1
|
Gouel P, Decazes P, Vera P, Gardin I, Thureau S, Bohn P. Advances in PET and MRI imaging of tumor hypoxia. Front Med (Lausanne) 2023; 10:1055062. [PMID: 36844199 PMCID: PMC9947663 DOI: 10.3389/fmed.2023.1055062] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Tumor hypoxia is a complex and evolving phenomenon both in time and space. Molecular imaging allows to approach these variations, but the tracers used have their own limitations. PET imaging has the disadvantage of low resolution and must take into account molecular biodistribution, but has the advantage of high targeting accuracy. The relationship between the signal in MRI imaging and oxygen is complex but hopefully it would lead to the detection of truly oxygen-depleted tissue. Different ways of imaging hypoxia are discussed in this review, with nuclear medicine tracers such as [18F]-FMISO, [18F]-FAZA, or [64Cu]-ATSM but also with MRI techniques such as perfusion imaging, diffusion MRI or oxygen-enhanced MRI. Hypoxia is a pejorative factor regarding aggressiveness, tumor dissemination and resistance to treatments. Therefore, having accurate tools is particularly important.
Collapse
Affiliation(s)
- Pierrick Gouel
- Département d’Imagerie, Centre Henri Becquerel, Rouen, France,QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France
| | - Pierre Decazes
- Département d’Imagerie, Centre Henri Becquerel, Rouen, France,QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France
| | - Pierre Vera
- Département d’Imagerie, Centre Henri Becquerel, Rouen, France,QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France
| | - Isabelle Gardin
- Département d’Imagerie, Centre Henri Becquerel, Rouen, France,QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France
| | - Sébastien Thureau
- QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France,Département de Radiothérapie, Centre Henri Becquerel, Rouen, France
| | - Pierre Bohn
- Département d’Imagerie, Centre Henri Becquerel, Rouen, France,QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France,*Correspondence: Pierre Bohn,
| |
Collapse
|
2
|
Mangoni M, Borghesi S, Aristei C, Becherini C. Radiobiology of stereotactic radiotherapy. Rep Pract Oncol Radiother 2022; 27:57-62. [PMID: 35402022 PMCID: PMC8989448 DOI: 10.5603/rpor.a2022.0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022] Open
Abstract
This paper focuses on the radiobiological mechanisms underlying the effects of stereotactic radiotherapy (SRT ) which, despite SRT expansion, have not yet been fully elucidated. Some authors postulated that radiobiology principles, as applied to conventional fractionations (5R: reoxygenation, repair, repopulation, redistribution, radioresistence), suffice in themselves to account for the excellent clinical results of SRT; others argued that the role of the 5R was limited. Recent preclinical data showed that hypofractionated ablative treatments altered the microenvironment, thus determining cell death either directly or indirectly. Furthermore, dead tumor cells released quantities of antigens, which stimulated antitumor immunity, thus reducing the risk of relapse and metastasis. Better understanding of the radiobiological mechanisms underlying response to high-dose radiation treatment is essential for predicting its short- and long-term effects on the tumor and surrounding healthy tissues and, consequently, for improving its related therapeutic index.
