1
|
Camprodon G, Gabro A, El Ayachi Z, Chopra S, Nout R, Maingon P, Chargari C. Personalized strategies for brachytherapy of cervix cancer. Cancer Radiother 2024; 28:610-617. [PMID: 39395842 DOI: 10.1016/j.canrad.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Among most tailored approaches in radiation oncology, the development of brachytherapy for the treatment of cervical cancer patients has benefited from various technological innovations. The development of 3D image-guided treatments was the first step for treatment personalization. This breakthrough preceded practice homogenization and validation of predictive dose and volume parameters and prognostic factors. We review some of the most significant strategies that emerged from the ongoing research in order to increase personalization in uterovaginal brachytherapy. A better stratification based on patients and tumors characteristics may lead to better discriminate candidates for intensification or de-escalation strategies, in order to still improve patient outcome while minimizing the risk of treatment-related side effects.
Collapse
Affiliation(s)
- Guillaume Camprodon
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Alexandra Gabro
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Zineb El Ayachi
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Supriya Chopra
- Department of Radiation Oncology and Medical Physics, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Remi Nout
- Department of Radiation Oncology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Philippe Maingon
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Cyrus Chargari
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France.
| |
Collapse
|
2
|
Karius A, Leifeld LM, Strnad V, Fietkau R, Bert C. First implementation of an innovative infra-red camera system integrated into a mobile CBCT scanner for applicator tracking in brachytherapy-Initial performance characterization. J Appl Clin Med Phys 2024; 25:e14364. [PMID: 38626753 PMCID: PMC11244686 DOI: 10.1002/acm2.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/18/2024] Open
Abstract
PURPOSE To enable a real-time applicator guidance for brachytherapy, we used for the first time infra-red tracking cameras (OptiTrack, USA) integrated into a mobile cone-beam computed tomography (CBCT) scanner (medPhoton, Austria). We provide the first description of this prototype and its performance evaluation. METHODS We performed assessments of camera calibration and camera-CBCT registration using a geometric calibration phantom. For this purpose, we first evaluated the effects of intrinsic parameters such as camera temperature or gantry rotations on the tracked marker positions. Afterward, calibrations with various settings (sample number, field of view coverage, calibration directions, calibration distances, and lighting conditions) were performed to identify the requirements for achieving maximum tracking accuracy based on an in-house phantom. The corresponding effects on camera-CBCT registration were determined as well by comparing tracked marker positions to the positions determined via CBCT. Long-term stability was assessed by comparing tracking and a ground-truth on a weekly basis for 6 weeks. RESULTS Robust tracking with positional drifts of 0.02 ± 0.01 mm was feasible using the system after a warm-up period of 90 min. However, gantry rotations affected the tracking and led to inaccuracies of up to 0.70 mm. We identified that 4000 samples and full coverage were required to ensure a robust determination of marker positions and camera-CBCT registration with geometric deviations of 0.18 ± 0.03 mm and 0.42 ± 0.07 mm, respectively. Long-term stability showed deviations of more than two standard deviations from the initial calibration after 3 weeks. CONCLUSION We implemented for the first time a standalone combined camera-CBCT system for tracking in brachytherapy. The system showed high potential for establishing corresponding workflows.
Collapse
Affiliation(s)
- Andre Karius
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Lisa Marie Leifeld
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Vratislav Strnad
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
3
|
Gunderman AL, Schmidt EJ, Xiao Q, Tokuda J, Seethamraju RT, Neri L, Halperin HR, Kut C, Viswanathan AN, Morcos M, Chen Y. MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial. IEEE/ASME TRANSACTIONS ON MECHATRONICS : A JOINT PUBLICATION OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY AND THE ASME DYNAMIC SYSTEMS AND CONTROL DIVISION 2023; 28:2405-2410. [PMID: 39104914 PMCID: PMC11299889 DOI: 10.1109/tmech.2022.3232546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Effective radiation therapy aims to maximize the radiation dose delivered to the tumor while minimizing damage to the surrounding healthy tissues, which can be a challenging task when the tissue-tumor space is small. To eliminate the damage to healthy tissue, it is now possible to inject biocompatible hydrogels between cancerous targets and surrounding tissues to create a spacer pocket. Conventional methods have limitations in poor target visualization and device tracking. In this paper, we leverage our MR-tracking technique to develop a novel injection needle for hydrogel spacer deployment. Herein, we present the working principle and fabrication method, followed by benchtop validation in an agar phantom, and MRI-guided validation in tissue-mimic prostate phantom and sexually mature female swine. Animal trials indicated that the spacer pockets in the rectovaginal septum can be accurately visualized on T2-weighted MRI. The experimental results showed that the vaginal-rectal spacing was successfully increased by 12 ± 2 mm anterior-posterior.
