1
|
Goncin U, Curiel L, Geyer CR, Machtaler S. Aptamer-Functionalized Microbubbles Targeted to P-selectin for Ultrasound Molecular Imaging of Murine Bowel Inflammation. Mol Imaging Biol 2023; 25:283-293. [PMID: 35851673 DOI: 10.1007/s11307-022-01755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Our objectives were to develop a targeted microbubble with an anti-P-selectin aptamer and assess its ability to detect bowel inflammation in two murine models of acute colitis. PROCEDURES Lipid-shelled microbubbles were prepared using mechanical agitation. A rapid copper-free click chemistry approach (azide-DBCO) was used to conjugate the fluorescent anti-P-selectin aptamer (Fluor-P-Ap) to the microbubble surface. Bowel inflammation was chemically induced using 2,4,6-trinitrobenzenesulfonic acid (TNBS) in both Balb/C and interleukin-10-deficient (IL-10 KO) mice. Mouse bowels were imaged using non-linear contrast mode following an i.v. bolus of 1 × 108 microbubbles. Each mouse received a bolus of aptamer-functionalized and non-targeted microbubbles. Mouse phenotypes and the presence of P-selectin were validated using histology and immunostaining, respectively. RESULTS Microbubble labelling of Fluor-P-Ap was complete after 20 min at 37 ̊C. We estimate approximately 300,000 Fluor-P-Ap per microbubble and confirmed fluorescence using confocal microscopy. There was a significant increase in ultrasound molecular imaging signal from both Balb/C (p = 0.003) and IL-10 KO (p = 0.02) mice with inflamed bowels using aptamer-functionalized microbubbles in comparison to non-targeted microbubbles. There was no signal in healthy mice (p = 0.4051) using either microbubble. CONCLUSIONS We constructed an aptamer-functionalized microbubble specific for P-selectin using a clinically relevant azide-DBCO click reaction, which could detect bowel inflammation in vivo. Aptamers have potential as a next generation targeting agent for developing cost-efficient and clinically translatable targeted microbubbles.
Collapse
Affiliation(s)
- Una Goncin
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Laura Curiel
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 4V8, Canada
| | - C Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Steven Machtaler
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
2
|
Meng Z, Wang H, Fang X, Liu Z, Yang Z, Yong J, Yang Q, Bai Y, Ren H, Xu H, Li X. Surface Decoration via Physical Interaction of Cupric Diethyldithiocarbamate Nanocrystals and Its Impact on Biodistribution and Tumor Targeting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36894-36908. [PMID: 34328715 DOI: 10.1021/acsami.1c09346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The vascular wall is the first physiologic barrier that circulating nanoparticles (NPs) encounter, which also is a key biological barrier to cancer drug delivery. NPs can continually scavenge the endothelium for biomarkers of cancer, and the chance of NPs' extravasation into the tumors can be enhanced. Here, we envision P-selectin as a target for specific delivery of drug nanocrystals to tumors. The cupric diethyldithiocarbamate nanocrystals (CuET NCs) were first prepared by an antisolvent method, and then nanocrystals were coated with fucoidan via physical interaction. The fucoidan-coated CuET nanocrystals (CuET@Fuc) possess high drug loading and have the ability to interact with human umbilical vein endothelial cells expressing P-selectin, which transiently enhances the endothelial permeability and facilitates CuET@Fuc extravasation from the peritumoral vascular to achieve higher tumor accumulation of drugs than bare CuET NCs. The CuET NC shows poorer anticancer efficacy than CuET@Fuc at the same dose of CuET. Upon repeated dosing of CuET@Fuc for 2 weeks, no mortality was observed in treated melanoma-bearing mice, while the mortality in the control group and excipient-treated groups reached 23%. The growth rate of melanoma in the CuET@Fuc-treated group was significantly lower than those in other groups. Furthermore, an acute toxicity study revealed that CuET@Fuc is a safe formulation for cancer treatment.
