1
|
Yang W, Li Z, Chen X, Wu S, Liu S, Yao L, Zhang J, Liang H, Song J, Ma B. Screening model in Caenorhabditis elegans for radioprotective natural products. Int J Radiat Biol 2025:1-10. [PMID: 39746146 DOI: 10.1080/09553002.2024.2445577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/06/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Ionizing radiation (IR) could induce damage such as DNA damage and oxidative stress. Natural products, like tea, have been demonstrated potential in mitigating these damages. However, the lack of efficient and rapid screening methods for natural products hinders their widespread application. To address this challenge, this study utilized Caenorhabditis elegans (C. elegans) as an in vivo model to investigate radioprotective natural products. METHODS L1 stage C. elegans were exposed to X-rays or 60Co γ-rays at varying dosages (20, 50, and 100 Gy), then the growth, reproduction, and lifespan of the nematodes were observed. Different culture and sample-administered modes were tested. Known radioprotective agents, including Amifostine (WR2721), Lycium barbarum extract (LBE), and Trillium tschonoskii fraction (TTF), served as positive controls to validate the reliability of the model. The radioprotective activity of teas with different fermentation degrees was compared based on this screening model. RESULTS A screening model in C. elegans was established by X-rays at 20 Gy. An appropriate sample-administrated approach was investigated, which involves adding the sample to the nematode growth medium (NGM) agar covered with inactivated Escherichia coli 2 h before irradiation. The known radioprotective agents (WR2721, LBE, and TTF) validated that the model is stable. Our results of the model application revealed that teas with lower fermentation levels, such as green tea and oolong tea, particularly the n-butanol and ethyl acetate fractions from oolong tea, exhibited significant radioprotective activity. CONCLUSIONS This study presents an effective in vivo approach for the initial screening of radioprotective natural products.
Collapse
Affiliation(s)
- Wenxi Yang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhihui Li
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaojuan Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuang Wu
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation Medicine, Beijing, China
| | - Si Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lan Yao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Haizhen Liang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Juan Song
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Baiping Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
2
|
Ibáñez B, Melero A, Montoro A, San Onofre N, Soriano JM. Molecular Insights into Radiation Effects and Protective Mechanisms: A Focus on Cellular Damage and Radioprotectors. Curr Issues Mol Biol 2024; 46:12718-12732. [PMID: 39590349 PMCID: PMC11592695 DOI: 10.3390/cimb46110755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Ionizing radiation has been a critical tool in various fields, such as medicine, agriculture, and energy production, since its discovery in 1895. While its applications-particularly in cancer treatment and diagnostics-offer significant benefits, ionizing radiation also poses risks due to its potential to cause molecular and cellular damage. This damage can occur through the direct ionization of biological macromolecules, such as deoxyribonucleic acid (DNA), or indirectly through the radiolysis of water, which generates reactive oxygen species (ROS) that further damage cellular components. Radioprotectors, compounds that protect against radiation-induced damage, have been extensively researched since World War II. These agents work by enhancing DNA repair, scavenging free radicals, and boosting antioxidant defenses, thereby protecting healthy tissues. Furthermore, some radioprotective agents also stimulate DNA repair mechanisms even after radiation exposure, aiding in recovery from radiation-induced damage. This article explores the molecular mechanisms of radiation-induced damage, focusing on both direct and indirect effects on DNA, and discusses the role of radioprotectors, their mechanisms of action, and recent advancements in the field. The findings underscore the importance of developing effective radioprotective strategies, particularly in medical and industrial settings, where radiation exposure is prevalent.
Collapse
Affiliation(s)
- Blanca Ibáñez
- Food & Health Laboratory, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain; (B.I.); (N.S.O.)
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain;
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Nadia San Onofre
- Food & Health Laboratory, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain; (B.I.); (N.S.O.)
- Department of Community Nursing, Preventive Medicine and Public Health and History of Science, University of Alicante, 03690 Alicante, Spain
- FoodLab Research Group, Faculty of Health Sciences, Universitat Oberta de Catalunya, Rambla del Poblenou 156, 08018 Barcelona, Spain
| | - Jose M. Soriano
- Food & Health Laboratory, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain; (B.I.); (N.S.O.)
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, University of Valencia, 46026 Valencia, Spain
| |
Collapse
|
3
|
Yarlagadda S, McAllister N, Rzepczynski AE, Kutuk T, Kalman NS. Tubarial gland sparing with intensity modulated radiation therapy for oropharyngeal cancers: A pilot study of dosimetric feasibility. Head Neck 2024; 46:1582-1588. [PMID: 38747190 DOI: 10.1002/hed.27791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Tubarial glands are a new organ at risk for head and neck cancer radiation therapy (RT). We aimed to study the feasibility of sparing them using intensity-modulated radiation therapy (IMRT). METHODS Tubarial glands were delineated for 17 patients with oropharyngeal carcinoma receiving definitive RT, and treatment plans were re-optimized to spare dose to the tubarial glands while maintaining target coverage. A paired t test was performed to compare the mean dose of tubarial glands and target coverage. RESULTS The difference in mean doses was 4.9 and 7.0 Gy for the ipsilateral and contralateral tubarial glands, respectively (p < 0.01). The mean dose to tubarial gland was ≤39 Gy in 35% versus 47% (ipsilateral) and 70% versus 100% (contralateral) in clinical and re-optimized plans, respectively. Re-optimized ipsilateral tubarial gland mean ≤39 Gy was achieved more commonly in patients with base of tongue versus tonsil primaries (86% vs. 20%, p = 0.02). CONCLUSION This pilot study demonstrates the dosimetric feasibility of tubarial gland sparing with IMRT. Dosimetric constraints need to be determined with larger studies.
Collapse
Affiliation(s)
- Sreenija Yarlagadda
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Nicole McAllister
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Amy E Rzepczynski
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Tugce Kutuk
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Noah S Kalman
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
4
|
Hu H, Yao S, Xu Q, Cai X, Mo Z, Yang Z, Chen W, He Q, Dai X, Xu Z. Protein-coated cobalt oxide-hydroxide nanospheres deliver photosensitizer IR780 iodide for near-infrared light-triggered photodynamic/photothermal/chemodynamic therapy against colon cancer. J Mater Chem B 2023; 11:9185-9200. [PMID: 37724440 DOI: 10.1039/d3tb01657a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Phototherapy has garnered worldwide attention for its minimal invasiveness, controllability, and spatial selectivity in treating cancer. One promising approach involves the use of near-infrared dye IR780, which demonstrates both photodynamic therapy (PDT) and photothermal therapy (PTT) effects under 808 nm laser irradiation. However, this hydrophobic dye's toxicity and limited tumor targeting ability severely hamper its suitability for cancer applications. Herein, a biocompatible nanoplatform CoOOH-IR780@BSA (CoIRB) is developed to efficiently deliver IR780 and provide multi-mode treatments for colon tumors. Due to the nanocarrier coating, CoIRB nanoparticles demonstrated reliable dispersion and stability, and their biotoxicity was substantially reduced for safer blood circulation, which overcame the biological barrier of IR780. The nanoplatform has also shown considerable results in phototherapy in vivo and in vitro experiments, with successful inhibition of MC38 tumor growth through intravenous administration. Additionally, the introduction of cobalt ions could induce Fenton-like reactions to activate the production of toxic hydroxyl radicals (˙OH), exerting an assisted chemodynamic therapy (CDT) effect. Notably, these nanodrugs also exhibited potential as scavengers of reductive glutathione (GSH) and hydrogen sulfide (H2S), leading to amplifying oxidative damage of reactive oxygen species (ROS). Overall, the versatile therapeutic platform, CoIRB, has opened up considerable prospects as a biotherapeutic option for combining PDT/PTT/CDT against colon cancer.