Collapse
Affiliation(s)
- Monica Mangoni
- Radiotherapy Unit, Oncology Department, Azienda Ospedaliera Universitaria Careggi, University of Florence, Italy
| | - Simona Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Carlotta Becherini
- Radiotherapy Unit, Oncology Department, Azienda Ospedaliera Universitaria Careggi, University of Florence, Italy
| |
Collapse
|
3
|
Chia K, Paul RL, Weeks AJ, Naeem M, Mullen GE, Landau D, Blower PJ. Correlation of hypoxia PET tracer uptake with hypoxic radioresistance in cancer cells: PET biomarkers of resistance to stereotactic radiation therapy? Nucl Med Biol 2022; 110-111:10-17. [DOI: 10.1016/j.nucmedbio.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
|
4
|
Tjong M, Louie A, Singh A, Videtic G, Stephans K, Plumridge N, Harden S, Slotman B, Alongi F, Guckenberger M, Siva S. Single-Fraction Stereotactic Ablative Body Radiotherapy to the Lung – The Knockout Punch. Clin Oncol (R Coll Radiol) 2022; 34:e183-e194. [DOI: 10.1016/j.clon.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
|
5
|
Bouleftour W, Rowinski E, Louati S, Sotton S, Wozny AS, Moreno-Acosta P, Mery B, Rodriguez-Lafrasse C, Magne N. A Review of the Role of Hypoxia in Radioresistance in Cancer Therapy. Med Sci Monit 2021; 27:e934116. [PMID: 34728593 PMCID: PMC8573967 DOI: 10.12659/msm.934116] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia involves neoplastic cells. Unlike normal tissue, solid tumors are composed of aberrant vasculature, leading to a hypoxic microenvironment. Hypoxia is also known to be involved in both metastasis initiation and therapy resistance. Radiotherapy is the appropriate treatment in about half of all cancers, but loco-regional control failure and a disease recurrence often occur due to clinical radioresistance. Hypoxia induces radioresistance through a number of molecular pathways, and numerous strategies have been developed to overcome this. Nevertheless, these strategies have resulted in disappointing results, including adverse effects and limited efficacy. Additional clinical studies are needed to achieve a better understanding of the complex hypoxia pathways. This review presents an update on the mechanisms of hypoxia in radioresistance in solid tumors and the potential therapeutic solutions.
Collapse
Affiliation(s)
- Wafa Bouleftour
- Radiotherapy Department, Lucien Neuwirth Cancerology Institute, Saint Priest en Jarez, France
| | - Elise Rowinski
- Radiotherapy Department, Lucien Neuwirth Cancerology Institute, Saint Priest en Jarez, France
| | - Safa Louati
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, France.,Hospices Civils de Lyon, Lyon, France
| | - Sandrine Sotton
- Radiotherapy Department, Lucien Neuwirth Cancerology Institute, Saint Priest en Jarez, France
| | - Anne-Sophie Wozny
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, France.,Hospices Civils de Lyon, Lyon, France
| | - Pablo Moreno-Acosta
- Research Group in Cancer Biology, National Cancer Institute, Bogotá, Colombia
| | - Benoite Mery
- Radiotherapy Department, Lucien Neuwirth Cancerology Institute, Saint Priest en Jarez, France
| | - Claire Rodriguez-Lafrasse
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, France.,Hospices Civils de Lyon, Lyon, France
| | - Nicolas Magne
- Radiotherapy Department, Lucien Neuwirth Cancerology Institute, Saint Priest en Jarez, France.,Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, France.,Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
6
|
Wadsworth BJ, Decotret LR, Villamil C, Yapp D, Wilson D, Benard F, McKenzie M, Bennewith KL. Evaluation of 18F-EF5 for detection of hypoxia in localized adenocarcinoma of the prostate. Acta Oncol 2021; 60:1489-1498. [PMID: 34379579 DOI: 10.1080/0284186x.2021.1959636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND A common feature of solid tumours that are resistant to therapy is the presence of regions with low oxygen content (i.e., hypoxia). Oxygen electrode studies suggest that localized prostate adenocarcinoma is commonly hypoxic, although conflicting data have been reported between immunohistochemical detection of hypoxia-induced proteins in biopsy specimens and positron emission tomography (PET) imaging of 18F-labeled hypoxia reporters. Although the 2-nitroimidazole 18F-EF5 is well-established to label hypoxic tumour cells in pre-clinical tumour models and clinical trials of multiple primary tumour sites, it has yet to be tested in prostate cancer. The purpose of this study was to evaluate the feasibility of using 18F-EF5 to detect hypoxia in clinical prostate tumours. MATERIAL AND METHODS Patients with localized adenocarcinoma of the prostate were recruited for pre-treatment 18F-EF5 PET scans. Immunohistochemistry was conducted on diagnostic biopsies to assess the expression of glucose transporter 1 (GLUT1), osteopontin (OPN), and carbonic anhydrase IX (CAIX). Immunoreactivity scores of staining intensity and frequency were used to indicate the presence of tumour hypoxia. RESULTS We found low tumour-to-muscle ratios of 18F-EF5 uptake that were not consistent with tumour hypoxia, causing early termination of the study. However, we observed GLUT1 and OPN expression in all prostate tumour biopsies, indicating the presence of hypoxia in all tumours. CONCLUSION Our data do not support the use of 18F-EF5 PET to detect hypoxia in prostate adenocarcinoma, and suggest the use of immunohistochemistry to quantify expression of the hypoxia-inducible proteins GLUT1 and OPN as indications of prostate tumour hypoxia.
