse
Affiliation(s)
- Veronika Voronova
- Department of Pharmacological Modeling, M&S Decisions LLC, Moscow, Russia
| | - Anastasia Vislobokova
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kerim Mutig
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mikhail Samsonov
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kirill Peskov
- Department of Pharmacological Modeling, M&S Decisions LLC, Moscow, Russia,MID3 Research Center, I.M. Sechenov First Moscow State Medical University, Moscow, Russia,Artificial Intelligence Research Center, STU Sirius, Sochi, Russia
| | - Marina Sekacheva
- World-Class Research Center “Digital biodesign and personalized healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Materenchuk
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalya Bunyatyan
- Institute of Professional Education, I.M. Sechenov First Moscow State Medical University, Moscow, Russia,Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medicinal Products” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Svetlana Lebedeva
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia,Institute of Professional Education, I.M. Sechenov First Moscow State Medical University, Moscow, Russia,*Correspondence: Svetlana Lebedeva,
| |
Collapse
|
26
|
Barcellini A, Fontana G, Filippini DM, Ronchi S, Bonora M, Vischioni B, Ingargiola R, Camarda AM, Loap P, Facchinetti N, Licitra L, Baroni G, Orlandi E. Exploring the role of neutrophil-to-lymphocyte ratio and blood chemistry in head and neck adenoid cystic carcinomas treated with carbon ion radiotherapy. Radiother Oncol 2022; 177:143-151. [PMID: 36328091 DOI: 10.1016/j.radonc.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND PURPOSE In recent years, there is an emerging interest in the prognostic role of chemistry blood biomarkers in oncological patients but their role in adenoid cystic carcinomas (ACCs) is still unknown. This study aims to assess the prognostic significance of baseline neutrophil-to-lymphocyte ratio (NLR) and blood chemistry in a series of head and neck ACC patients treated with carbon ion radiotherapy (CIRT). MATERIAL AND METHODS We retrospectively retrieved the data of 49 consecutive head and neck ACC patients treated with CIRT. Univariable and multivariable Cox proportional hazard regression (Cox-ph) analyses were performed to look for a potential association of NLR, and other blood biomarker values, with disease-free survival (DFS), Local Control (LC), Metastasis Free Survival (MFS) and overall survival (OS). RESULTS No significant association between NLR > 2,5 and DFS, LC, MFS and OS was found with univariable analysis although a trend was reported for DFS (Hazard ratio [HR]: 2,10, 95 % CI: 0,85 - 5,08, p-value = 0,11). Patients with hemoglobin (hb) ≤ 14 g/dL showed significantly better DFS, MFS and OS. Multivariable regression Cox-ph analysis for DFS, adjusted for margin status, clinical target volume and Absolute Number of Monocytes, reported the following statistically significant HRs, for both NLR > 2,5 and hb > 14 g/dL respectively: 4,850 (95 % CI = 1,408 - 16,701, p = 0,012) and 3,032 (95 % CI = 1,095 - 8,393, p = 0,033). Moreover, hb > 14 with HR = 3,69 (95 % CI: 1,23 - 11,07, p-value = 0,02), was a negative independent prognostic predictor for MFS. CONCLUSIONS Pre-treatment NLR and hb values seem to be independent prognostic predictor for clinical outcomes in head and neck ACC patients. If their role will be validated in a larger prospective cohort, they might be worthwhile for a pre-treatment risk stratification in patients treated with CIRT.
Collapse
Affiliation(s)
- Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Giulia Fontana
- Clinical Bioengineering Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Daria Maria Filippini
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Policlinico Sant'Orsola Malpighi, Bologna, Italy
| | - Sara Ronchi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy.
| | - Maria Bonora
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Rossana Ingargiola
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Anna Maria Camarda
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Pierre Loap
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Nadia Facchinetti
- Scientific Direction, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Lisa Licitra
- Scientific Direction, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy; Head and Neck Medical Oncology 3 Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Guido Baroni
- Clinical Bioengineering Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy; Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
27
|
Fabian KP, Kowalczyk JT, Reynolds ST, Hodge JW. Dying of Stress: Chemotherapy, Radiotherapy, and Small-Molecule Inhibitors in Immunogenic Cell Death and Immunogenic Modulation. Cells 2022; 11:cells11233826. [PMID: 36497086 PMCID: PMC9737874 DOI: 10.3390/cells11233826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/11/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Innovative strategies to re-establish the immune-mediated destruction of malignant cells is paramount to the success of anti-cancer therapy. Accumulating evidence suggests that radiotherapy and select chemotherapeutic drugs and small molecule inhibitors induce immunogenic cell stress on tumors that results in improved immune recognition and targeting of the malignant cells. Through immunogenic cell death, which entails the release of antigens and danger signals, and immunogenic modulation, wherein the phenotype of stressed cells is altered to become more susceptible to immune attack, radiotherapies, chemotherapies, and small-molecule inhibitors exert immune-mediated anti-tumor responses. In this review, we discuss the mechanisms of immunogenic cell death and immunogenic modulation and their relevance in the anti-tumor activity of radiotherapies, chemotherapies, and small-molecule inhibitors. Our aim is to feature the immunological aspects of conventional and targeted cancer therapies and highlight how these therapies may be compatible with emerging immunotherapy approaches.
Collapse
|
28
|
Huan T, Li H, Tang B. Radiotherapy plus CAR-T cell therapy to date: A note for cautions optimism? Front Immunol 2022; 13:1033512. [PMID: 36466874 PMCID: PMC9714575 DOI: 10.3389/fimmu.2022.1033512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 08/26/2023] Open
Abstract
Radiotherapy (RT) is a traditional therapeutic regime that focuses on ionizing radiation, however, RT maintains largely palliative due to radioresistance. Factors such as hypoxia, the radiosensitivity of immune cells, and cancer stem cells (CSCs) all come into play in influencing the significant impact of radioresistance in the irradiated tumor microenvironment (TME). Due to the substantial advances in the treatment of malignant tumors, a promising approach is the genetically modified T cells with chimeric antigen receptors (CARs) to eliminate solid tumors. Moreover, CAR-T cells targeting CSC-related markers would eliminate radioresistant solid tumors. But solid tumors that support an immune deserted TME, are described as immunosuppressive and typically fail to respond to CAR-T cell therapy. And RT could overcome these immunosuppressive features; thus, growing evidence supports the combination of RT with CAR-T cell therapy. In this review, we provide a deep insight into the radioresistance mechanisms, advances, and barriers of CAR-T cells in response to solid tumors within TME. Therefore, we focus on how the combination strategy can be used to eliminate these barriers. Finally, we show the challenges of this therapeutic partnership.