Collapse
Affiliation(s)
- Anthony L Gunderman
- Biomedical Engineering Department, Georgia Institute of Technology/Emory University, Atlanta, GA, 30318 USA
| | - Ehud J Schmidt
- Department of Medicine, Johns Hopkins University, Baltimore, MD., 21205
| | - Qingyu Xiao
- Biomedical Engineering Department, Georgia Institute of Technology/Emory University, Atlanta, GA, 30318 USA
| | - Junichi Tokuda
- Department of Radiology, Harvard Medical School, Boston, MA., 02115
| | | | - Luca Neri
- Department of Medicine, Johns Hopkins University, Baltimore, MD., 21205
| | - Henry R Halperin
- Department of Medicine, Johns Hopkins University, Baltimore, MD., 21205
| | - Carmen Kut
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD., 21205
| | - Akila N Viswanathan
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD., 21205
| | - Marc Morcos
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD., 21205
| | - Yue Chen
- Biomedical Engineering Department, Georgia Institute of Technology/Emory University, Atlanta, GA, 30318 USA
| |
Collapse
|
4
|
Zhang G, Wu Z, Yu W, Lyu X, Wu W, Fan Y, Wang Y, Zheng L, Huang M, Zhang Y, Guo C, Zhang J. Clinical application and accuracy assessment of imaging-based surgical navigation guided 125I interstitial brachytherapy in deep head and neck regions. JOURNAL OF RADIATION RESEARCH 2022; 63:741-748. [PMID: 35818292 PMCID: PMC9494534 DOI: 10.1093/jrr/rrac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Brachytherapy has the advantages of being minimally invasive and highly conformal, and it achieves good results in head and neck tumors. To precisely implant the radioactive seeds according to the preplan in deep head and neck regions, the surgical navigation is applied. This study aims to explore the clinical application and accuracy of imaging-based surgical navigation-guided 125I interstitial brachytherapy in terms of seed position. We included 41 patients with tumors in deep head and neck regions. The brachytherapy treatment plan was designed, and the preplanned data were transferred to the navigation system. Needle implantation and seed delivery were performed under surgical navigation system guidance with or without the combination of individual template. The treatment accuracy was evaluated by comparing seed cluster locations between the preoperative treatment plan and the postoperative treatment outcome. A total of 2879 seeds were delivered. The range, mean and median distances between the geometric centers of the preoperative seed point clusters and the postoperative seed point clusters were 0.8-10.5 mm, 4.5 ± 2.3 mm and 4.1 mm, respectively. The differences between preoperative and postoperative volumes of the minimum bounding box of seed point clusters were nonsignificant. In conclusion, the imaging-based surgical navigation system is a promising clinical tool to provide the preplanned data for interstitial brachytherapy intraoperatively, and it is feasible and accurate for the real-time guidance of needle implantation and seed delivery in deep head and neck regions.