Collapse
Affiliation(s)
- Brennan J. Wadsworth
- Integrative Oncology, BC Cancer, Vancouver, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Lisa R. Decotret
- Integrative Oncology, BC Cancer, Vancouver, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | | | - Donald Yapp
- Experimental Therapeutics, BC Cancer, Vancouver, Canada
| | - Don Wilson
- Functional Imaging, BC Cancer, Vancouver, Canada
| | - Francois Benard
- Functional Imaging, BC Cancer, Vancouver, Canada
- Molecular Oncology, BC Cancer, Vancouver, Canada
| | | | - Kevin L. Bennewith
- Integrative Oncology, BC Cancer, Vancouver, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Crake RLI, Burgess ER, Royds JA, Phillips E, Vissers MCM, Dachs GU. The Role of 2-Oxoglutarate Dependent Dioxygenases in Gliomas and Glioblastomas: A Review of Epigenetic Reprogramming and Hypoxic Response. Front Oncol 2021; 11:619300. [PMID: 33842321 PMCID: PMC8027507 DOI: 10.3389/fonc.2021.619300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
Gliomas are a heterogeneous group of cancers that predominantly arise from glial cells in the brain, but may also arise from neural stem cells, encompassing low-grade glioma and high-grade glioblastoma. Whereas better diagnosis and new treatments have improved patient survival for many cancers, glioblastomas remain challenging with a highly unfavorable prognosis. This review discusses a super-family of enzymes, the 2-oxoglutarate dependent dioxygenase enzymes (2-OGDD) that control numerous processes including epigenetic modifications and oxygen sensing, and considers their many roles in the pathology of gliomas. We specifically describe in more detail the DNA and histone demethylases, and the hypoxia-inducible factor hydroxylases in the context of glioma, and discuss the substrate and cofactor requirements of the 2-OGDD enzymes. Better understanding of how these enzymes contribute to gliomas could lead to the development of new treatment strategies.
Collapse
Affiliation(s)
- Rebekah L. I. Crake
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Eleanor R. Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Janice A. Royds
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
8
|
Flaus A, Nevesny S, Guy JB, Sotton S, Magné N, Prévot N. Positron emission tomography for radiotherapy planning in head and neck cancer: What impact? Nucl Med Commun 2021; 42:234-243. [PMID: 33252513 DOI: 10.1097/mnm.0000000000001329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PET-computed tomography (CT) plays a growing role to guide target volume delineation for head and neck cancer in radiation oncology. Pretherapeutic [18F]FDG PET-CT adds information to morphological imaging. First, as a whole-body imaging modality, it reveals regional or distant metastases that induce major therapeutic changes in more than 10% of the cases. Moreover, it allows better pathological lymph node selection which improves overall regional control and overall survival. Second, locally, it allows us to define the metabolic tumoral volume, which is a reliable prognostic feature for survival outcome. [18F]FDG PET-CT-based gross tumor volume (GTV) is on average significantly smaller than GTV based on CT. Nevertheless, the overlap is incomplete and more evaluation of composite GTV based on PET and GTV based on CT are needed. However, in clinical practice, the study showed that using GTV PET alone for treatment planning was similar to using GTVCT for local control and dose distribution was better as a dose to organs at risk significantly decreased. In addition to FDG, pretherapeutic PET could give access to different biological tumoral volumes - thanks to different tracers - guiding heterogeneous dose delivery (dose painting concept) to resistant subvolumes. During radiotherapy treatment, follow-up [18F]FDG PET-CT revealed an earlier and more important diminution of GTV than other imaging modality. It may be a valuable support for adaptative radiotherapy as a new treatment plan with a significant impact on dose distribution became possible. Finally, additional studies are required to prospectively validate long-term outcomes and lower toxicity resulting from the use of PET-CT in treatment planning.