Collapse
Affiliation(s)
- Han Hu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Shijie Yao
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Qi Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Xing Cai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhimin Mo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zhe Yang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Wenqiu Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
- HAISO Technology Co., Ltd, Wuhan, Hubei 430074, P. R. China
| | - Qianyuan He
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
5
|
Kong F, Wang C, Zhang J, Wang X, Sun B, Xiao X, Zhang H, Song Y, Jia Y. Chinese herbal medicines for prostate cancer therapy: From experimental research to clinical practice. CHINESE HERBAL MEDICINES 2023; 15:485-495. [PMID: 38094009 PMCID: PMC10715895 DOI: 10.1016/j.chmed.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/20/2023] [Indexed: 06/26/2024] Open
Abstract
Prostate cancer remains the second most common malignancy in men worldwide, is a global health issue, and poses a huge health burden. Precision medicine provides more treatment options for prostate cancer patients, but its popularity, drug resistance, and adverse reactions still need to be focused on. Chinese herbal medicines (CHMs) have been widely accepted as an alternative therapy for cancer, with the advantages of multiple targets, multiple pathways, and low toxicity. We searched the experimental research and clinical practice of CHMs for prostate cancer treatment published in PubMed, Embase, and Web of Science in the last five years. We found five CHM formulas and six single CHM extracts as well as 12 CHM-derived compounds, which showed induction of apoptosis, autophagy, and cell cycle arrest, suppression of angiogenesis, proliferation, and migration of prostate cancer cells, reversal of drug resistance, and enhancement of anti-tumor immunity. The mechanisms of action include the PI3K/Akt/mTOR, AR, EGFR and Wnt/β-catenin signaling pathways, which are commonly implicated in the development of prostate cancer. We also summarized the advantages of CHMs in patients with hormone-sensitive and castration-resistant prostate cancer and provided ideas for their further experimental design and application.
Collapse
Affiliation(s)
- Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xiaoqun Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Binxu Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haojian Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqi Song
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|
6
|
Zhang Y, Huang Y, Li Z, Wu H, Zou B, Xu Y. Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities. Cancers (Basel) 2023; 15:3585. [PMID: 37509245 PMCID: PMC10377328 DOI: 10.3390/cancers15143585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy is an important cancer treatment. However, in addition to killing tumor cells, radiotherapy causes damage to the surrounding cells and is toxic to normal tissues. Therefore, an effective radioprotective agent that prevents the deleterious effects of ionizing radiation is required. Numerous synthetic substances have been shown to have clear radioprotective effects. However, most of these have not been translated for use in clinical applications due to their high toxicity and side effects. Many medicinal plants have been shown to exhibit various biological activities, including antioxidant, anti-inflammatory, and anticancer activities. In recent years, new agents obtained from natural products have been investigated by radioprotection researchers, due to their abundance of sources, high efficiency, and low toxicity. In this review, we summarize the mechanisms underlying the radioprotective effects of natural products, including ROS scavenging, promotion of DNA damage repair, anti-inflammatory effects, and the inhibition of cell death signaling pathways. In addition, we systematically review natural products with radioprotective properties, including polyphenols, polysaccharides, alkaloids, and saponins. Specifically, we discuss the polyphenols apigenin, genistein, epigallocatechin gallate, quercetin, resveratrol, and curcumin; the polysaccharides astragalus, schisandra, and Hohenbuehelia serotina; the saponins ginsenosides and acanthopanax senticosus; and the alkaloids matrine, ligustrazine, and β-carboline. However, further optimization through structural modification, improved extraction and purification methods, and clinical trials are needed before clinical translation. With a deeper understanding of the radioprotective mechanisms involved and the development of high-throughput screening methods, natural products could become promising novel radioprotective agents.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheng Li
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanyou Wu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Bingwen Zou
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Xu
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Liu Y, Wang C, Liu R, Zhao M, Ding X, Zhang T, He R, Zhu S, Dong X, Xie J, Gu Z, Zhao Y. Adhesive Ergothioneine Hyaluronate Gel Protects against Radiation Gastroenteritis by Alleviating Apoptosis, Inflammation, and Gut Microbiota Dysbiosis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19833-19846. [PMID: 37052616 DOI: 10.1021/acsami.2c23142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Radiation gastroenteritis represents one of the most prevalent and hazardous complications of abdominopelvic radiotherapy, which not only severely reduces patients' life quality but also restricts radiotherapy efficacy. However, there is currently no clinically available oral radioprotector for this threatening disease due to its complex pathogenesis and the harsh gastrointestinal environment. To this end, this study developed a facile but effective oral radioprotector, ergothioneine hyaluronate (EGT@HA) gel, protecting against radiation gastroenteritis by synergistically regulating oxidative stress, inflammation, and gut microbiota. In vitro and cellular experiments verified the chemical stability and free radical scavenging ability of EGT and its favorable cellular radioprotective efficacy by inhibiting intracellular reactive oxidative species (ROS) generation, DNA damage, mitochondrial damage, and apoptosis. At the in vivo level, EGT@HA with prolonged gastrointestinal residence mitigated radiation-induced gastrointestinal tissue injury, apoptosis, neutrophil infiltration, and gut flora dysbiosis. For the first time, this work investigated the protective effects of EGT@HA gel on radiation gastroenteritis, which not only hastens the advancement of the novel gastrointestinal radioprotector but also provides a valuable gastrointestinal radioprotection paradigm by synergistically modulating oxidative stress, inflammation, and gut microbiota disturbance.