Collapse
Affiliation(s)
- Guohao Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Zhiyuan Wu
- Department of Oral and Maxillofacial Surgery, Fujian Provincial Hospital, Fuzhou 350001, PR China
| | - Wenting Yu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, PR China
| | - Xiaoming Lyu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Wenjie Wu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Yi Fan
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Yong Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing 100081, PR China
| | - Lei Zheng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Mingwei Huang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Jianguo Zhang
- Corresponding author. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China. , Fax Number: 86-10-82195701
| |
Collapse
|
5
|
Jacobsen MC, Beriwal S, Dyer BA, Klopp AH, Lee SI, McGinnis GJ, Robbins JB, Rauch GM, Sadowski EA, Simiele SJ, Stafford RJ, Taunk NK, Yashar CM, Venkatesan AM. Contemporary image-guided cervical cancer brachytherapy: Consensus imaging recommendations from the Society of Abdominal Radiology and the American Brachytherapy Society. Brachytherapy 2022; 21:369-388. [PMID: 35725550 DOI: 10.1016/j.brachy.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE To present recommendations for the use of imaging for evaluation and procedural guidance of brachytherapy for cervical cancer patients. METHODS An expert panel comprised of members of the Society of Abdominal Radiology Uterine and Ovarian Cancer Disease Focused Panel and the American Brachytherapy Society jointly assessed the existing literature and provide data-driven guidance on imaging protocol development, interpretation, and reporting. RESULTS Image-guidance during applicator implantation reduces rates of uterine perforation by the tandem. Postimplant images may be acquired with radiography, computed tomography (CT), or magnetic resonance imaging (MRI), and CT or MRI are preferred due to a decrease in severe complications. Pre-brachytherapy T2-weighted MRI may be used as a reference for contouring the high-risk clinical target volume (HR-CTV) when CT is used for treatment planning. Reference CT and MRI protocols are provided for reference. CONCLUSIONS Image-guided brachytherapy in locally advanced cervical cancer is essential for optimal patient management. Various imaging modalities, including orthogonal radiographs, ultrasound, computed tomography, and magnetic resonance imaging, remain integral to the successful execution of image-guided brachytherapy.
Collapse
Affiliation(s)
- Megan C Jacobsen
- The University of Texas MD Anderson Cancer Center, Department of Imaging Physics, Houston, TX
| | - Sushil Beriwal
- Allegheny Health Network, Department of Radiation Oncology, Pittsburgh, PA; Varian Medical Systems, Palo Alto, CA
| | - Brandon A Dyer
- Legacy Health, Department of Radiation Oncology, Portland, OR
| | - Ann H Klopp
- The University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, TX
| | - Susanna I Lee
- Massachusetts General Hospital, Department of Radiology, Boston, MA
| | - Gwendolyn J McGinnis
- The University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, TX
| | | | - Gaiane M Rauch
- The University of Texas MD Anderson Cancer Center, Department of Abdominal Imaging, Houston, TX
| | | | - Samantha J Simiele
- The University of Texas MD Anderson Cancer Center, Department of Radiation Physics, Houston, TX
| | - R Jason Stafford
- The University of Texas MD Anderson Cancer Center, Department of Imaging Physics, Houston, TX
| | - Neil K Taunk
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, PA
| | - Catheryn M Yashar
- University of California San Diego, Department of Radiation Oncology, San Diego, CA
| | - Aradhana M Venkatesan
- The University of Texas MD Anderson Cancer Center, Department of Abdominal Imaging, Houston, TX.