Collapse
Affiliation(s)
- Anthime Flaus
- Service de Médecine Nucléaire, Centre Hospitalier Universitaire de Saint-Etienne, St Etienne
| | - Stéphane Nevesny
- Département de Radiothérapie, Institut de Cancérologie de la Loire-Lucien Neuwirth, St Priest en Jarez
| | - Jean-Baptiste Guy
- Département de Radiothérapie, Institut de Cancérologie de la Loire-Lucien Neuwirth, St Priest en Jarez
- UMR CNRS 5822/IN2P3, IPNL, PRISME, Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Université Lyon 1, Oullins Cedex
| | - Sandrine Sotton
- Department of Research and Teaching, Lucien Neuwirth Cancer Institute, Saint-Priest-en-Jarez, University Departement of Research and Teaching
| | - Nicolas Magné
- Département de Radiothérapie, Institut de Cancérologie de la Loire-Lucien Neuwirth, St Priest en Jarez
- UMR CNRS 5822/IN2P3, IPNL, PRISME, Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Université Lyon 1, Oullins Cedex
| | - Nathalie Prévot
- Service de Médecine Nucléaire, Centre Hospitalier Universitaire de Saint-Etienne, St Etienne
- INSERM U 1059 Sainbiose, Université Jean Monnet, Saint-Etienne, France
| |
Collapse
|
9
|
Lu J, Zhang C, Yang X, Yao XJ, Zhang Q, Sun XC. Synthesis and Preliminary Evaluation of a Novel 18F-Labeled 2-Nitroimidazole Derivative for Hypoxia Imaging. Front Oncol 2021; 10:572097. [PMID: 33604284 PMCID: PMC7884749 DOI: 10.3389/fonc.2020.572097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Objective Hypoxia is prevalent in tumors and plays a pivotal role in resistance to chemoradiotherapy. 18F-MISO (18F-labeled fluoromisonidazole) is currently the preferred choice of PET hypoxia tracers in clinical practice, but has severe disadvantages involving complex labeling methods and low efficient imaging due to lipophilicity. We aimed to design a novel nitroimidazole derivative labeled by 18F via a chelation technique to detect hypoxic regions and provide a basis for planning radiotherapy. Materials and Methods First, we synthesized a 2-nitroimidazole precursor, 2-[4-(carboxymethyl)-7-[2-(2-(2-nitro-1H-imidazol-1-yl)acetamido)ethyl]-1,4,7-triazanonan-1-yl]acetic acid (NOTA-NI). For 18F-labeling, a 18F solution was reacted with a mixture of AlCl3 and NOTA-NI at pH 3.5 and 100°C for 20 min, and the radiochemical purity and stability were evaluated. Biological behaviors of Al18F-NOTA-NI were analyzed by an uptake study in ECA109 normoxic and hypoxic cells, and a biodistribution study and microPET imaging in ECA109 xenografted mice. Results Al18F-NOTA-NI required a straightforward and efficient labeling procedure compared with 18F-MISO. The uptake values were distinctly higher in hypoxic tumor cells. Animal studies revealed that the imaging agent was principally excreted via the kidneys. Due to hydrophilicity, the radioactivities in blood and muscle were decreased, and we could clearly distinguish xenografted tumors from para-carcinoma tissue by PET imaging. Conclusions The nitroimidazole tracer Al18F-NOTA-NI steadily accumulated in hypoxic areas in tumors and was rapidly eliminated from normal tissue. It appears to be a promising candidate for hypoxia imaging with high sensitivity and resolution.