Collapse
Affiliation(s)
- Tian Huan
- Department of Rehabilitation Medicine, Jinhu County People’s Hospital, Huaian, Jiangsu, China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hongbo Li
- Department of Rehabilitation Medicine, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Bin Tang
- Department of Rehabilitation Medicine, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| |
Collapse
|
29
|
Cortiula F, Reymen B, Peters S, Van Mol P, Wauters E, Vansteenkiste J, De Ruysscher D, Hendriks LEL. Immunotherapy in unresectable stage III non-small-cell lung cancer: state of the art and novel therapeutic approaches. Ann Oncol 2022; 33:893-908. [PMID: 35777706 DOI: 10.1016/j.annonc.2022.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022] Open
Abstract
The standard of care for patients with stage III non-small-cell lung cancer (NSCLC) is concurrent chemoradiotherapy (CCRT) followed by 1 year of adjuvant durvalumab. Despite the survival benefit granted by immunotherapy in this setting, only 1/3 of patients are alive and disease free at 5 years. Novel treatment strategies are under development to improve patient outcomes in this setting: different anti-programmed cell death protein 1/programmed death-ligand 1 [anti-PD-(L)1] antibodies after CCRT, consolidation immunotherapy after sequential chemoradiotherapy, induction immunotherapy before CCRT and immunotherapy concurrent with CCRT and/or sequential chemoradiotherapy. Cross-trial comparison is particularly challenging in this setting due to the different timing of immunotherapy delivery and different patients' inclusion and exclusion criteria. In this review, we present the results of clinical trials investigating immune therapy in unresectable stage III NSCLC and discuss in-depth their biological rationale, their pitfalls and potential benefits. Particular emphasis is placed on the potential mechanisms of synergism between chemotherapy, radiation therapy and different monoclonal antibodies, and how this affects the tumor immune microenvironment. The designs and questions tackled by ongoing clinical trials are also discussed. Last, we address open questions and unmet clinical needs, such as the necessity for predictive biomarkers (e.g. radiomics and circulating tumor DNA). Identifying distinct subsets of patients to tailor anticancer treatment is a priority, especially in a heterogeneous disease such as stage III NSCLC.
Collapse
Affiliation(s)
- F Cortiula
- Department of Radiation Oncology (Maastro), Maastricht University Medical Centre(+), GROW School for Oncology and Reproduction, Maastricht, the Netherlands; Department of Medical Oncology, Udine University Hospital, Udine, Italy
| | - B Reymen
- Department of Radiation Oncology (Maastro), Maastricht University Medical Centre(+), GROW School for Oncology and Reproduction, Maastricht, the Netherlands
| | - S Peters
- Oncology Department, Lausanne University Hospital, Lausanne, Switzerland
| | - P Van Mol
- Department of Respiratory Diseases KU Leuven, Respiratory Oncology Unit, University Hospitals KU Leuven, Leuven, Belgium
| | - E Wauters
- Department of Respiratory Diseases KU Leuven, Respiratory Oncology Unit, University Hospitals KU Leuven, Leuven, Belgium
| | - J Vansteenkiste
- Department of Respiratory Diseases KU Leuven, Respiratory Oncology Unit, University Hospitals KU Leuven, Leuven, Belgium.
| | - D De Ruysscher
- Department of Radiation Oncology (Maastro), Maastricht University Medical Centre(+), GROW School for Oncology and Reproduction, Maastricht, the Netherlands
| | - L E L Hendriks
- Department of Pulmonary Diseases, Maastricht University Medical Centre(+), GROW School for Oncology and Reproduction, Maastricht, the Netherlands
| |
Collapse
|
30
|
Utilizing Carbon Ions to Treat Medulloblastomas that Exhibit Chromothripsis. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of Review
Novel radiation therapies with accelerated charged particles such as protons and carbon ions have shown encouraging results in oncology. We present recent applications as well as benefits and risks associated with their use.
Recent Findings
We discuss the use of carbon ion radiotherapy to treat a specific type of aggressive pediatric brain tumors, namely medulloblastomas with chromothripsis. Potential reasons for the resistance to conventional treatment, such as the presence of cancer stem cells with unique properties, are highlighted. Finally, advantages of particle radiation alone and in combination with other therapies to overcome resistance are featured.
Summary
Provided that future preclinical studies confirm the evidence of high effectiveness, favorable toxicity profiles, and no increased risk of secondary malignancy, carbon ion therapy may offer a promising tool in pediatric (neuro)oncology and beyond.