Collapse
Affiliation(s)
- Zhengjie Meng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hao Wang
- College of Pharmacy, Nanjing Tech University, Nanjing 211816, China
| | - Xue Fang
- College of Pharmacy, Nanjing Tech University, Nanjing 211816, China
| | - Zhangya Liu
- College of Pharmacy, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Yang
- College of Pharmacy, Nanjing Tech University, Nanjing 211816, China
| | - Jiahui Yong
- College of Pharmacy, Nanjing Tech University, Nanjing 211816, China
| | - Qingqing Yang
- College of Pharmacy, Nanjing Tech University, Nanjing 211816, China
| | - Yunhao Bai
- College of Pharmacy, Nanjing Tech University, Nanjing 211816, China
| | - Hao Ren
- College of Pharmacy, Nanjing Tech University, Nanjing 211816, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xueming Li
- College of Pharmacy, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Ultrasound. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Molecular Ultrasound Imaging. NANOMATERIALS 2020; 10:nano10101935. [PMID: 32998422 PMCID: PMC7601169 DOI: 10.3390/nano10101935] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
In the last decade, molecular ultrasound imaging has been rapidly progressing. It has proven promising to diagnose angiogenesis, inflammation, and thrombosis, and many intravascular targets, such as VEGFR2, integrins, and selectins, have been successfully visualized in vivo. Furthermore, pre-clinical studies demonstrated that molecular ultrasound increased sensitivity and specificity in disease detection, classification, and therapy response monitoring compared to current clinically applied ultrasound technologies. Several techniques were developed to detect target-bound microbubbles comprising sensitive particle acoustic quantification (SPAQ), destruction-replenishment analysis, and dwelling time assessment. Moreover, some groups tried to assess microbubble binding by a change in their echogenicity after target binding. These techniques can be complemented by radiation force ultrasound improving target binding by pushing microbubbles to vessel walls. Two targeted microbubble formulations are already in clinical trials for tumor detection and liver lesion characterization, and further clinical scale targeted microbubbles are prepared for clinical translation. The recent enormous progress in the field of molecular ultrasound imaging is summarized in this review article by introducing the most relevant detection technologies, concepts for targeted nano- and micro-bubbles, as well as their applications to characterize various diseases. Finally, progress in clinical translation is highlighted, and roadblocks are discussed that currently slow the clinical translation.
Collapse
|
5
|
Wischhusen J, Padilla F. Ultrasound Molecular Imaging with Targeted Microbubbles for Cancer Diagnostics: From Bench to Bedside. Ing Rech Biomed 2019. [DOI: 10.1016/j.irbm.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Vishal TMD, Ji-Bin LMD, John EP. Applications in Molecular Ultrasound Imaging: Present and Future. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2019. [DOI: 10.37015/audt.2019.190812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
7
|
Wischhusen J, Wilson KE, Delcros JG, Molina-Peña R, Gibert B, Jiang S, Ngo J, Goldschneider D, Mehlen P, Willmann JK, Padilla F. Ultrasound molecular imaging as a non-invasive companion diagnostic for netrin-1 interference therapy in breast cancer. Theranostics 2018; 8:5126-5142. [PMID: 30429890 PMCID: PMC6217066 DOI: 10.7150/thno.27221] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Abstract
In ultrasound molecular imaging (USMI), ligand-functionalized microbubbles (MBs) are used to visualize vascular endothelial targets. Netrin-1 is upregulated in 60% of metastatic breast cancers and promotes tumor progression. A novel netrin-1 interference therapy requires the assessment of netrin-1 expression prior to treatment. In this study, we studied netrin-1 as a target for USMI and its potential as a companion diagnostic in breast cancer models. Methods: To verify netrin-1 expression and localization, an in vivo immuno-localization approach was applied, in which anti-netrin-1 antibody was injected into living mice 24 h before tumor collection, and revealed with secondary fluorescent antibody for immunofluorescence analysis. Netrin-1 interactions with the cell surface were studied by flow cytometry. Netrin-1-targeted MBs were prepared using MicroMarker Target-Ready (VisualSonics), and validated in in vitro binding assays in static conditions or in a flow chamber using purified netrin-1 protein or netrin-1-expressing cancer cells. In vivo USMI of netrin-1 was validated in nude mice bearing human netrin-1-positive SKBR7 tumors or weakly netrin-1-expressing MDA-MB-231 tumors using the Vevo 2100 small animal imaging device (VisualSonics). USMI feasibility was further tested in transgenic murine FVB/N Tg(MMTV/PyMT634Mul) (MMTV-PyMT) mammary tumors. Results: Netrin-1 co-localized with endothelial CD31 in netrin-1-positive breast tumors. Netrin-1 binding to the surface of endothelial HUVEC and cancer cells was partially mediated by heparan sulfate proteoglycans. MBs targeted with humanized monoclonal anti-netrin-1 antibody bound to netrin-1-expressing cancer cells in static and dynamic conditions. USMI signal was significantly increased with anti-netrin-1 MBs in human SKBR7 breast tumors and transgenic murine MMTV-PyMT mammary tumors compared to signals recorded with either isotype control MBs or after blocking of netrin-1 with humanized monoclonal anti-netrin-1 antibody. In weakly netrin-1-expressing human tumors and normal mammary glands, no difference in imaging signal was observed with anti-netrin-1- and isotype control MBs. Ex vivo analysis confirmed netrin-1 expression in MMTV-PyMT tumors. Conclusions: These results show that USMI allowed reliable detection of netrin-1 on the endothelium of netrin-1-positive human and murine tumors. Significant differences in USMI signal for netrin-1 reflected the significant differences in netrin-1 mRNA & protein expression observed between different breast tumor models. The imaging approach was non-invasive and safe, and provided the netrin-1 expression status in near real-time. Thus, USMI of netrin-1 has the potential to become a companion diagnostic for the stratification of patients for netrin-1 interference therapy in future clinical trials.