| |
Collapse
|
6
|
Gunderman AL, Schmidt EJ, Morcos M, Tokuda J, Seethamraju RT, Halperin HR, Viswanathan AN, Chen Y. MR-Tracked Deflectable Stylet for Gynecologic Brachytherapy. IEEE/ASME TRANSACTIONS ON MECHATRONICS : A JOINT PUBLICATION OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY AND THE ASME DYNAMIC SYSTEMS AND CONTROL DIVISION 2022; 27:407-417. [PMID: 35185321 PMCID: PMC8855967 DOI: 10.1109/tmech.2021.3064954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Brachytherapy is a radiation based treatment that is implemented by precisely placing focused radiation sources into tumors. In advanced interstitial cervical cancer bracytherapy treatment, this is performed by placing a metallic rod ("stylet") inside a hollow cylindrical tube ("catheter") and advancing the pair to the desired target. The stylet is removed once the target is reached, followed by the insertion of radiation sources into the catheter. However, manually advancing an initially straight stylet into the tumor with millimeter spatial accuracy has been a long-standing challenge, which requires multiple insertions and retractions, due to the unforeseen stylet deflection caused by the stiff muscle tissue that is traversed. In this paper, we develop a novel tendon-actuated deflectable stylet equipped with MR active-tracking coils that may enhance brachytherapy treatment outcomes by allowing accurate stylet trajectory control. Herein we present the design concept and fabrication method, followed by the kinematic and mechanics models of the deflectable stylet. The hardware and theoretical models are extensively validated via benchtop and MRI-guided characterization. At insertion depths of 60 mm, benchtop phantom targeting tests provided a targeting error of 1. 23 ± 0. 47 mm, and porcine tissue targeting tests provided a targeting error of 1. 65 ± 0. 64 mm, after only a single insertion. MR-guided experiments indicate that the stylet can be safely and accurately located within the MRI environment.
Collapse
Affiliation(s)
- Anthony L Gunderman
- Mechanical Engineering Department, University of Arkansas, Fayetteville, AR 72701 USA
| | - Ehud J Schmidt
- Department of Medicine, Johns Hopkins University, Baltimore, MD., 21205
| | - Marc Morcos
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD., 21205
| | - Junichi Tokuda
- Department of Radiology, Harvard Medical School, Boston, MA., 02115
| | | | - Henry R Halperin
- Department of Medicine, Johns Hopkins University, Baltimore, MD., 21205
| | - Akila N Viswanathan
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD., 21205
| | - Yue Chen
- Mechanical Engineering Department, University of Arkansas, Fayetteville, AR 72701 USA
| |
Collapse
|
7
|
Shaaer A, Paudel M, Smith M, Tonolete F, Ravi A. Deep-learning-assisted algorithm for catheter reconstruction during MR-only gynecological interstitial brachytherapy. J Appl Clin Med Phys 2021; 23:e13494. [PMID: 34889509 PMCID: PMC8833281 DOI: 10.1002/acm2.13494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
Magnetic resonance imaging (MRI) offers excellent soft‐tissue contrast enabling the contouring of targets and organs at risk during gynecological interstitial brachytherapy procedure. Despite its advantage, one of the main obstacles preventing a transition to an MRI‐only workflow is that implanted plastic catheters are not reliably visualized on MR images. This study aims to evaluate the feasibility of a deep‐learning‐based algorithm for semiautomatic reconstruction of interstitial catheters during an MR‐only workflow. MR images of 20 gynecological patients were used in this study. Note that 360 catheters were reconstructed using T1‐ and T2‐weighted images by five experienced brachytherapy planners. The mean of the five reconstructed paths were used for training (257 catheters), validation (15 catheters), and testing/evaluation (88 catheters). To automatically identify and localize the catheters, a two‐dimensional (2D) U‐net algorithm was used to find their approximate location in each image slice. Once localized, thresholding was applied to those regions to find the extrema, as catheters appear as bright and dark regions in T1‐ and T2‐weighted images, respectively. The localized dwell positions of the proposed algorithm were compared to the ground truth reconstruction. Reconstruction time was also evaluated. A total of 34 009 catheter dwell positions were evaluated between the algorithm and all planners to estimate the reconstruction variability. The average variation was 0.97 ± 0.66 mm. The average reconstruction time for this approach was 11 ± 1 min, compared with 46 ± 10 min for the expert planners. This study suggests that the proposed deep learning, MR‐based framework has potential to replace the conventional manual catheter reconstruction. The adoption of this approach in the brachytherapy workflow is expected to improve treatment efficiency while reducing planning time, resources, and human errors.