Collapse
Affiliation(s)
- Yaping Liu
- The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, Anhui, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixue Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Tingjun Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Rendong He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Xinghua Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiani Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
- China School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Liu L, Liang Z, Ma S, Li L, Liu X. Radioprotective countermeasures for radiation injury (Review). Mol Med Rep 2023; 27:66. [PMID: 36799170 PMCID: PMC9926870 DOI: 10.3892/mmr.2023.12953] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/10/2023] [Indexed: 02/09/2023] Open
Abstract
A series of physiological and pathological changes occur after radiotherapy and accidental exposure to ionizing radiation (IR). These changes cause serious damage to human tissues and can lead to death. Radioprotective countermeasures are radioprotective agents that prevent and reduce IR injury or have therapeutic effects. Based on a good understanding of radiobiology, a number of protective agents have achieved positive results in early clinical trials. The present review grouped known radioprotective agents according to biochemical categories and potential clinical use, and reviewed radiation countermeasures, i.e., radioprotectors, radiation mitigators and radiotherapeutic agents, with an emphasis on their current status and research progress. The aim of the present review is to facilitate the selection and application of suitable radioprotectors for clinicians and researchers, to prevent or reduce IR injury.
Collapse
Affiliation(s)
- Lianchang Liu
- National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, Jilin, Changchun 130021, P.R. China,School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Department of Intervention, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Zhenzhen Liang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang 325035, P.R. China
| | - Lan Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang 325035, P.R. China,Correspondence to: Professor Lan Li, School of Public Health and Management, Wenzhou Medical University, 1 North Zhongxin Road, Chashan, Wenzhou, Zhejiang 325035, P.R. China, E-mail:
| | - Xiaodong Liu
- National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, Jilin, Changchun 130021, P.R. China,School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang 325035, P.R. China,Professor Xiaodong Liu, National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, 1163 Xinmin Road, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
9
|
Discovery of the radio-protecting effect of Ecliptae Herba, its constituents and targeting p53-mediated apoptosis in vitro and in vivo. Acta Pharm Sin B 2022; 13:1216-1230. [PMID: 36970216 PMCID: PMC10031264 DOI: 10.1016/j.apsb.2022.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Radiation protection drugs are often accompanied by toxicity, even amifostine, which has been the dominant radio-protecting drug for nearly 30 years. Furthermore, there is no therapeutic drug for radiation-induced intestinal injury (RIII). This paper intends to find a safe and effective radio-protecting ingredient from natural sources. The radio-protecting effect of Ecliptae Herba (EHE) was discovered preliminarily by antioxidant experiments and the mouse survival rate after 137Cs irradiation. EHE components and blood substances in vivo were identified through UPLC‒Q-TOF. The correlation network of "natural components in EHE-constituents migrating to blood-targets-pathways" was established to predict the active components and pathways. The binding force between potential active components and targets was studied by molecular docking, and the mechanism was further analyzed by Western blotting, cellular thermal shift assay (CETSA), and ChIP. Additionally, the expression levels of Lgr5, Axin2, Ki67, lysozyme, caspase-3, caspase-8,8-OHdG, and p53 in the small intestine of mice were detected. It was found for the first time that EHE is active in radiation protection and that luteolin is the material basis of this protection. Luteolin is a promising candidate for RⅢ. Luteolin can inhibit the p53 signaling pathway and regulate the BAX/BCL2 ratio in the process of apoptosis. Luteolin could also regulate the expression of multitarget proteins related to the same cell cycle.
Collapse
|
10
|
Atorvastatin Attenuates Radiotherapy-Induced Intestinal Damage through Activation of Autophagy and Antioxidant Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7957255. [PMID: 36092168 PMCID: PMC9459441 DOI: 10.1155/2022/7957255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/06/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Abdominal or pelvic radiotherapy (RT) often results in small intestinal injury, such as apoptosis of epithelial cells and shortening of the villi. Atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, has many biological effects including cholesterol reduction, protection from cell damage, and autophagy activation. To reduce the extent of radiotherapy- (RT-) induced enteritis, we investigated the protective effects of atorvastatin against RT-induced damage of the intestinal tract. In this study, C57BL/6 mice were randomly distributed into the following groups (n = 8 per group): (1) control group: mice were fed water only, (2) atorvastatin group (Ator): mice were administered atorvastatin, (3) irradiation group (IR): mice received abdominal RT, (4) Ator+IR group: mice received abdominal RT following atorvastatin administration, and (5) Ator+IR+3-MA group: abdominal RT following atorvastatin and 3-methyladenine (an autophagy inhibitor) administration. Based on the assessment of modified Chiu's injury score and villus/crypt ratio, we found that atorvastatin administration significantly reduced intestinal mucosal damage induced by RT. Atorvastatin treatment reduced apoptosis (cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase), DNA damage (γH2AX and 53BP1), oxidative stress (OS, 4-hydroxynonenal), inflammatory molecules (phospho-NF-κB p65 and TGF-β), fibrosis (collagen I and collagen III), barrier leakage (claudin-2 and fluorescein isothiocyanate-dextran), disintegrity (fatty acid-binding protein 2), and dysfunction (lipopolysaccharide) caused by RT in small intestinal tissue. In addition, atorvastatin upregulated the expression of autophagy-active molecules (LC3B), antioxidants (heme oxygenase 1 and thioredoxin 1), and tight junction proteins (occludin and zonula occludens 1). However, the biological functions of atorvastatin in decreasing RT-induced enteritis were reversed after the administration of 3-MA; the function of antioxidant molecules and activity of thioredoxin reductase were independent of autophagy activation. Our results indicate that atorvastatin can effectively relieve RT-induced enteritis through autophagy activation and associated biological functions, including maintaining integrity and function and decreasing apoptosis, DNA damage, inflammation, OS, and fibrosis. It also acts via its antioxidative capabilities.
Collapse
|
11
|
Kutuk T, McAllister NC, Rzepczynski AE, Williams A, Young G, Crawley MB, Rabinowits G, Kaiser A, Contreras JA, Kalman NS. Submandibular gland transfer for the prevention of radiation-induced xerostomia in oropharyngeal cancer: Dosimetric impact in the intensity modulated radiotherapy era. Head Neck 2022; 44:1213-1222. [PMID: 35243719 DOI: 10.1002/hed.27021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Submandibular gland (SMG) transfer decreased radiation-associated xerostomia in the 2/3-dimensional radiotherapy era. We evaluated the dosimetric implications of SMG transfer on modern intensity modulated radiotherapy (IMRT) plans. METHODS Eighteen oropharynx cancer patients underwent SMG transfer followed by IMRT; reoptimized plans using the baseline SMG location were generated. Mean salivary gland, oral cavity, and larynx doses were compared between clinical plans and reoptimized plans. RESULTS No statistically significant difference in mean SMG dose (27.53 Gy vs. 29.61 Gy) or total salivary gland dose (26.12 Gy vs. 26.41 Gy) was observed with or without SMG transfer (all p > 0.05). Mean oral cavity and larynx doses were not statistically different. Neither tumor site, target volume crossing midline, stage, nor salivary gland volumes were associated with mean doses. CONCLUSIONS Salivary gland doses were similar with or without SMG transfer. IMRT likely decreases the benefit of SMG transfer on the risk of radiation-associated xerostomia.