Collapse
Affiliation(s)
- Jing Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Health Promotion Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi-Juan Yao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qun Zhang
- Department of Health Promotion Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Chen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
The feasibility of [ 18F]EF5-PET/CT to image hypoxia in ovarian tumors: a clinical study. EJNMMI Res 2020; 10:103. [PMID: 32910291 PMCID: PMC7483702 DOI: 10.1186/s13550-020-00689-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale Evaluation of the feasibility of [18F]EF5-PET/CT scan in identifying hypoxic lesions in ovarian tumors in prospective clinical setting. Methods Fifteen patients with a suspected malignant ovarian tumor were scanned with [18F]EF5 and [18F]FDG-PET/CT preoperatively. The distribution of [18F]EF5-uptake, total intraabdominal metabolic tumor volume (TMTV), and hypoxic subvolume (HSV) were assessed. Results [18F]EF5-PET/CT suggested hypoxia in 47% (7/15) patients. The median HSV was 87 cm3 (31% of TMTV). The [18F]EF5-uptake was detected in primary tumors and in four patients also in intra-abdominal metastases. The [18F]EF5-uptake in cancer tissue was low compared to physiological excretory pathways, complicating the interpretation of PET/CT images. Conclusions [18F]EF5-PET/CT is not feasible in ovarian cancer imaging in clinical setting due to physiological intra-abdominal [18F]EF5-accumulation. However, it may be useful when used complementarily to FDG-PET/CT.
Collapse
|
11
|
Li S, Shen L. Radiobiology of stereotactic ablative radiotherapy (SABR): perspectives of clinical oncologists. J Cancer 2020; 11:5056-5068. [PMID: 32742453 PMCID: PMC7378931 DOI: 10.7150/jca.44408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
Stereotactic ablative radiotherapy (SABR) is a novel radiation treatment method that delivers an intense dose of radiation to the treatment targets with high accuracy. The excellent local control and tolerance profile of SABR have made it become an important modality in cancer treatment. The radiobiology of SABR is a key factor in understanding and further optimizing the benefits of SABR. In this review, we have addressed several issues in the radiobiology of SABR from the perspective of clinical oncologists. The appropriateness of the linear-quadratic (LQ) model for SABR is controversial based on preclinical data, but it is a reliable tool from the perspective of clinical application because the biological effective dose (BED) calculated with it can represent the tumor control probability (TCP). Hypoxia is a common phenomenon in SABR in spite of the relatively small tumor size and has a negative effect on the efficacy of SABR. Preliminary studies indicate that a hypoxic radiosensitizer combined with SABR may be a feasible strategy, but so far there is not adequate evidence to support its application in routine practice. The vascular change of endothelial apoptosis and blood perfusion reduction in SABR may enhance the response of tumor cells to radiation. Combination of SABR with anti-angiogenesis therapy has shown promising efficacy and good tolerance in advanced cancers. SABR is more powerful in enhancing antitumor immunity and works better with immune checkpoint inhibitors (ICIs) than conventional fractionation radiotherapy. Combination of SABR with ICIs has become a practical option for cancer patients with metastases.