Collapse
|
31
|
Sadagopan A, Michelakos T, Boyiadzis G, Ferrone C, Ferrone S. Human Leukocyte Antigen Class I Antigen-Processing Machinery Upregulation by Anticancer Therapies in the Era of Checkpoint Inhibitors: A Review. JAMA Oncol 2022; 8:462-473. [PMID: 34940799 PMCID: PMC8930447 DOI: 10.1001/jamaoncol.2021.5970] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Although typically impressive, objective responses to immune checkpoint inhibitors (ICIs) occur in only 12.5% of patients with advanced cancer. The majority of patients do not respond due to cell-intrinsic resistance mechanisms, including human leukocyte antigen (HLA) class I antigen-processing machinery (APM) defects. The APM defects, which have a negative effect on neoantigen presentation to cytotoxic T lymphocytes (CTLs), are present in the majority of malignant tumors. These defects are caused by gene variations in less than 25% of cases and by dysregulated signaling and/or epigenetic changes in most of the remaining cases, making them frequently correctable. This narrative review summarizes the growing clinical evidence that chemotherapy, targeted therapies, and, to a lesser extent, radiotherapy can correct HLA class I APM defects in cancer cells and improve responses to ICIs. OBSERVATIONS Most chemotherapeutics enhance HLA class I APM component expression and function in cancer cells, tumor CTL infiltration, and responses to ICIs in preclinical and clinical models. Despite preclinical evidence, radiotherapy does not appear to upregulate HLA class I expression in patients and does not enhance the efficacy of ICIs in clinical settings. The latter findings underscore the need to optimize the dose and schedule of radiation and timing of ICI administration to maximize their immunogenic synergy. By increasing DNA and chromatin accessibility, epigenetic agents (histone deacetylase inhibitors, DNA methyltransferase inhibitors, and EZH2 inhibitors) enhance HLA class I APM component expression and function in many cancer types, a crucial contributor to their synergy with ICIs in patients. Furthermore, epidermal growth factor receptor (EGFR) inhibitors and BRAF/mitogen-activated protein kinase kinase inhibitors are effective at upregulating HLA class I expression in EGFR- and BRAF-variant tumors, respectively; these changes may contribute to the clinical responses induced by these inhibitors in combination with ICIs. CONCLUSIONS AND RELEVANCE This narrative review summarizes evidence indicating that chemotherapy and targeted therapies are effective at enhancing HLA class I APM component expression and function in cancer cells. The resulting increased immunogenicity and recognition and elimination of cancer cells by cognate CTLs contributes to the antitumor activity of these therapies as well as to their synergy with ICIs.
Collapse
Affiliation(s)
- Ananthan Sadagopan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriella Boyiadzis
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Zhai D, An D, Wan C, Yang K. Radiotherapy: Brightness and darkness in the era of immunotherapy. Transl Oncol 2022; 19:101366. [PMID: 35219093 PMCID: PMC8881489 DOI: 10.1016/j.tranon.2022.101366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/15/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
The introduction of immunotherapy into cancer treatment has radically changed clinical management of tumors. However, only a minority of patients (approximately 10 to 30%) exhibit long-term response to monotherapy with immunotherapy. Moreover, there are still many cancer types, including pancreatic cancer and glioma, which are resistant to immunotherapy. Due to the immunomodulatory effects of radiotherapy, the combination of radiotherapy and immunotherapy has achieved better therapeutic effects in a number of clinical trials. However, radiotherapy is a double-edged sword in the sense that it also attenuates the immune system under certain doses and fractionation schedules, not all clinical trials show improved survival in the combination of radiotherapy and immunotherapy. Therefore, elucidation of the interactions between radiotherapy and the immune system is warranted to optimize the synergistic effects of radiotherapy and immunotherapy. In this review, we highlight the dark side as well as bright side of radiotherapy on tumor immune microenvironment and immune system. We also elucidate current status of radioimmunotherapy, both in preclinical and clinical studies, and highlight that combination of radiotherapy and immunotherapy attenuates combinatorial effects in some circumstances. Moreover, we provide insights for better combination of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Danyi Zhai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dandan An
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
33
|
Daly ME. Inoperable Early-Stage Non-Small-Cell Lung Cancer: Stereotactic Ablative Radiotherapy and Rationale for Systemic Therapy. J Clin Oncol 2022; 40:539-545. [PMID: 34985921 DOI: 10.1200/jco.21.01611] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stereotactic ablative radiotherapy (SABR) is the standard treatment for medically inoperable, early-stage non-small-cell lung cancer. SABR results in high rates of in-field tumor control, but among larger and more biologically aggressive tumors, regional and distant failures are problematic. Cytotoxic chemotherapy is rarely used in this patient population and the benefit is unclear. Alternative systemic therapy options with a milder side-effect profile are of considerable interest, and several randomized phase III trials are currently testing immune checkpoint inhibitors in this setting. We review the rationale, data, and ongoing studies evaluating systemic therapy in medically inoperable, early-stage non-small-cell lung cancer treated with SABR.
Collapse
Affiliation(s)
- Megan E Daly
- University of California, Davis Comprehensive Cancer Center, Department of Radiation Oncology, Sacramento, CA
| |
Collapse
|
34
|
Particle radiotherapy and molecular therapies: mechanisms and strategies towards clinical applications. Expert Rev Mol Med 2022; 24:e8. [PMID: 35101155 DOI: 10.1017/erm.2022.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy and targeted therapy are now commonly used in clinical trials in combination with radiotherapy for several cancers. While results are promising and encouraging, the molecular mechanisms of the interaction between the drugs and radiation remain largely unknown. This is especially important when switching from conventional photon therapy to particle therapy using protons or heavier ions. Different dose deposition patterns and molecular radiobiology can in fact modify the interaction with drugs and their effectiveness. We will show here that whilst the main molecular players are the same after low and high linear energy transfer radiation exposure, significant differences are observed in post-exposure signalling pathways that may lead to different effects of the drugs. We will also emphasise that the problem of the timing between drug administration and radiation and the fractionation regime are critical issues that need to be addressed urgently to achieve optimal results in combined treatments with particle therapy.
Collapse
|
35
|
Abstract
AbstractSpatially fractionated radiation therapy (SFRT) challenges some of the classical dogmas in conventional radiotherapy. The highly modulated spatial dose distributions in SFRT have been shown to lead, both in early clinical trials and in small animal experiments, to a significant increase in normal tissue dose tolerances. Tumour control effectiveness is maintained or even enhanced in some configurations as compared with conventional radiotherapy. SFRT seems to activate distinct radiobiological mechanisms, which have been postulated to involve bystander effects, microvascular alterations and/or immunomodulation. Currently, it is unclear which is the dosimetric parameter which correlates the most with both tumour control and normal tissue sparing in SFRT. Additional biological experiments aiming at parametrizing the relationship between the irradiation parameters (beam width, spacing, peak-to-valley dose ratio, peak and valley doses) and the radiobiology are needed. A sound knowledge of the interrelation between the physical parameters in SFRT and the biological response would expand its clinical use, with a higher level of homogenisation in the realisation of clinical trials. This manuscript reviews the state of the art of this promising therapeutic modality, the current radiobiological knowledge and elaborates on future perspectives.