Collapse
|
8
|
Bahtiyar N, Onaran İ, Aydemir B, Baykara O, Toplan S, Agaoglu FY, Akyolcu MC. Monitoring of platelet function parameters and microRNA expression levels in patients with prostate cancer treated with volumetric modulated arc radiotherapy. Oncol Lett 2018; 16:4745-4753. [PMID: 30250541 DOI: 10.3892/ol.2018.9167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/16/2017] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) may result in platelet activation and thrombosis development. To the best of our knowledge, the potential effect of volumetric-modulated arc therapy (VMAT), a novel radiotherapy technique, on platelet function and microRNA (miRNA/miR) expression has not been previously investigated. The present study aimed to determine the effect of VMAT on the alterations in platelet function parameters and miRNA expression levels. A total of 25 patients with prostate cancer and 25 healthy subjects were included in the present study. Blood samples were collected from the patient group on the day prior to RT (pre-RT), the day RT was completed (post-RT day 0), and 40 days following the end of therapy (post-RT day 40). Platelet count, mean platelet volume (MPV) value, platelet aggregation, plasma P-selectin, thrombospondin-1, platelet factor 4, plasma miR-223 and miR-126 expression levels were measured. A significant decrease in platelet count in the post-RT day 0 group was measured in comparison with the pre-RT and the post-RT day 40 groups. Pre-RT MPV values were higher than those of the post-RT day 0 and the post-RT day 40 groups. No significant differences were observed in the levels of platelet activation markers or miR-223 and miR-126 expression levels between the RT groups. Although RT may result in a reduction in platelet and MPV counts, the results of the present study indicate that platelet activation markers are not affected by VMAT. Therefore, it is possible that no platelet activation occurs during VMAT, owing to the conformal dose distributions, improved target volume coverage and the sparing of normal tissues from undesired radiation.
Collapse
Affiliation(s)
- Nurten Bahtiyar
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul 34098, Turkey
| | - İlhan Onaran
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul 34098, Turkey
| | - Birsen Aydemir
- Department of Biophysics, Faculty of Medicine, Sakarya University, Sakarya 54050, Turkey
| | - Onur Baykara
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul 34098, Turkey
| | - Selmin Toplan
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul 34098, Turkey
| | - Fulya Yaman Agaoglu
- Department of Radiation Oncology, Institute of Oncology, Istanbul University, Istanbul 34098, Turkey
| | - Mehmet Can Akyolcu
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul 34098, Turkey
| |
Collapse
|
9
|
Kasoji SK, Rivera JN, Gessner RC, Chang SX, Dayton PA. Early Assessment of Tumor Response to Radiation Therapy using High-Resolution Quantitative Microvascular Ultrasound Imaging. Am J Cancer Res 2018; 8:156-168. [PMID: 29290799 PMCID: PMC5743466 DOI: 10.7150/thno.19703] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
Measuring changes in tumor volume using anatomical imaging weeks to months post radiation therapy (RT) is currently the clinical standard for indicating treatment response to RT. For patients whose tumors do not respond successfully to treatment, this approach is suboptimal as timely modification of the treatment approach may lead to better clinical outcomes. We propose to use tumor microvasculature as a biomarker for early assessment of tumor response to RT. Acoustic angiography is a novel contrast ultrasound imaging technique that enables high-resolution microvascular imaging and has been shown to detect changes in microvascular structure due to cancer growth. Data suggest that acoustic angiography can detect longitudinal changes in the tumor microvascular environment that correlate with RT response. Methods: Three cohorts of Fisher 344 rats were implanted with rat fibrosarcoma tumors and were treated with a single fraction of RT at three dose levels (15 Gy, 20 Gy, and 25 Gy) at a dose rate of 300 MU/min. A simple treatment condition was chosen for testing the feasibility of our imaging technique. All tumors were longitudinally imaged immediately prior to and after treatment and then every 3 days after treatment for a total of 30 days. Both acoustic angiography (using in-house produced microbubble contrast agents) and standard b-mode imaging was performed at each imaging time point using a pre-clinical Vevo770 scanner and a custom modified dual-frequency transducer. Results: Results show that all treated tumors in each dose group initially responded to treatment between days 3-15 as indicated by decreased tumor growth accompanied with decreased vascular density. Untreated tumors continued to increase in both volume and vascular density until they reached the maximum allowable size of 2 cm in diameter. Tumors that displayed complete control (no tumor recurrence) continued to decrease in size and vascular density, while tumors that progressed after the initial response presented an increase in tumor volume and volumetric vascular density. The increase in tumor volumetric vascular density in recurring tumors can be detected 10.25 ± 1.5 days, 6 ± 0 days, and 4 ± 1.4 days earlier than the measurable increase in tumor volume in the 15, 20, and 25 Gy dose groups, respectively. A dose-dependent growth rate for tumor recurrence was also observed. Conclusions: In this feasibility study we have demonstrated the ability of acoustic angiography to detect longitudinal changes in vascular density, which was shown to be a potential biomarker for tumor response to RT.
Collapse
|