Collapse
Affiliation(s)
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan Province 410008, China
| |
Collapse
|
12
|
Zschaeck S, Löck S, Hofheinz F, Zips D, Saksø Mortensen L, Zöphel K, Troost EGC, Boeke S, Saksø M, Mönnich D, Seidlitz A, Johansen J, Skripcak T, Gregoire V, Overgaard J, Baumann M, Krause M. Individual patient data meta-analysis of FMISO and FAZA hypoxia PET scans from head and neck cancer patients undergoing definitive radio-chemotherapy. Radiother Oncol 2020; 149:189-196. [PMID: 32417350 DOI: 10.1016/j.radonc.2020.05.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND PURPOSE Tumor hypoxia plays an important role in head and neck squamous cell carcinomas (HNSCC). Various positron emission tomography (PET) tracers promise non-invasive assessment of tumor hypoxia. So far, the applicability of hypoxia PET is hampered by monocentric imaging trials with few patients. MATERIALS AND METHODS Multicenter individual patient data based meta-analysis of the original PET data from four prospective imaging trials was performed. All patients had localized disease and were treated with curatively intended radio(-chemo)therapy. Hypoxia PET imaging was performed with 18F-Fluoromisonidazole (FMISO, 102 patients) or 18F-Fluoroazomycin-arabinoside (FAZA, 51 patients). Impact of hypoxia PET parameters on loco-regional control (LRC) and overall survival (OS) was analyzed by uni- and multivariable Cox regression. RESULTS Baseline characteristics between participating centers differed significantly, especially regarding T stage (p < 0.001), tumor volume (p < 0.001) and p16 status (p = 0.009). The commonly used hypoxia parameters, maximal tumor-to-muscle ratio (TMRmax) and hypoxic volume with 1.6 threshold (HV1.6), showed a strong association with LRC (p = 0.001) and OS (p < 0.001). These findings were irrespective of the radiotracer and the same cut-off values could be applied for FMISO and FAZA (TMRmax > 2.0 or HV1.6 > 1.5 ml). The effect size of TMRmax was similar for subgroups of patients defined by radiotracer, p16 status and FDG-PET parameters for LRC and OS, respectively. CONCLUSION PET measured hypoxia is robust and has a strong impact on LRC and OS in HNSCC. The most commonly investigated tracers FMISO and FAZA can probably be used equivalently in multicenter trials. Optimal strategies to improve the dismal outcome of hypoxic tumors remain elusive.
Collapse
Affiliation(s)
- Sebastian Zschaeck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Tu¨bingen, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiation Oncology, Germany; Berlin Institute of Health (BIH), Germany.
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Tu¨bingen, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany; OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum, Dresden - Rossendorf, Germany
| | - Frank Hofheinz
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Germany
| | - Daniel Zips
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lise Saksø Mortensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - Klaus Zöphel
- German Cancer Consortium (DKTK), partner site Tu¨bingen, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Dresden, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Tu¨bingen, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Mette Saksø
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - David Mönnich
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Annekatrin Seidlitz
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Tu¨bingen, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Jørgen Johansen
- Department of Oncology, Odense University Hospital (OUH), Denmark
| | - Tomas Skripcak
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Tu¨bingen, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - Michael Baumann
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Tu¨bingen, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mechthild Krause
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Tu¨bingen, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| |
Collapse
|
13
|
Watanabe S, Inoue T, Okamoto S, Magota K, Takayanagi A, Sakakibara-Konishi J, Katoh N, Hirata K, Manabe O, Toyonaga T, Kuge Y, Shirato H, Tamaki N, Shiga T. Combination of FDG-PET and FMISO-PET as a treatment strategy for patients undergoing early-stage NSCLC stereotactic radiotherapy. EJNMMI Res 2019; 9:104. [PMID: 31802264 PMCID: PMC6892988 DOI: 10.1186/s13550-019-0578-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/21/2019] [Indexed: 12/25/2022] Open
Abstract