Collapse
|
36
|
Mohamed N, Lee A, Lee NY. Proton beam radiation therapy treatment for head and neck cancer. PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Nader Mohamed
- Department of Radiation Oncology Memorial Sloan Kettering Cancer Center New York NY USA
| | - Anna Lee
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Nancy Y. Lee
- Department of Radiation Oncology Memorial Sloan Kettering Cancer Center New York NY USA
| |
Collapse
|
37
|
Biondetti P, Saggiante L, Ierardi AM, Iavarone M, Sangiovanni A, Pesapane F, Fumarola EM, Lampertico P, Carrafiello G. Interventional Radiology Image-Guided Locoregional Therapies (LRTs) and Immunotherapy for the Treatment of HCC. Cancers (Basel) 2021; 13:5797. [PMID: 34830949 PMCID: PMC8616392 DOI: 10.3390/cancers13225797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Image-guided locoregional therapies (LRTs) are a crucial asset in the treatment of hepatocellular carcinoma (HCC), which has proven to be characterized by an impaired antitumor immune status. LRTs not only directly destroy tumor cells but also have an immunomodulating role, altering the tumor microenvironment with potential systemic effects. Nevertheless, the immune activation against HCC induced by LRTs is not strong enough on its own to generate a systemic significant antitumor response, and it is incapable of preventing tumor recurrence. Currently, there is great interest in the possibility of combining LRTs with immunotherapy for HCC, as this combination may result in a mutually beneficial and synergistic relationship. On the one hand, immunotherapy could amplify and prolong the antitumoral immune response of LRTs, reducing recurrence cases and improving outcome. On the other hand, LTRs counteract the typical immunosuppressive HCC microenvironment and status and could therefore enhance the efficacy of immunotherapy. Here, after reviewing the current therapeutic options for HCC, we focus on LRTs, describing for each of them the technique and data on its effect on the immune system. Then, we describe the current status of immunotherapy and finally report the recently published and ongoing clinical studies testing this combination.
Collapse
Affiliation(s)
- Pierpaolo Biondetti
- Diagnostic and Interventional Radiology Department, IRCCS Cà Granda Fondazione Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milan, Italy; (A.M.I.); (G.C.)
| | - Lorenzo Saggiante
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy;
| | - Anna Maria Ierardi
- Diagnostic and Interventional Radiology Department, IRCCS Cà Granda Fondazione Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milan, Italy; (A.M.I.); (G.C.)
| | - Massimo Iavarone
- Gastroenterology Department, IRCCS Cà Granda Fondazione Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milan, Italy; (M.I.); (A.S.); (P.L.)
| | - Angelo Sangiovanni
- Gastroenterology Department, IRCCS Cà Granda Fondazione Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milan, Italy; (M.I.); (A.S.); (P.L.)
| | - Filippo Pesapane
- Radiology Department, IEO European Institute of Oncology IRCCS, 20122 Milan, Italy;
| | - Enrico Maria Fumarola
- Diagnostic and Interventional Radiology Department, ASST Santi Paolo e Carlo, 20122 Milan, Italy;
| | - Pietro Lampertico
- Gastroenterology Department, IRCCS Cà Granda Fondazione Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milan, Italy; (M.I.); (A.S.); (P.L.)
| | - Gianpaolo Carrafiello
- Diagnostic and Interventional Radiology Department, IRCCS Cà Granda Fondazione Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milan, Italy; (A.M.I.); (G.C.)
| |
Collapse
|
38
|
Current advances in immune checkpoint inhibitor combinations with radiation therapy or cryotherapy for breast cancer. Breast Cancer Res Treat 2021; 191:229-241. [PMID: 34714450 DOI: 10.1007/s10549-021-06408-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Immune checkpoint inhibition (ICI) has demonstrated clinically significant efficacy when combined with chemotherapy in triple negative breast cancer (TNBC). Although many patients derived benefit, others do not respond to immunotherapy, therefore relying upon innovative combinations to enhance response. Local therapies such as radiation therapy (RT) and cryotherapy are immunogenic and potentially optimize responses to immunotherapy. Strategies combining these therapies and ICI are actively under investigation. This review will describe the rationale for combining ICI with targeted local therapies in breast cancer. METHODS A literature search was performed to identify pre-clinical and clinical studies assessing ICI combined with RT or cryotherapy published as of August 2021 using PubMed and ClinicalTrials.gov. RESULTS Published studies of ICI with RT and IPI have demonstrated safety and signals of early efficacy. CONCLUSION RT and cryotherapy are local therapies that can be integrated safely with ICI and has shown promise in early trials. Randomized phase II studies testing both of these approaches, such as P-RAD (NCT04443348) and ipilimumab/nivolumab/cryoablation for TNBC (NCT03546686) are current enrolling. The results of these studies are paramount as they will provide long term data on the safety and efficacy of these regimens.
Collapse
|
39
|
Wang X, Hobbs B, Gandhi SJ, Muijs CT, Langendijk JA, Lin SH. Current status and application of proton therapy for esophageal cancer. Radiother Oncol 2021; 164:27-36. [PMID: 34534613 DOI: 10.1016/j.radonc.2021.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/11/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022]
Abstract
Esophageal cancer remains one of the leading causes of death from cancer across the world despite advances in multimodality therapy. Although early-stage disease can often be treated surgically, the current state of the art for locally advanced disease is concurrent chemoradiation, followed by surgery whenever possible. The uniform midline tumor location puts a strong importance on the need for precise delivery of radiation that would minimize dose to the heart and lungs, and the biophysical properties of proton beam makes this modality potential ideal for esophageal cancer treatment. This review covers the current state of knowledge of proton therapy for esophageal cancer, focusing on published retrospective single- and multi-institutional clinical studies, and emerging data from prospective clinical trials, that support the benefit of protons vs photon-based radiation in reducing postoperative complications, cardiac toxicity, and severe radiation induced immune suppression, which may improve survival outcomes for patients. In addition, we discuss the incorporation of immunotherapy to the curative management of esophageal cancers in the not-too-distant future. However, there is still a lack of high-level evidence to support proton therapy in the treatment of esophageal cancer, and proton therapy has its limitations in clinical application. It is expected to see the results of future large-scale randomized clinical trials and the continuous improvement of proton radiotherapy technology.