Collapse
Affiliation(s)
- Tugce Kutuk
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Nicole C McAllister
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Amy E Rzepczynski
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Andre Williams
- Office of Clinical Research, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Geoffrey Young
- Department of Surgical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Meghan B Crawley
- Department of Surgical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Guilherme Rabinowits
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.,Department of Hematology/Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Adeel Kaiser
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Jessika A Contreras
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Noah S Kalman
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
12
|
Niu S, Zhang Y, Cong C, Wu Z, Wang Z, Sun M, Yao C, Zhang Y. Comparative Study of Radiation-induced Lung Injury Model in Two Strains of Mice. HEALTH PHYSICS 2022; 122:579-585. [PMID: 35195088 DOI: 10.1097/hp.0000000000001532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Radiation-induced lung injury (RILI) is a common complication of radiotherapy for thoracic tumor. Its incidence rate is as high as 20%. At present, there is no effective treatment in clinical practice. However, to study the mechanism of radiation-induced lung injury, we should first establish an appropriate animal model. In a series of scientific studies on RILI, mice are the animals most often chosen by researchers. However, there are few reports on which strain of mice is more suitable as a model of RILI. In this study, Kunming (KM) and C57BL/6 strains of mice were used as research objects to find the most suitable mice to replicate the RILI model. C57BL/6 mice and KM mice were exposed to irradiation at a dose of 20 Gy. The lung tissue of C57BL/6 mice exposed to radiation showed dilation and hyperemia of capillaries, infiltration of inflammatory cells, and thickening of alveolar septum, while the lung tissue of KM mice exposed to radiation was not as obvious as that of C57BL/6 mice. After irradiation, the expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the lung tissue of C57BL/6 mice was significantly increased, while the expression of IL-6 and TNF-α in KM mice was almost unchanged. These studies showed that C57BL/6 mice are more suitable for the model of radiation-induced lung injury because of sensitive inflammatory reaction and the pathological changes of lung tissue.
Collapse
Affiliation(s)
- Shiying Niu
- Shandong First Medical University, College of Basic Medicine, Shandong First Medical University-Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang X, Song H, Tang X, Wang S, Li J, Hao Y. Research progress on radioprotective effects of bee products. Int J Radiat Biol 2021; 97:444-451. [PMID: 33464164 DOI: 10.1080/09553002.2021.1876949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Radiation exposure is an on going and serious threat in military and public health concern. There is an unmet need for effective preventative or mitigative treatments against radiation-induced injuries. The handful of Food and Drug Administration in the US approved radiation protection agents cannot be widely used due to their side effects. Some natural nontoxic compounds such as bee products have been reported to prevent and treat radiation-induced injuries (e.g. scavenging free radicals, inhibiting cell apoptosis and reducing DNA damage), indicating that they may be a potential option as a safe radioprotective agent. Bee products are nontoxic and have no known side effects on the human body, and are effective in the field of radiation protection. They are expected to be interesting drug candidates for preventing and treating radiation-induced injuries. This article reviews the prevention and treatment of bee products on radiation-induced injuries.
Collapse
Affiliation(s)
- Xin Zhang
- Chongqing Normal University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Huali Song
- Chongqing Normal University, Chongqing, China
| | | | - Shuang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Juan Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Amani F, Allahbakhshian Farsani M, Gholami M, Aghamiri SMR, Bakhshandeh M, Hossein Mohammadi M. The protective effect of oleuropein against radiation-induced cytotoxicity, apoptosis, and genetic damage in cultured human lymphocytes. Int J Radiat Biol 2020; 97:179-193. [PMID: 32970517 DOI: 10.1080/09553002.2020.1793014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE The aim of this study was to evaluate the effects of oleuropein radiation protection and to find an effective radioprotector. MATERIALS AND METHOD Human mononuclear cells were treated with oleuropein at the concentration of 100 μM (optimum concentration), incubated for 24 h, and then exposed to 2 Gy gamma-rays. The anti-radiation effect of oleuropein was assessed by MTT assay, flow cytometry, comet assay, and micronucleus (MN) assay. RESULTS It was found that pretreatment with oleuropein (25, 50, 75, 100, 200, 400, and 800 nM, and 1, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 175, and 200 µM) significantly increased the percentage of cell viability compared to the irradiated group (p < .001). Moreover, oleuropein treatment with the above concentrations defined without gamma-ray did not show any cytotoxicity effect in human mononuclear cells. The LD50/24h dose was calculated as 2.9 Gy, whereas by 200, 150, 50, and 100 µM oleuropein prior to radiation (1, 2,and 4 Gy), radiation LD50/24h increased to 3.36, 3.54, 3.81, and >4 Gy, in that order. A very noticeable dose-modifying factor (DMF) of 1.16, 1.23, 1.31, and 1.72 was observed for 200, 150, 50, and 100 µM, in order. Therefore, 100 µM of oleuropein was selected as the desirable dose for radio-protection trial, and 2 Gy gamma-rays were used for further research. Human mononuclear cells treatment with oleuropein (100 µM) prior to 2 Gy gamma-rays significantly decreased apoptosis, genomic damage, and MN occurrence in human mononuclear caused by gamma-radiation (p < .001). Furthermore, treatment with oleuropein (100 µM) without radiation did not lead to apoptosis, genotoxicity, or clastogenic effects caused by oleuropein in human mononuclear cells. CONCLUSION The results revealed that oleuropein is able to significantly reduce cytotoxicity, apoptosis, genotoxic, and clastogenic effects of gamma-rays.