Collapse
Affiliation(s)
- Amani Shaaer
- Department of Physics, Ryerson University, Toronto, Ontario, Canada.,Department of Biomedical Physics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Moti Paudel
- Department of Medical Physics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Medical Physics, University of Toronto, Toronto, Ontario, Canada
| | - Mackenzie Smith
- Department of Radiation Therapy, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Frances Tonolete
- Department of Radiation Therapy, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Ananth Ravi
- Department of Medical Physics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Medical Physics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Abstract
Gynecologic malignancies are among the most prevalent cancers affecting women worldwide, but they are heterogeneous diseases with varying risk factors, management paradigms, and outcomes. Gynecologic cancers mediated by human papillomavirus (HPV) are preventable and curable with early detection and treatment. Dramatic reductions in cervical cancer incidence and mortality have been achieved through cancer screening and HPV vaccination. Radiotherapy plays a central role in the management of gynecologic malignancies. For some cancers, radiotherapy alone can be curative. More often, radiotherapy is used in conjunction with surgery and systemic therapy to improve locoregional control and extend overall survival. This chapter reviews recent advances in radiotherapeutic management of gynecologic malignancies.
Collapse
Affiliation(s)
- Gita Suneja
- Department of Radiation Oncology, University of Utah, 1950 Circle of Hope, Salt Lake City, UT 84112, USA.
| | - Akila Viswanathan
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Johns Hopkins Kimmel Cancer Center, The Weinberg Building, 401 North Broadway, Room 1454, Baltimore, MD 21287, USA. https://twitter.com/anvjhu.edu
| |
Collapse
|
9
|
Elledge CR, LaVigne AW, Bhatia RK, Viswanathan AN. Aiming for 100% Local Control in Locally Advanced Cervical Cancer: The Role of Complex Brachytherapy Applicators and Intraprocedural Imaging. Semin Radiat Oncol 2020; 30:300-310. [PMID: 32828386 PMCID: PMC7875154 DOI: 10.1016/j.semradonc.2020.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The use of brachytherapy for the treatment of gynecologic malignancies, particularly cervical cancer, has a long and rich history that is nearly as long as the history of radiation oncology itself. From the first gynecologic brachytherapy treatments in the early 20th century to the modern era, significant transformation has occurred driven largely by advancements in technology. The development of high-dose rate sources, remote afterloaders, novel applicators, and 3-dimensional image guidance has led to improved local control, and thus improved survival, solidifying the role of brachytherapy as an integral component in the treatment of locally advanced cervical cancer. Current research efforts examining novel magnetic resonance imaging sequences, active magnetic resonance tracking, and the application of hydrogel aim to further improve local control and reduce treatment toxicity.
Collapse
Affiliation(s)
- Christen R Elledge
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anna W LaVigne
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rohini K Bhatia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Akila N Viswanathan
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
10
|
Shaaer A, Paudel M, Smith M, Tonolete F, Nicolae A, Leung E, Ravi A. Evaluation of an MR-only interstitial gynecologic brachytherapy workflow using MR-line marker for catheter reconstruction. Brachytherapy 2020; 19:642-650. [PMID: 32712027 DOI: 10.1016/j.brachy.2020.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/30/2020] [Accepted: 06/06/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Magnetic resonance imaging (MRI) offers excellent soft-tissue contrast enabling the contouring of targets and organs at risk (OARs) during gynecological interstitial brachytherapy procedure. Despite its benefit, one of the main challenges toward MRI-only workflows is that the implanted catheters are not reliably visualized on MR images. This study aims to evaluate the feasibility of MR-only workflow using an in-house MR line marker during interstitial gynecological high-dose-rate (HDR) brachytherapy. METHODS AND MATERIALS Ten patients diagnosed with locally advanced cervical cancer treated with HDR brachytherapy were included in this study. The hybrid CT/MR-treated plan was used as the study reference plan. Five users manually reconstructed the catheter's path on MR images (3D T1- and T2-weighted). Subsequently, the dwell positions from the users' plans were superimposed on the reference plans to evaluate the dosimetric impact of the using MR-only for catheter reconstruction in comparison with hybrid CT/MR approach. Variability of dwell positions between users and reconstruction time was also evaluated. RESULTS More than 96.90% of catheter reconstruction variations were < 2 mm. No statistical differences were reported between MR-only and hybrid CT/MR in gross tumor volume D98 and high-risk clinical target volume D90, respectively. For the OARs (bladder, sigmoid, rectum, and bowel), no significant changes were observed in any dose metrics between MR-only and hybrid CT/MR. The average reconstruction time was 51 ± 10 minutes across all ten patients. CONCLUSION The feasibility of MR-only workflow using MR line marker during interstitial gynecological HDR brachytherapy has been validated in this study. The results show that the MR-only workflow is equivalent to the conventional hybrid CT/MR approach in terms of gross tumor volume and high-risk clinical target volume coverage and respecting of OARs dose limits.