Collapse
Affiliation(s)
- Xin Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China
| | - Brian Hobbs
- Department of Population Health, University of Texas, Austin, USA
| | - Saumil J Gandhi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Christina T Muijs
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
40
|
Matsumoto Y, Fukumitsu N, Ishikawa H, Nakai K, Sakurai H. A Critical Review of Radiation Therapy: From Particle Beam Therapy (Proton, Carbon, and BNCT) to Beyond. J Pers Med 2021; 11:jpm11080825. [PMID: 34442469 PMCID: PMC8399040 DOI: 10.3390/jpm11080825] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/24/2022] Open
Abstract
In this paper, we discuss the role of particle therapy—a novel radiation therapy (RT) that has shown rapid progress and widespread use in recent years—in multidisciplinary treatment. Three types of particle therapies are currently used for cancer treatment: proton beam therapy (PBT), carbon-ion beam therapy (CIBT), and boron neutron capture therapy (BNCT). PBT and CIBT have been reported to have excellent therapeutic results owing to the physical characteristics of their Bragg peaks. Variable drug therapies, such as chemotherapy, hormone therapy, and immunotherapy, are combined in various treatment strategies, and treatment effects have been improved. BNCT has a high dose concentration for cancer in terms of nuclear reactions with boron. BNCT is a next-generation RT that can achieve cancer cell-selective therapeutic effects, and its effectiveness strongly depends on the selective 10B accumulation in cancer cells by concomitant boron preparation. Therefore, drug delivery research, including nanoparticles, is highly desirable. In this review, we introduce both clinical and basic aspects of particle beam therapy from the perspective of multidisciplinary treatment, which is expected to expand further in the future.
Collapse
Affiliation(s)
- Yoshitaka Matsumoto
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
- Correspondence: ; Tel.: +81-29-853-7100
| | | | - Hitoshi Ishikawa
- National Institute of Quantum and Radiological Science and Technology Hospital, Chiba 263-8555, Japan;
| | - Kei Nakai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| |
Collapse
|
41
|
Abstract
Radiotherapy delivered using photons induces an immune response that leads to modulation of the tumor microenvironment. Clinical studies are ongoing to evaluate immune checkpoint inhibitors in association with photon radiotherapy. At present, there is no publication on the radio-induced immune response after proton therapy. Balb/c mice bearing subcutaneous CT26 colon tumors were irradiated by a single fraction of 16.4 Gy using a proton beam extracted from a TR24 cyclotron. RNA sequencing analysis was assessed at 3 days post-treatment. Proton therapy immune response was monitored by flow cytometry using several panels (lymphoid, myeloid cells, lymphoid cytokines) at 7 and 14 days post-irradiation. RNA-Seq functional profiling identified a large number of GO categories linked to “immune response” and “interferon signaling”. Immunomonitoring evaluation showed induced tumor infiltration by immune cells. This is the first study showing the effect of proton therapy on immune response. These interesting results provide a sound basis to assess the efficacy of a combination of proton therapy and immune checkpoint inhibitors.
Collapse
|
42
|
Byun HK, Han MC, Yang K, Kim JS, Yoo GS, Koom WS, Kim YB. Physical and Biological Characteristics of Particle Therapy for Oncologists. Cancer Res Treat 2021; 53:611-620. [PMID: 34139805 PMCID: PMC8291193 DOI: 10.4143/crt.2021.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Particle therapy is a promising and evolving modality of radiotherapy that can be used to treat tumors that are radioresistant to conventional photon beam radiotherapy. It has unique biological and physical advantages compared with conventional radiotherapy. The characteristic feature of particle therapy is the "Bragg peak," a steep and localized peak of dose, that enables precise delivery of the radiation dose to the tumor while effectively sparing normal organs. Especially, the charged particles (e.g., proton, helium, carbon) cause a high rate of energy loss along the track, thereby leading to high biological effectiveness, which makes particle therapy attractive. Using this property, the particle beam induces more severe DNA double-strand breaks than the photon beam, which is less influenced by the oxygen level. This review describes the general biological and physical aspects of particle therapy for oncologists, including non-radiation oncologists and beginners in the field.
Collapse
Affiliation(s)
- Hwa Kyung Byun
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Min Cheol Han
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungmi Yang
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Bae Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Patel SS, Nota SP, Sabbatino F, Nielsen GP, Deshpande V, Wang X, Ferrone S, Schwab JH. Defective HLA Class I Expression and Patterns of Lymphocyte Infiltration in Chordoma Tumors. Clin Orthop Relat Res 2021; 479:1373-1382. [PMID: 33273248 PMCID: PMC8133041 DOI: 10.1097/corr.0000000000001587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/03/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND There are no effective systemic therapies for chordoma. The recent successes of immunotherapeutic strategies in other cancers have resulted in a resurgence of interest in using immunotherapy in chordoma. These approaches rely on a functional interaction between the host's immune system and the expression of tumor peptides via the human leukocyte antigen (HLA) Class I antigen. It is not known whether chordoma cells express the HLA Class I antigen. QUESTIONS/PURPOSES (1) Do chordoma tumors exhibit defects in HLA Class I antigen expression? (2) What is the pattern of lymphocyte infiltration in chordoma tumors? METHODS Patients with chordoma treated at Massachusetts General Hospital between 1989 and 2009 were identified with permission from the institutional review board. Of the 75 patients who were identified, 24 human chordoma tumors were selected from 24 distinct patients based on tissue availability. Histology slides from these 24 formalin-fixed paraffin-embedded chordoma tissue samples were deparaffinized using xylene and ethanol and underwent heat-induced antigen retrieval in a citrate buffer. Samples were incubated with monoclonal antibodies directed against HLA Class I antigen processing machinery components. Antibody binding was detected via immunohistochemical staining. Staining intensity (negative, weakly positive, strongly positive) was assessed semiquantitatively and the percentage of chordoma cells stained for HLA Class I antigen subunits was assessed quantitatively. Hematoxylin and eosin-stained histology slides from the same 24 chordoma samples were assessed qualitatively for the presence of tumor-infiltrating lymphocytes and histologic location of these lymphocytes. Immunohistochemical staining with monoclonal antibodies directed against CD4 and CD8 was performed in a quantitative manner to identify the lymphocyte subtype present in chordoma tumors. All results were scored independently by two investigators and were confirmed by a senior bone and soft tissue pathologist. RESULTS Seven of 24 chordoma samples exhibited no staining by the anti-HLA-A heavy chain monoclonal antibody HC-A2, two had weak staining intensity, and eight had