Collapse
Affiliation(s)
- Fatemeh Amani
- Radiation Technology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Gholami
- Department of Medical Physics, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Mohsen Bakhshandeh
- Radiation Technology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Obrador E, Salvador R, Villaescusa JI, Soriano JM, Estrela JM, Montoro A. Radioprotection and Radiomitigation: From the Bench to Clinical Practice. Biomedicines 2020; 8:E461. [PMID: 33142986 PMCID: PMC7692399 DOI: 10.3390/biomedicines8110461] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The development of protective agents against harmful radiations has been a subject of investigation for decades. However, effective (ideal) radioprotectors and radiomitigators remain an unsolved problem. Because ionizing radiation-induced cellular damage is primarily attributed to free radicals, radical scavengers are promising as potential radioprotectors. Early development of such agents focused on thiol synthetic compounds, e.g., amifostine (2-(3-aminopropylamino) ethylsulfanylphosphonic acid), approved as a radioprotector by the Food and Drug Administration (FDA, USA) but for limited clinical indications and not for nonclinical uses. To date, no new chemical entity has been approved by the FDA as a radiation countermeasure for acute radiation syndrome (ARS). All FDA-approved radiation countermeasures (filgrastim, a recombinant DNA form of the naturally occurring granulocyte colony-stimulating factor, G-CSF; pegfilgrastim, a PEGylated form of the recombinant human G-CSF; sargramostim, a recombinant granulocyte macrophage colony-stimulating factor, GM-CSF) are classified as radiomitigators. No radioprotector that can be administered prior to exposure has been approved for ARS. This differentiates radioprotectors (reduce direct damage caused by radiation) and radiomitigators (minimize toxicity even after radiation has been delivered). Molecules under development with the aim of reaching clinical practice and other nonclinical applications are discussed. Assays to evaluate the biological effects of ionizing radiations are also analyzed.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Rosario Salvador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - José M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Valencia, Spain;
- Joint Research Unit in Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute IISLaFe, 46026 Valencia, Spain
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
16
|
Zhang T, Ma S, Liu C, Hu K, Xu M, Wang R. Rosmarinic Acid Prevents Radiation-Induced Pulmonary Fibrosis Through Attenuation of ROS/MYPT1/TGFβ1 Signaling Via miR-19b-3p. Dose Response 2020; 18:1559325820968413. [PMID: 33149731 PMCID: PMC7580151 DOI: 10.1177/1559325820968413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
The mechanism of pulmonary fibrosis caused by irradiation remains obscure. Since rosmarinic acid (RA) have anti-oxidant and anti-inflammatory properties, we aimed to evaluate the effect of RA on the X-ray-induced lung injury. Male rats received RA (30, 60, or 120 mg/kg) 7 days before 15 Gy of X-ray irradiation. Here, we showed that RA reduced X-ray-induced the expression of inflammatory related factors, and the level of reactive oxygen species. RA down-regulated the phosphorylation of nuclear factor kappa-B (NF-κB). We found that thoracic tumor patients whose lung regions received radiation showed lower level of microRNA-19b-3p (miR-19b-3p). Furthermore, we provided evidence that miR-19b-3p targets myosin phosphatase target subunit 1 (MYPT1), and RA attenuated RhoA/Rock signaling through upregulating miR-19b-3p, leading to the inhibition of fibrosis. In conclusion, RA may be an effective agent to relieve the pulmonary fibrosis caused by radiotherapy of thoracic tumor.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chang Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meng Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
He JY, Liu X, Qi ZH, Wang Q, Lu WQ, Zhang QT, He SY, Wang ZD. Small Nucleolar RNA, C/D Box 16 (SNORD16) Acts as a Potential Prognostic Biomarker in Colon Cancer. Dose Response 2020; 18:1559325820917829. [PMID: 32704240 PMCID: PMC7359415 DOI: 10.1177/1559325820917829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/01/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022] Open
Abstract
Colon cancer (CC) is considered one of the most common and lethal malignancies occurring both in male and female. Its widespread prevalence demonstrates the need for novel diagnostic and prognostic biomarkers for CC. Emerging evidence has shown that small nucleolar RNAs play critical roles in tumor development. In this study, we investigated the expression profile and functions of SNORD16 in CC. Our data showed that SNORD16, rather than its host gene (RPL4), was upregulated in CC cell lines. Compared to matched adjacent normal tissues, CC tissues showed higher SNORD16 expression levels, and no correlation was found between SNORD16 and RPL4. Patients with high SNORD16 expression levels had a worse prognosis, and multivariate analysis showed the high SNORD16 expression was an independent prognostic factor for CC. In vitro gain- and loss-of-function studies revealed that SNORD16 can promote cell growth, proliferation, migration, and invasion of CC cells by inhibiting apoptosis. These results suggested that SNORD16 has an oncogenic role in CC and might be a novel diagnostic and prognostic biomarker for CC.
Collapse
Affiliation(s)
- Jun-Yan He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, China.,Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xin Liu
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhen-Hua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen-Qing Lu
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qing-Tong Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Shu-Ya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Zhi-Dong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
18
|
A novel class of small molecule inhibitors with radioprotective properties. Eur J Med Chem 2020; 187:111606. [PMID: 31901334 DOI: 10.1016/j.ejmech.2019.111606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 01/18/2023]
Abstract
The goal of this study was to develop novel radioprotective agents targeting the intrinsic apoptotic pathway and thus decreasing the radiation-induced damage. For that purpose, we designed, synthesized and analyzed ten new compounds based on the 1-(4-(2-hydroxyethyl)piperazin-1-yl)-3-phenoxypropan-2-ol leading structure. The cytotoxicity of the newly synthesized substances was tested in vitro on cell lines derived from different progenitor cells by WST-1 proliferation assay. MTT test was utilized to assess half-maximal inhibitory concentrations and maximum tolerated concentrations of novel compounds in A-549 cells. Screening for radioprotective properties was performed using flow-cytometry in MOLT-4 cells exposed to 60Co ionizing gamma radiation. Selected candidates underwent in vivo testing in C57Bl/6 J mice having a positive impact on their immunological status. In summary, we report here promising compounds with radioprotective effect in vivo.
Collapse
|
19
|
Skin Care During and After Radiotherapy and Anticancer Treatment. Radiat Oncol 2020. [DOI: 10.1007/978-3-319-52619-5_115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
20
|
Ejaz A, Greenberger JS, Rubin PJ. Understanding the mechanism of radiation induced fibrosis and therapy options. Pharmacol Ther 2019; 204:107399. [DOI: 10.1016/j.pharmthera.2019.107399] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
|
21
|
Huang J, Qi Z, Chen M, Xiao T, Guan J, Zhou M, Wang Q, Lin Z, Wang Z. Serum amyloid A1 as a biomarker for radiation dose estimation and lethality prediction in irradiated mouse. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:715. [PMID: 32042731 DOI: 10.21037/atm.2019.12.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Fast and reliable biomarkers are needed to distinguish whether individuals were exposed or not to radiation and assess radiation dose, and to predict the severity of radiation damage in a large-scale radiation accident. Serum amyloid A1 (SAA1) is a protein induced by multiple factors including inflammatory. Therefore, this study aimed at exploring the role of SAA1 in the radiation dose estimation and lethality prediction after radiation. Methods C57BL/6J female mice were exposed to total body irradiation (TBI) at different doses and time points and amifostine, a drug used to reduce the side effects of radiotherapy, was injected before irradiation. Patients with nasopharyngeal carcinoma subjected to radiotherapy were used as the irradiation model in humans. Results A moderate SAA1 increase was observed at 6 hours in serum samples from irradiated mice at all doses used, with a peak at 12 hours, then decreased to day 3 after exposure. A second SAA1 increase was observed from day 5 to 7, which was associated to subsequent lethality. Treatment with amifostine before irradiation could prevent mice death and inhibit the second SAA1 increase. SAA1 increase after radiation was confirmed in human serum of nasopharyngeal carcinoma patients after radiotherapy. Conclusions Serum SAA1 levels could represent a biomarker for radiation dose estimation and its second increase might be a useful lethality indicator after radiation in a mouse model.