Background We investigated the prognostic predictive value of the combination of fluorodeoxyglucose (FDG)- and fluoromisonidazole (FMISO)-PET in patients with non-small cell lung carcinoma (NSCLC) treated with stereotactic body radiation therapy (SBRT). Patients and methods We prospectively examined patients with pathologically proven NSCLC; all underwent FDG and FMISO PET/CT scans before SBRT. PET images were acquired using a whole-body time-of-flight PET-CT scanner with respiratory gating. We classified them into recurrent and non-recurrent groups based on their clinical follow-ups and compared the groups' tumor diameters and PET parameters (i.e., maximum of the standardized uptake value (SUVmax), metabolic tumor volume, tumor-to-muscle ratio, and tumor-to-blood ratio). We performed univariate analysis to evaluate the impact of the PET variables on the patients' progression-free survival (PFS). We divided the patients by thresholds of FDG SUVmax and FMISO SUVmax obtained from receiver operating characteristic analysis for assessment of recurrence rate and PFS. Results Thirty-two NSCLC patients (19 male and 13 females; median age, 83 years) were enrolled. All received SBRT. At the study endpoint, 23 patients (71.9%) were non-recurrent and nine patients (28.1%) had recurrent disease. Significant between-group differences were observed in tumor diameter and all the PET parameters, demonstrating that those were significant predictors of the recurrence in all patients. In the 22 patients with tumors > 2 cm, tumor diameter and FDG SUVmax were not significant predictors. Thirty-two patients were divided into three patterns from the thresholds of FDG SUVmax (6.81) and FMISO SUVmax (1.89); A, low FDG and low FMISO (n = 14); B, high FDG and low FMISO (n = 8); C, high FDG and high FMISO (n = 10). No pattern A patient experienced tumor recurrence, whereas two pattern B patients (25%) and seven pattern C patients (70%) exhibited recurrence. A Kaplan-Meier analysis of all patients revealed a significant difference in PFS between patterns A and B (p = 0.013) and between patterns A and C (p < 0.001). In the tumors > 2 cm patients, significant differences in PFS were demonstrated between pattern A and C patients (p = 0.002). Conclusion The combination of FDG- and FMISO-PET can identify patients with a baseline risk of recurrence and indicate whether additional therapy might be performed to improve survival.
Collapse
Affiliation(s)
- Shiro Watanabe
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Tetsuya Inoue
- Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Shozo Okamoto
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,Department of Radiology, Obihiro Kosei Hospital, West 14 South 10-1, Obihiro, 080-0024, Japan
| | - Keiichi Magota
- Division of Medical Imaging and Technology, Hokkaido University Hospital, Kita-14, Nishi-5, Kita-ku, Sapporo, 060-8648, Japan
| | - Ayumi Takayanagi
- Department of Diagnostic and Interventional Radiology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Jun Sakakibara-Konishi
- First Department of Medicine, Hokkaido University Hospital, Kita-14, Nishi-5, Sapporo, 060-8648, Japan
| | - Norio Katoh
- Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Osamu Manabe
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takuya Toyonaga
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hiroki Shirato
- Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tohru Shiga
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
14
|
Abstract
The progressive integration of positron emission tomography/computed tomography (PET/CT) imaging in radiation therapy has its rationale in the biological intertumoral and intratumoral heterogeneity of malignant lesions that require the individual adjustment of radiation dose to obtain an effective local tumor control in cancer patients. PET/CT provides information on the biological features of tumor lesions such as metabolism, hypoxia, and proliferation that can identify radioresistant regions and be exploited to optimize treatment plans. Here, we provide an overview of the basic principles of PET-based target volume selection and definition using 18F-fluorodeoxyglucose (18F-FDG) and then we focus on the emerging strategies of dose painting and adaptive radiotherapy using different tracers. Previous studies provided consistent evidence that integration of 18F-FDG PET/CT in radiotherapy planning improves delineation of target volumes and reduces the uncertainties and variabilities of anatomical delineation of tumor sites. PET-based dose painting and adaptive radiotherapy are feasible strategies although their clinical implementation is highly demanding and requires strong technical, computational, and logistic efforts. Further prospective clinical trials evaluating local tumor control, survival, and toxicity of these emerging strategies will promote the full integration of PET/CT in radiation oncology.