a heterogeneous staining pattern, with fewer than 60% of chordoma cells exhibiting positive staining results. Four of 24 samples tested were not stained by the anti-HLA-B/C heavy chain monoclonal antibody HC-10, five had weak staining intensity, and 11 displayed a heterogeneous staining pattern. For the anti-β-2-microglobulin monoclonal antibody NAMB-1, staining was detected in all samples, but 11 had weak staining intensity and four displayed a heterogeneous staining pattern. Twenty-one of 24 samples tested had decreased expression in at least one subunit of HLA Class I antigens. No tumors were negative for all three subunits. Lymphocytic infiltration was found in 21 of 24 samples. Lymphocytes were primarily found in the fibrous septae between chordoma lobules but also within the tumor lobules and within the fibrous septae and tumor lobules. Twenty-one of 24 tumors had CD4+ T cells and 11 had CD8+ T cells. CONCLUSION In chordoma tissue samples, HLA Class I antigen defects commonly were present, suggesting a mechanism for escape from host immunosurveillance. Additionally, nearly half of the tested samples had cytotoxic CD8+ T cells present in chordoma tumors, suggesting that the host may be capable of mounting an immune response against chordoma tumors. The resulting selective pressure imposed on chordoma tumors may lead to the outgrowth of chordoma cell subpopulations that can evade the host's immune system. CLINICAL RELEVANCE These findings have implications in the design of immunotherapeutic strategies for chordoma treatment. T cell recognition of tumor cells requires HLA Class I antigen expression on the targeted tumor cells. Defects in HLA Class I expression may play a role in the clinical course of chordoma and may account for the limited or lack of efficacy of T cell-based immunity triggered by vaccines and/or checkpoint inhibitors.
Collapse
Affiliation(s)
- Shalin S Patel
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sjoerd P Nota
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesco Sabbatino
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - G Petur Nielsen
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vikram Deshpande
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinhui Wang
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph H Schwab
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
DeMaria PJ, Bilusic M, Park DM, Heery CR, Donahue RN, Madan RA, Bagheri MH, Strauss J, Shen V, Marté JL, Steinberg SM, Schlom J, Gilbert MR, Gulley JL. Randomized, Double-Blind, Placebo-Controlled Phase II Study of Yeast-Brachyury Vaccine (GI-6301) in Combination with Standard-of-Care Radiotherapy in Locally Advanced, Unresectable Chordoma. Oncologist 2021; 26:e847-e858. [PMID: 33594772 PMCID: PMC8100546 DOI: 10.1002/onco.13720] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Brachyury is a transcription factor overexpressed in chordoma and is associated with chemotherapy resistance and epithelial-to-mesenchymal transition. GI-6301 is a recombinant, heat-killed Saccharomyces cerevisiae yeast-based vaccine targeting brachyury. A previous phase I trial of GI-6301 demonstrated a signal of clinical activity in chordomas. This trial evaluated synergistic effects of GI-6301 vaccine plus radiation. MATERIALS AND METHODS Adults with locally advanced, unresectable chordoma were treated on a randomized, placebo-controlled trial. Patients received three doses of GI-6301 (80 × 107 yeast cells) or placebo followed by radiation, followed by continued vaccine or placebo until progression. Primary endpoint was overall response rate, defined as a complete response (CR) or partial response (PR) in the irradiated tumor site at 24 months. Immune assays were conducted to evaluate immunogenicity. RESULTS Between May 2015 and September 2019, 24 patients enrolled on the first randomized phase II study in chordoma. There was one PR in each arm; no CRs were observed. Median progressive-free survival for vaccine and placebo arms was 20.6 months (95% confidence interval [CI], 5.7-37.5 months) and 25.9 months (95% CI, 9.2-30.8 months), respectively. Hazard ratio was 1.02 (95% CI, 0.38-2.71). Vaccine was well tolerated with no vaccine-related serious adverse events. Preexisting brachyury-specific T cells were detected in most patients in both arms. Most patients developed T-cell responses during therapy, with no difference between arms in frequency or magnitude of response. CONCLUSION No difference in overall response rate was observed, leading to early discontinuation of this trial due to low conditional power to detect statistical difference at the planned end of accrual. IMPLICATIONS FOR PRACTICE Chordoma is a rare neoplasm lacking effective systemic therapies for advanced, unresectable disease. Lack of clinically actionable somatic mutations in chordoma makes development of targeted therapy quite challenging. While the combination of yeast-brachyury vaccine (GI-6301) and standard radiation therapy did not demonstrate synergistic antitumor effects, brachyury still remains a good target for developmental therapeutics in chordoma. Patients and their oncologists should consider early referral to centers with expertise in chordoma (or sarcoma) and encourage participation in clinical trials.
Collapse
Affiliation(s)
- Peter Joseph DeMaria
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Deric M Park
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- University of Chicago, Chicago, Illinois, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Precision Biosciences, Durham, North Carolina, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mohammad Hadi Bagheri
- Clinical Image Processing Service, National Institutes of Health, Bethesda, Maryland, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria Shen
- Clinical Image Processing Service, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer L Marté
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
45
|
Khalifa J, Mazieres J, Gomez-Roca C, Ayyoub M, Moyal ECJ. Radiotherapy in the Era of Immunotherapy With a Focus on Non-Small-Cell Lung Cancer: Time to Revisit Ancient Dogmas? Front Oncol 2021; 11:662236. [PMID: 33968769 PMCID: PMC8097090 DOI: 10.3389/fonc.2021.662236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced immune effects have been extensively deciphered over the last few years, leading to the concept of the dual immune effect of radiotherapy with both immunostimulatory and immunosuppressive effects. This explains why radiotherapy alone is not able to drive a strong anti-tumor immune response in most cases, hence underlining the rationale for combining both radiotherapy and immunotherapy. This association has generated considerable interest and hundreds of trials are currently ongoing to assess such an association in oncology. However, while some trials have provided unprecedented results or shown much promise, many hopes have been dashed. Questions remain, therefore, as to how to optimize the combination of these treatment modalities. This narrative review aims at revisiting the old, well-established concepts of radiotherapy relating to dose, fractionation, target volumes and organs at risk in the era of immunotherapy. We then propose potential innovative approaches to be further assessed when considering a radio-immunotherapy association, especially in the field of non-small-cell lung cancer (NSCLC). We finally propose a framework to optimize the association, with pragmatic approaches depending on the stage of the disease.