Collapse
Affiliation(s)
- Jinfeng Huang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.,Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510080, China
| | - Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Min Chen
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Ting Xiao
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Jian Guan
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510080, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhongwu Lin
- Science Research Management Department of the Academy of Military Sciences, Beijing 100091, China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
22
|
Miyake M, Tanaka N, Hori S, Ohnishi S, Takahashi H, Fujii T, Owari T, Ohnishi K, Iida K, Morizawa Y, Gotoh D, Itami Y, Nakai Y, Inoue T, Anai S, Torimoto K, Aoki K, Fujimoto K. Dual benefit of supplementary oral 5-aminolevulinic acid to pelvic radiotherapy in a syngenic prostate cancer model. Prostate 2019; 79:340-351. [PMID: 30450646 DOI: 10.1002/pros.23740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Normal tissue damage caused by radiotherapy remains the largest dose-limiting factor in radiotherapy for cancer. Therefore, the aim of this study was to investigate the supplementary oral 5-aminolevulinic acid (ALA) to standard radiation therapy as a novel radioprotective approach that would not compromise the antitumor effect of radiation in normal rectal and bladder mucosa in a syngenic prostate cancer (PCa) model. METHODS To evaluate the radiosensitizing effect of ALA in vitro, clonogenic survival assays were performed in DU145, PC3, and MyC-CaP cell lines. To evaluate the effect of ALA in vivo a single dose (25 Gy) of radiation with or without ALA was given to healthy mice. Next, a syngenic PCa model of MyC-CaP cells in FVB mice was created, and multiple doses (12 Gy total) of radiation were administered to the mouse pelvic area with or without ALA administration. Resected tumors, recta, and urinary bladders were immunostained with antibodies against Ki-67, γ-H2AX, CD204, and uroplakin-III. Total RNA levels in recta and urinary bladders were analyzed via RT2 Profiler polymerase chain reaction (PCR) arrays related to "Stress & Toxicity PathwayFinder," "Mitochondria," and "Inflammasomes." RESULTS The addition of in vitro single or in vivo repeated administration of exogenous ALA acted as a radiosensitizer for PCa cells. Rectal toxicity was characterized by histological changes including loss of surface epithelium, fibrosis, severe DNA damage, and the aggregation of M2 macrophages. Urinary bladder toxicity was characterized by bladder wall thickening and urothelium denuding. The higher dose (300 mg/kg/day) of ALA exerted a better radioprotective profile than the lower dose (30 mg/kg/day) in normal recta and urinary bladders. Out of the 252 genes tested, 35 (13.4%) were detected as relevant genes which may be involved in the radioprotective role of ALA administration. These included interleukin-1a (IL-1a), IL-1b, IL-12, chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL3, and NLRP3. CONCLUSIONS Our study provides novel and comprehensive insights into the dual benefits including radiosensitizing PCa tumor tissues and radioprotection of normal pelvic organs from radiation therapy. Knowledge of the underlying mechanism will facilitate the search for optimal treatment parameters for supplemental oral ALA during radiotherapy for PCa.
Collapse
Affiliation(s)
- Makito Miyake
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Sayuri Ohnishi
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroo Takahashi
- Laboratory for Molecular Biology of Neural System, Advanced Medical Research Center, Nara Medical University, Kashihara, Nara, Japan
| | - Tomomi Fujii
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Takuya Owari
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Kenta Ohnishi
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Kota Iida
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Daisuke Gotoh
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Yoshitaka Itami
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Takeshi Inoue
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Satoshi Anai
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Kazumasa Torimoto
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Katsuya Aoki
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
23
|
Fabbrizi MR, Warshowsky KE, Zobel CL, Hallahan DE, Sharma GG. Molecular and epigenetic regulatory mechanisms of normal stem cell radiosensitivity. Cell Death Discov 2018; 4:117. [PMID: 30588339 PMCID: PMC6299079 DOI: 10.1038/s41420-018-0132-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Ionizing radiation (IR) therapy is a major cancer treatment modality and an indispensable auxiliary treatment for primary and metastatic cancers, but invariably results in debilitating organ dysfunctions. IR-induced depletion of neural stem/progenitor cells in the subgranular zone of the dentate gyrus in the hippocampus where neurogenesis occurs is considered largely responsible for deficiencies such as learning, memory, and spatial information processing in patients subjected to cranial irradiation. Similarly, IR therapy-induced intestinal injuries such as diarrhea and malabsorption are common side effects in patients with gastrointestinal tumors and are believed to be caused by intestinal stem cell drop out. Hematopoietic stem cell transplantation is currently used to reinstate blood production in leukemia patients and pre-clinical treatments show promising results in other organs such as the skin and kidney, but ethical issues and logistic problems make this route difficult to follow. An alternative way to restore the injured tissue is to preserve the stem cell pool located in that specific tissue/organ niche, but stem cell response to ionizing radiation is inadequately understood at the molecular mechanistic level. Although embryonic and fetal hypersensity to IR has been very well known for many decades, research on embryonic stem cell models in culture concerning molecular mechanisms have been largely inconclusive and often in contradiction of the in vivo observations. This review will summarize the latest discoveries on stem cell radiosensitivity, highlighting the possible molecular and epigenetic mechanism(s) involved in DNA damage response and programmed cell death after ionizing radiation therapy specific to normal stem cells. Finally, we will analyze the possible contribution of stem cell-specific chromatin's epigenetic constitution in promoting normal stem cell radiosensitivity.
Collapse
Affiliation(s)
- Maria Rita Fabbrizi
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Kacie E. Warshowsky
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Cheri L. Zobel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Dennis E. Hallahan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| | - Girdhar G. Sharma
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| |
Collapse
|
24
|
Barahman M, Asp P, Roy-Chowdhury N, Kinkhabwala M, Roy-Chowdhury J, Kabarriti R, Guha C. Hepatocyte Transplantation: Quo Vadis? Int J Radiat Oncol Biol Phys 2018; 103:922-934. [PMID: 30503786 DOI: 10.1016/j.ijrobp.2018.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/10/2018] [Accepted: 11/10/2018] [Indexed: 12/21/2022]
Abstract
Orthotopic liver transplantation (OLT) has been effective in managing end-stage liver disease since the advent of cyclosporine immunosuppression therapy in 1980. The major limitations of OLT are organ supply, monetary cost, and the burden of lifelong immunosuppression. Hepatocyte transplantation, as a substitute for OLT, has been an exciting topic of investigation for several decades. HT is potentially minimally invasive and can serve as a vehicle for delivery of personalized medicine through autologous cell transplant after modification ex vivo. However, 3 major hurdles have prevented large-scale clinical application: (1) availability of transplantable cells; (2) safe and efficient ex vivo gene therapy methods; and (3) engraftment and repopulation efficiency. This review will discuss new sources for transplantable liver cells obtained by lineage reprogramming, clinically acceptable methods of genetic manipulation, and the development of hepatic irradiation-based preparative regimens for enhancing engraftment and repopulation of transplanted hepatocytes. We will also review the results of the first 3 patients with genetic liver disorders who underwent preparative hepatic irradiation before hepatocyte transplantation.