Collapse
Affiliation(s)
- Rosa Fonti
- Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Manuel Conson
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
15
|
Matuszak MM, Kashani R, Green M, Lee C, Cao Y, Owen D, Jolly S, Mierzwa M. Functional Adaptation in Radiation Therapy. Semin Radiat Oncol 2019; 29:236-244. [PMID: 31027641 DOI: 10.1016/j.semradonc.2019.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The promise of adaptive therapy to improve outcomes in radiation oncology has been an area of interest and research in the community for many years. One of the sources of data that can be used to drive adaptive therapy is functional information about the tumor or normal tissues. This avenue of adaptation includes many potential sources of data including global markers and functional imaging. Global markers can be assessments derived from blood measurements, patient functional testing, and circulating tumor material and functional imaging data comprises spatial physiological information from various imaging studies such as positron emission tomography, magnetic resonance imaging, and single photon emission computed tomography. The goal of functional adaptation is to use these functional data to adapt radiation therapy to improve patient outcomes. While functional adaptation holds a lot of promise, there are challenges such as quantifying and minimizing uncertainties, streamlining clinical implementation, determining the ideal way to incorporate information within treatment plan optimization, and proving the clinical benefit through trials. This paper will discuss the types of functional information currently being used for adaptation, highlight several areas where functional adaptation has been studied, and introduce some of the barriers to more widespread clinical implementation.
Collapse
Affiliation(s)
- Martha M Matuszak
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.
| | - Rojano Kashani
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Michael Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Choonik Lee
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Dawn Owen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Shruti Jolly
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Michelle Mierzwa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
16
|
Siva S, Ball DL. Single Fraction SBRT for Early Stage Lung Cancer-Less is More? Int J Radiat Oncol Biol Phys 2019; 103:1085-1087. [PMID: 30900559 DOI: 10.1016/j.ijrobp.2018.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.
| | - David L Ball
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Mohindra P, Sawant A, Griffin RJ, Lamichhane N, Vlashi E, Xu‐Welliver M, Dominello M, Joiner MC, Burmeister J. Three discipline collaborative radiation therapy (3DCRT) special debate: I would treat all early-stage NSCLC patients with SBRT. J Appl Clin Med Phys 2019; 20:7-13. [PMID: 30793828 PMCID: PMC6414141 DOI: 10.1002/acm2.12545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 11/27/2022] Open
Affiliation(s)
- Pranshu Mohindra
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Amit Sawant
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Robert J. Griffin
- Department of Radiation OncologyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Narottam Lamichhane
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Erina Vlashi
- Department of Radiation OncologyUniversity of California‐Los AngelesLos AngelesCAUSA
| | - Meng Xu‐Welliver
- Department of Radiation OncologyThe James Cancer CenterOhio State UniversityColumbusOHUSA
| | - Michael Dominello
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Michael C. Joiner
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Jay Burmeister
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMIUSA
| |
Collapse
|
18
|
Clinical and Pre-clinical Methods for Quantifying Tumor Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:19-41. [PMID: 31201714 DOI: 10.1007/978-3-030-12734-3_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia, a prevalent characteristic of most solid malignant tumors, contributes to diminished therapeutic responses and more aggressive phenotypes. The term hypoxia has two definitions. One definition would be a physiologic state where the oxygen partial pressure is below the normal physiologic range. For most normal tissues, the normal physiologic range is between 10 and 20 mmHg. Hypoxic regions develop when there is an imbalance between oxygen supply and demand. The impact of hypoxia on cancer therapeutics is significant: hypoxic tissue is 3× less radiosensitive than normoxic tissue, the impaired blood flow found in hypoxic tumor regions influences chemotherapy delivery, and the immune system is dependent on oxygen for functionality. Despite the clinical implications of hypoxia, there is not a universal, ideal method for quantifying hypoxia, particularly cycling hypoxia because of its complexity and heterogeneity across tumor types and individuals. Most standard imaging techniques can be modified and applied to measuring hypoxia and quantifying its effects; however, the benefits and challenges of each imaging modality makes imaging hypoxia case-dependent. In this chapter, a comprehensive overview of the preclinical and clinical methods for quantifying hypoxia is presented along with the advantages and disadvantages of each.
Collapse
|
19
|
Quantitative Imaging for Radiation Oncology. Int J Radiat Oncol Biol Phys 2018; 102:683-686. [DOI: 10.1016/j.ijrobp.2018.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 11/23/2022]
|