Collapse
Affiliation(s)
- Jonathan Khalifa
- Department of Radiotherapy, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse – Oncopole, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale U1037, Centre de Recherche contre le Cancer de Toulouse, Toulouse, France
| | - Julien Mazieres
- Department of Pulmonology, Centre Hospitalo-Universitaire Larrey, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Carlos Gomez-Roca
- Institut National de la Santé et de la Recherche Médicale U1037, Centre de Recherche contre le Cancer de Toulouse, Toulouse, France
- Department of Medical Oncology, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse – Oncopole, Toulouse, France
| | - Maha Ayyoub
- Institut National de la Santé et de la Recherche Médicale U1037, Centre de Recherche contre le Cancer de Toulouse, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Elizabeth Cohen-Jonathan Moyal
- Department of Radiotherapy, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse – Oncopole, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale U1037, Centre de Recherche contre le Cancer de Toulouse, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
46
|
Marcus D, Lieverse RIY, Klein C, Abdollahi A, Lambin P, Dubois LJ, Yaromina A. Charged Particle and Conventional Radiotherapy: Current Implications as Partner for Immunotherapy. Cancers (Basel) 2021; 13:1468. [PMID: 33806808 PMCID: PMC8005048 DOI: 10.3390/cancers13061468] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) has been shown to interfere with inflammatory signals and to enhance tumor immunogenicity via, e.g., immunogenic cell death, thereby potentially augmenting the therapeutic efficacy of immunotherapy. Conventional RT consists predominantly of high energy photon beams. Hypofractionated RT regimens administered, e.g., by stereotactic body radiation therapy (SBRT), are increasingly investigated in combination with cancer immunotherapy within clinical trials. Despite intensive preclinical studies, the optimal dose per fraction and dose schemes for elaboration of RT induced immunogenic potential remain inconclusive. Compared to the scenario of combined immune checkpoint inhibition (ICI) and RT, multimodal therapies utilizing other immunotherapy principles such as adoptive transfer of immune cells, vaccination strategies, targeted immune-cytokines and agonists are underrepresented in both preclinical and clinical settings. Despite the clinical success of ICI and RT combination, e.g., prolonging overall survival in locally advanced lung cancer, curative outcomes are still not achieved for most cancer entities studied. Charged particle RT (PRT) has gained interest as it may enhance tumor immunogenicity compared to conventional RT due to its unique biological and physical properties. However, whether PRT in combination with immune therapy will elicit superior antitumor effects both locally and systemically needs to be further investigated. In this review, the immunological effects of RT in the tumor microenvironment are summarized to understand their implications for immunotherapy combinations. Attention will be given to the various immunotherapeutic interventions that have been co-administered with RT so far. Furthermore, the theoretical basis and first evidences supporting a favorable immunogenicity profile of PRT will be examined.
Collapse
Affiliation(s)
- Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Relinde I. Y. Lieverse
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Carmen Klein
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| |
Collapse
|
47
|
Hypoxia-Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing. Cancers (Basel) 2021; 13:cancers13051102. [PMID: 33806538 PMCID: PMC7961562 DOI: 10.3390/cancers13051102] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Some regions of aggressive malignancies experience hypoxia due to inadequate blood supply. Cancer cells adapting to hypoxic conditions somehow become more resistant to radiation exposure and this decreases the efficacy of radiotherapy toward hypoxic tumors. The present review article helps clarify two intriguing points: why hypoxia-adapted cancer cells turn out radioresistant and how they can be rendered more radiosensitive. The critical molecular targets associated with intratumoral hypoxia and various approaches are here discussed which may be used for sensitizing hypoxic tumors to radiotherapy. Abstract Within aggressive malignancies, there usually are the “hypoxic zones”—poorly vascularized regions where tumor cells undergo oxygen deficiency through inadequate blood supply. Besides, hypoxia may arise in tumors as a result of antiangiogenic therapy or transarterial embolization. Adapting to hypoxia, tumor cells acquire a hypoxia-resistant phenotype with the characteristic alterations in signaling, gene expression and metabolism. Both the lack of oxygen by itself and the hypoxia-responsive phenotypic modulations render tumor cells more radioresistant, so that hypoxic tumors are a serious challenge for radiotherapy. An understanding of causes of the radioresistance of hypoxic tumors would help to develop novel ways for overcoming this challenge. Molecular targets for and various approaches to radiosensitizing hypoxic tumors are considered in the present review. It is here analyzed how the hypoxia-induced cellular responses involving hypoxia-inducible factor-1, heat shock transcription factor 1, heat shock proteins, glucose-regulated proteins, epigenetic regulators, autophagy, energy metabolism reprogramming, epithelial–mesenchymal transition and exosome generation contribute to the radioresistance of hypoxic tumors or may be inhibited for attenuating this radioresistance. The pretreatments with a multitarget inhibition of the cancer cell adaptation to hypoxia seem to be a promising approach to sensitizing hypoxic carcinomas, gliomas, lymphomas, sarcomas to radiotherapy and, also, liver tumors to radioembolization.