Collapse
Affiliation(s)
- Mark Barahman
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Patrik Asp
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Namita Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Milan Kinkhabwala
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Chandan Guha
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
25
|
Saadipoor A, Razzaghdoust A, Simforoosh N, Mahdavi A, Bakhshandeh M, Moghadam M, Abdollahi H, Mofid B. Randomized, double-blind, placebo-controlled phase II trial of nanocurcumin in prostate cancer patients undergoing radiotherapy. Phytother Res 2018; 33:370-378. [PMID: 30427093 DOI: 10.1002/ptr.6230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022]
Abstract
Clinical potential of curcumin in radiotherapy (RT) setting is outstanding and of high interest. The main purpose of this randomized controlled trial (RCT) was to assess the beneficial role of nanocurcumin to prevent and/or mitigate radiation-induced proctitis in prostate cancer patients undergoing RT. In this parallel-group study, 64 eligible patients with prostate cancer were randomized to receive either oral nanocurcumin (120 mg/day) or placebo 3 days before and during the RT course. Acute toxicities including proctitis and cystitis were assessed weekly during the treatment and once thereafter using CTCAE v.4.03 grading criteria. Baseline-adjusted hematologic nadirs were also analyzed and compared between the two groups. The patients undergoing definitive RT were followed to evaluate the tumor response. Nanocurcumin was well tolerated. Radiation-induced proctitis was noted in 18/31 (58.1%) of the placebo-treated patients versus 15/33 (45.5%) of nanocurcumin-treated patients (p = 0.313). No significant difference was also found between the two groups with regard to radiation-induced cystitis, duration of radiation toxicities, hematologic nadirs, and tumor response. In conclusion, this RCT was underpowered to indicate the efficacy of nanocurcumin in this clinical setting but could provide a considerable new translational insight to bridge the gap between the laboratory and clinical practice.
Collapse
Affiliation(s)
- Afshin Saadipoor
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Razzaghdoust
- Urology and Nephrology Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Simforoosh
- Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahdavi
- Department of Radiology, Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Bakhshandeh
- Department of Radiology Technology, Allied Medical Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Moghadam
- Shohada-e-Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Mofid
- Urology and Nephrology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Kerns SL, Chuang KH, Hall W, Werner Z, Chen Y, Ostrer H, West C, Rosenstein B. Radiation biology and oncology in the genomic era. Br J Radiol 2018; 91:20170949. [PMID: 29888979 PMCID: PMC6475928 DOI: 10.1259/bjr.20170949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022] Open
Abstract
Radiobiology research is building the foundation for applying genomics in precision radiation oncology. Advances in high-throughput approaches will underpin increased understanding of radiosensitivity and the development of future predictive assays for clinical application. There is an established contribution of genetics as a risk factor for radiotherapy side effects. An individual's radiosensitivity is an inherited polygenic trait with an architecture that includes rare mutations in a few genes that confer large effects and common variants in many genes with small effects. Current thinking is that some will be tissue specific, and future tests will be tailored to the normal tissues at risk. The relationship between normal and tumor cell radiosensitivity is poorly understood. Data are emerging suggesting interplay between germline genetic variation and epigenetic modification with growing evidence that changes in DNA methylation regulate the radiosensitivity of cancer cells and histone acetyltransferase inhibitors have radiosensitizing effects. Changes in histone methylation can also impair DNA damage response signaling and alter radiosensitivity. An important effort to advance radiobiology in the genomic era was establishment of the Radiogenomics Consortium to enable the creation of the large radiotherapy cohorts required to exploit advances in genomics. To address challenges in harmonizing data from multiple cohorts, the consortium established the REQUITE project to collect standardized data and genotyping for ~5,000 patients. The collection of detailed dosimetric data is important to produce validated multivariable models. Continued efforts will identify new genes that impact on radiosensitivity to generate new knowledge on toxicity pathogenesis and tests to incorporate into the clinical decision-making process.
Collapse
Affiliation(s)
| | - Kuang-Hsiang Chuang
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - William Hall
- Department of Radiation Oncology, Medical College of Wisconsin and Clement J Zablocki VA Medical Center Milwaukee, Milwaukee, WI, USA
| | | | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Harry Ostrer
- Departments of Pathology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Catharine West
- Division of Cancer Sciences, University of Manchester, Christie Hospital, Manchester, UK
| | - Barry Rosenstein
- Departments of Radiation Oncology, Genetics and Genomic Sciences, and Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
27
|
Kalman NS, Hugo GD, Kahn JM, Zhao SS, Jan N, Mahon RN, Weiss E. Interobserver reliability in describing radiographic lung changes after stereotactic body radiation therapy. Adv Radiat Oncol 2018; 3:655-661. [PMID: 30370367 PMCID: PMC6200874 DOI: 10.1016/j.adro.2018.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Radiographic lung changes after stereotactic body radiation therapy (SBRT) vary widely between patients. Standardized descriptions of acute (≤6 months after treatment) and late (>6 months after treatment) benign lung changes have been proposed but the reliable application of these classification systems has not been demonstrated. Herein, we examine the interobserver reliability of classifying acute and late lung changes after SBRT. METHODS AND MATERIALS A total of 280 follow-up computed tomography scans at 3, 6, and 12 months post-treatment were analyzed in 100 patients undergoing thoracic SBRT. Standardized descriptions of acute lung changes (3- and 6-month scans) include diffuse consolidation, patchy consolidation and ground glass opacity (GGO), diffuse GGO, patchy GGO, and no change. Late lung change classifications (12-month scans) include modified conventional pattern, mass-like pattern, scar-like pattern, and no change. Five physicians scored the images independently in a blinded fashion. Fleiss' kappa scores quantified the interobserver agreement. RESULTS The Kappa scores were 0.30 at 3 months, 0.20 at 6 months, and 0.25 at 12 months. The proportion of patients in each category at 3 and 6 months was as follows: Diffuse consolidation 11% and 21%; patchy consolidation and GGO 15% and 28%; diffuse GGO 10% and 11%; patchy GGO 15% and 15%; and no change 49% and 25%, respectively. The percentage of patients in each category at 12 months was as follows: Modified conventional 46%; mass-like 16%; scar-like 26%; and no change 12%. Uniform scoring between the observers occurred in 26, 8, and 14 cases at 3, 6, and 12 months, respectively. CONCLUSIONS Interobserver reliability scores indicate a fair agreement to classify radiographic lung changes after SBRT. Qualitative descriptions are insufficient to categorize these findings because most patient scans do not fit clearly into a single classification. Categorization at 6 months may be the most difficult because late and acute lung changes can arise at that time.