Collapse
Affiliation(s)
- Amani Shaaer
- Department of physics, Ryerson University, Toronto, Ontario, Canada; Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Moti Paudel
- Department of Medical Physics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Mackenzie Smith
- Department of Radiation Therapy, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Frances Tonolete
- Department of Radiation Therapy, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Alexandru Nicolae
- Department of Medical Physics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Eric Leung
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Ananth Ravi
- Department of Medical Physics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Ning MS, Venkatesan AM, Stafford RJ, Bui TP, Carlson R, Bailard NS, Vedam S, Davis R, Olivieri ND, Guzman AB, Incalcaterra JR, McKelvey FA, Thaker NG, Rauch GM, Tang C, Frank SJ, Joyner MM, Lin LL, Jhingran A, Eifel PJ, Klopp AH. Developing an intraoperative 3T MRI-guided brachytherapy program within a diagnostic imaging suite: Methods, process workflow, and value-based analysis. Brachytherapy 2020; 19:427-437. [DOI: 10.1016/j.brachy.2019.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/11/2019] [Accepted: 09/21/2019] [Indexed: 12/22/2022]
|
12
|
Fields EC, Hazell S, Morcos M, Schmidt EJ, Chargari C, Viswanathan AN. Image-Guided Gynecologic Brachytherapy for Cervical Cancer. Semin Radiat Oncol 2020; 30:16-28. [PMID: 31727296 DOI: 10.1016/j.semradonc.2019.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The incorporation of magnetic resonance imaging in brachytherapy has resulted in an increased use of interstitial catheters in order to create a comprehensive treatment plan that covers the visualized tumor. However, the insertion with passive, image-guidance requires estimating the location of the tumor during the insertion process, rather than visualizing and inserting the catheters directly to the desired location under active tracking. In order to treat residual disease, multiparametric MR sequences can enhance the information available to the clinician. The precision availed by MR-guided brachytherapy results in substantial improvements in needle positioning, and resulting treatment plans.
Collapse
Affiliation(s)
- Emma C Fields
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA
| | - Sarah Hazell
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD
| | - Marc Morcos
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD
| | - Ehud J Schmidt
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD
| | - Cyrus Chargari
- Department of Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France
| | - Akila N Viswanathan
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD.
| |
Collapse
|
13
|
Evaluation of the accuracy of computer-assisted techniques in the interstitial brachytherapy of the deep regions of the head and neck. Brachytherapy 2019; 18:217-223. [DOI: 10.1016/j.brachy.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/14/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
|
14
|
Anderson R, Armour E, Beeckler C, Briner V, Choflet A, Cox A, Fader AN, Hannah MN, Hobbs R, Huang E, Kiely M, Lee J, Morcos M, McMillan PE, Miller D, Ng SK, Prasad R, Souranis A, Thomsen R, DeWeese TL, Viswanathan AN. Interventional Radiation Oncology (IRO): Transition of a magnetic resonance simulator to a brachytherapy suite. Brachytherapy 2018; 17:587-596. [DOI: 10.1016/j.brachy.2018.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/30/2017] [Accepted: 01/16/2018] [Indexed: 10/17/2022]
|
15
|
Tanderup K, Kirisits C, Damato AL. Treatment delivery verification in brachytherapy: Prospects of technology innovation. Brachytherapy 2018; 17:1-6. [PMID: 29406123 DOI: 10.1016/j.brachy.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Christian Kirisits
- Department of Radiotherapy, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Antonio L Damato
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|