Collapse
|
48
|
The Potentiation of Anti-Tumor Immunity by Tumor Abolition with Alpha Particles, Protons, or Carbon Ion Radiation and Its Enforcement by Combination with Immunoadjuvants or Inhibitors of Immune Suppressor Cells and Checkpoint Molecules. Cells 2021; 10:cells10020228. [PMID: 33503958 PMCID: PMC7912488 DOI: 10.3390/cells10020228] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
The delivery of radiation therapy (RT) for cancer with intent to cure has been optimized and standardized over the last 80 years. Both preclinical and clinical work emphasized the observation that radiation destroys the tumor and exposes its components to the immune response in a mode that facilitates the induction of anti-tumor immunity or reinforces such a response. External beam photon radiation is the most prevalent in situ abolition treatment, and its use exposed the “abscopal effect”. Particle radiotherapy (PRT), which has been in various stages of research and development for 70 years, is today available for the treatment of patients in the form of alpha particles, proton, or carbon ion radiotherapy. Charged particle radiotherapy is based on the acceleration of charged species, such as protons or carbon-12, which deposit their energy in the treated tumor and have a higher relative biological effectiveness compared with photon radiation. In this review, we will bring evidence that alpha particles, proton, or carbon ion radiation can destroy tumors and activate specific anti-tumor immune responses. Radiation may also directly affect the distribution and function of immune cells such as T cells, regulatory T cells, and mononuclear phagocytes. Tumor abolition by radiation can trigger an immune response against the tumor. However, abolition alone rarely induces effective anti-tumor immunity resulting in systemic tumor rejection. Immunotherapy can complement abolition to reinforce the anti-tumor immunity to better eradicate residual local and metastatic tumor cells. Various methods and agents such as immunoadjuvants, suppressor cell inhibitors, or checkpoint inhibitors were used to manipulate the immune response in combination with radiation. This review deals with the manifestations of particle-mediated radiotherapy and its correlation with immunotherapy of cancer.
Collapse
|
49
|
Wang L, Fossati P, Paganetti H, Ma L, Gillison M, Myers JN, Hug E, Frank SJ. The Biological Basis for Enhanced Effects of Proton Radiation Therapy Relative to Photon Radiation Therapy for Head and Neck Squamous Cell Carcinoma. Int J Part Ther 2021; 8:3-13. [PMID: 34285931 PMCID: PMC8270087 DOI: 10.14338/ijpt-20-00070.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) often present as local-regionally advanced disease at diagnosis, for which a current standard of care is x-ray-based radiation therapy, with or without chemotherapy. This approach provides effective local regional tumor control, but at the cost of acute and late toxicity that can worsen quality of life and contribute to mortality. For patients with human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (SCC) in particular, for whom the prognosis is generally favorable, de-escalation of the radiation dose to surrounding normal tissues without diminishing the radiation dose to tumors is desired to mitigate radiation-related toxic effects. Proton radiation therapy (PRT) may be an excellent de-escalation strategy because of its physical properties (that eliminate unnecessary radiation to surrounding tissues) and because of its biological properties (including tumor-specific variations in relative biological effectiveness [RBE] and linear energy transfer [LET]), in combination with concurrent systemic therapy. Early clinical evidence has shown that compared with x-ray-based radiation therapy, PRT offers comparable disease control with fewer and less severe treatment-related toxicities that can worsen the quality of life for patients with HNSCC. Herein, we review aspects of the biological basis of enhanced HNSCC cell response to proton versus x-ray irradiation in terms of radiation-induced gene and protein expression, DNA damage and repair, cell death, tumor immune responses, and radiosensitization of tumors.
Collapse
Affiliation(s)
- Li Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Piero Fossati
- Department of Radiation Oncology, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maura Gillison
- Department of Thoracic-Head & Neck Med Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey N. Myers
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugen Hug
- Department of Radiation Oncology, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Steven J. Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
50
|
Hartmann L, Schröter P, Osen W, Baumann D, Offringa R, Moustafa M, Will R, Debus J, Brons S, Rieken S, Eichmüller SB. Photon versus carbon ion irradiation: immunomodulatory effects exerted on murine tumor cell lines. Sci Rep 2020; 10:21517. [PMID: 33299018 PMCID: PMC7726046 DOI: 10.1038/s41598-020-78577-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
While for photon radiation hypofractionation has been reported to induce enhanced immunomodulatory effects, little is known about the immunomodulatory potential of carbon ion radiotherapy (CIRT). We thus compared the radio-immunogenic effects of photon and carbon ion irradiation on two murine cancer cell lines of different tumor entities. We first calculated the biological equivalent doses of carbon ions corresponding to photon doses of 1, 3, 5, and 10 Gy of the murine breast cancer cell line EO771 and the OVA-expressing pancreatic cancer cell line PDA30364/OVA by clonogenic survival assays. We compared the potential of photon and carbon ion radiation to induce cell cycle arrest, altered surface expression of immunomodulatory molecules and changes in the susceptibility of cancer cells to cytotoxic T cell (CTL) mediated killing. Irradiation induced a dose-dependent G2/M arrest in both cell lines irrespective from the irradiation source applied. Likewise, surface expression of the immunomodulatory molecules PD-L1, CD73, H2-Db and H2-Kb was increased in a dose-dependent manner. Both radiation modalities enhanced the susceptibility of tumor cells to CTL lysis, which was more pronounced in EO771/Luci/OVA cells than in PDA30364/OVA cells. Overall, compared to photon radiation, the effects of carbon ion radiation appeared to be enhanced at higher dose range for EO771 cells and extenuated at lower dose range for PDA30364/OVA cells. Our data show for the first time that equivalent doses of carbon ion and photon irradiation exert similar immunomodulating effects on the cell lines of both tumor entities, highlighted by an enhanced susceptibility to CTL mediated cytolysis in vitro.
Collapse
Affiliation(s)
- Laura Hartmann
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Philipp Schröter
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Wolfram Osen
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Heidelberg, Germany
| | - Daniel Baumann
- German Cancer Research Center (DKFZ), Molecular Oncology of Gastrointestinal Tumors, Heidelberg, Germany
- Department of Surgery, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Rienk Offringa
- German Cancer Research Center (DKFZ), Molecular Oncology of Gastrointestinal Tumors, Heidelberg, Germany
- Department of Surgery, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Mahmoud Moustafa
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Faculty of Medicine Heidelberg (MFHD), Division of Molecular and Translational Radiation Oncology, Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Clinical Pathology, Suez Canal University, Ismailia, Egypt
| | - Rainer Will
- German Cancer Research Center (DKFZ), Genomics and Proteomics Core Facility, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Faculty of Medicine Heidelberg (MFHD), Division of Molecular and Translational Radiation Oncology, Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany.
- Department of Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany.
| | - Stefan B Eichmüller
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Heidelberg, Germany.
| |
Collapse
|