Collapse
Affiliation(s)
- Noah S. Kalman
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Geoffrey D. Hugo
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Jenna M. Kahn
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Sherry S. Zhao
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Nuzhat Jan
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Rebecca N. Mahon
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
28
|
Diabetes mellitus and radiation induced lung injury after thoracic stereotactic body radiotherapy. Radiother Oncol 2018; 129:270-276. [PMID: 30253874 DOI: 10.1016/j.radonc.2018.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Radiographic radiation induced lung injury (RILI) is frequently observed after stereotactic body radiotherapy (SBRT). Models of radiographic change can identify patient risk factors that predict clinical toxicity. We examined the association between radiographic lung changes and lung tissue dose-density response over time with clinical risk factors for RILI, such as diabetes. METHODS 424 baseline and follow up CT scans at 3, 6, and 12 months post-treatment were analyzed in 116 patients (27 with diabetes) undergoing thoracic SBRT. Volumes of dense/hazy regions and lung parenchyma dose-density response curves were evaluated with respect to follow up time, diabetes, and other factors. RESULTS Dense and hazy tissue regions were larger in the diabetic population, with the effect most pronounced at 3 months. Similarly, dose-density response curves showed greater density change versus dose in the diabetic group (all p < 0.05). Diabetes, time, the interaction of diabetes and time, smoking status, African American race, baseline lung density, and tumor location were significantly associated with radiographic changes on mixed effect analyses. PTV size, pulmonary function, and medication exposure did not significantly impact RILI. Clinical grade 1-2 pneumonitis was more prevalent in diabetic patients (p = 0.02). However, radiographic change did not correlate with clinical pneumonitis. CONCLUSIONS The presence of diabetes and other clinical factors is associated with increased volume and density of radiographic RILI after lung SBRT, most prominently early after treatment. This is the first report demonstrating the increased severity of RILI after SBRT in diabetic patients. Increased caution treating diabetic patients may be warranted.
Collapse
|
29
|
Groves AM, Williams JP, Hernady E, Reed C, Fenton B, Love T, Finkelstein JN, Johnston CJ. A Potential Biomarker for Predicting the Risk of Radiation-Induced Fibrosis in the Lung. Radiat Res 2018; 190:513-525. [PMID: 30117783 DOI: 10.1667/rr15122.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biomarkers could play an essential role during triage in the aftermath of a radiological event, where exposure to radiation will be heterogeneous and complicated by concurrent trauma. Used alongside biodosimetry, biomarkers can identify victims in need of treatment for acute radiation effects, and might also provide valuable information on later developing consequences that need to be addressed as part of a treatment strategy. Indeed, because the lung is particularly sensitive to radiation and resultant late effects not only affect quality of life, but can also lead to morbidity, the risk of developing downstream pulmonary complications in exposed individuals requires assessment. In this study, analyses of changes in pulmonary and circulating content of club cell secretory protein (CCSP) and surfactant protein D (SP-D), expressed by epithelial club cells and type II pneumocytes in the lung, respectively, were used to evaluate pulmonary epithelial damage in several lung injury models. Using a combined radiation exposure model, fibrosis-susceptible C57BL/6J (C57) and alveolitis-prone C3H/HeJ (C3H) mice received 5 Gy total-body irradiation plus 2.5-10 Gy whole-lung irradiation, and lung and plasma samples were collected throughout the course of the radiation response, at time points ranging from 24 h to 26 weeks postirradiation. Radiation significantly reduced bronchiole CCSP coverage in C57 mice at 26 weeks, a response that varied in extent among animals, but correlated with the severity of fibrosis in each animal. Interestingly, plasma CCSP content was elevated in C57 mice at multiple time points preceding and during the fibrotic period; this response that was not observed in C3H mice. Circulating CCSP/SP-D ratios, calculated as an index of lung integrity, were similarly increased throughout the time course in C57, but not C3H, mice. Furthermore, when the thoracic doses were reduced to subthreshold levels for fibrosis induction (2.5 or 7.5 Gy), although the CCSP/SP-D ratio in lung homogenates demonstrated dose-responsive changes, this was not reflected in the plasma ratios at acute and late time points. Importantly, plasma CCSP/SP-D ratios also were not significantly altered in C57 mice exposed to LPS, and only transiently decreased in influenza-exposed mice, demonstrating a level of specificity for radiation-induced lung injury. These results indicate that the CCSP/SP-D ratio, measured in plasma, is sensitive to individual variation in radiation sensitivity, correlates with fibrosis development, can be detected early after exposure and is specific to radiation-induced injury. This suggests that the CCSP/SP-D ratio may be useful as a biomarker of radiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Angela M Groves
- Departments of a Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York
| | - Jacqueline P Williams
- b Environmental Medicine, University of Rochester Medical Center, Rochester, New York.,c Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Eric Hernady
- b Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Christina Reed
- Departments of a Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York
| | - Bruce Fenton
- c Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Tanzy Love
- d Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York
| | - Jacob N Finkelstein
- Departments of a Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York.,b Environmental Medicine, University of Rochester Medical Center, Rochester, New York.,c Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Carl J Johnston
- Departments of a Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York.,b Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
30
|
He JY, Wang WZ, Qi HZ, Ma Y, He SY. Use of recombinant Lactobacillus sakei for the prevention and treatment of radiation-induced enteritis. Med Hypotheses 2018; 119:37-40. [PMID: 30122489 DOI: 10.1016/j.mehy.2018.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
Radiation-induced enteritis is one of the most common complications in patients under radiotherapy at abdominal or pelvic cavity. Up to 50% of patients treated with pelvic radiotherapy has been reported radiation-induced acute enteritis, and half of them developed chronic enteritis. Overproduction of free radicals, activation of inflammatory pathways and vascular endothelial dysfunction were considered as the primary mechanisms of radiation-induced enteritis. Because probiotics have been demonstrated as a promising potential candidate for treating intestinal diseases, it may be a safer and more effective radioprotector for the enteritis compared to conventional chemical agents with inherent toxicities. Here, we propose that a recombinant Lactobacillus sakei would decrease the complications or symptoms significantly through against different pathogenic mechanisms simultaneously. Therefore, application of higher radiation dose for tumor control would be feasible when co-treating with recombinant Lactobacillus sakei.
Collapse
Affiliation(s)
- Jun-Yan He
- Medical College, University of South China, Hengyang, China; Department of Biochemistry and Molecular Biology, University of South China, Hengyang, China
| | - Wu-Zhou Wang
- Medical College, University of South China, Hengyang, China; Department of Biochemistry and Molecular Biology, University of South China, Hengyang, China
| | - Hui-Zhou Qi
- Medical College, University of South China, Hengyang, China
| | - Yun Ma
- Medical College, University of South China, Hengyang, China; Department of Biochemistry and Molecular Biology, University of South China, Hengyang, China
| | - Shu-Ya He
- Medical College, University of South China, Hengyang, China; Department of Biochemistry and Molecular Biology, University of South China, Hengyang, China.
| |
Collapse
|