1
|
Tan HQ, Cai J, Tay SH, Sim AY, Huang L, Chua ML, Tang Y. Cluster-based radiomics reveal spatial heterogeneity of bevacizumab response for treatment of radiotherapy-induced cerebral necrosis. Comput Struct Biotechnol J 2024; 23:43-51. [PMID: 38125298 PMCID: PMC10730953 DOI: 10.1016/j.csbj.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Background Bevacizumab is used in the treatment of radiation necrosis (RN), which is a debilitating toxicity following head and neck radiotherapy. However, there is no biomarker to predict if a patient would respond to bevacizumab. Purpose We aimed to develop a cluster-based radiomics approach to characterize the spatial heterogeneity of RN and map their responses to bevacizumab. Methods 118 consecutive nasopharyngeal carcinoma patients diagnosed with RN were enrolled. We divided 152 lesions from the patients into 101 for training, and 51 for validation. We extracted voxel-level radiomics features from each lesion segmented on T1-weighted+contrast and T2 FLAIR sequences of pre- and post-bevacizumab magnetic resonance images, followed by a three-step analysis involving individual- and population-level clustering, before delta-radiomics to derive five radiomics clusters within the lesions. We tested the association of each cluster with response to bevacizumab and developed a clinico-radiomics model using clinical predictors and cluster-specific features. Results 71 (70.3%) and 34 (66.7%) lesions had responded to bevacizumab in the training and validation datasets, respectively. Two radiomics clusters were spatially mapped to the edema region, and the volume changes were significantly associated with bevacizumab response (OR:11.12 [95% CI: 2.54-73.47], P = 0.004; and 1.63[1.07-2.78], P = 0.042). The combined clinico-radiomics model based on textural features extracted from the most significant cluster improved the prediction of bevacizumab response, compared with a clinical-only model (AUC:0.755 [0.645-0.865] to 0.852 [0.764-0.940], training; 0.708 [0.554-0.861] to 0.816 [0.699-0.933], validation). Conclusion Our radiomics approach yielded intralesional resolution, enabling a more refined feature selection for predicting bevacizumab efficacy in the treatment of RN.
Collapse
Affiliation(s)
- Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Jinhua Cai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shi Hui Tay
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Adelene Y.L. Sim
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Luo Huang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, People's Republic of China
| | - Melvin L.K. Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Oncology Academic Programme, Duke-NUS Medical School, Singapore
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Ospina JP, Wen PY. Medical and neurologic management of brain tumor patients. Curr Opin Neurol 2024; 37:657-665. [PMID: 39221926 DOI: 10.1097/wco.0000000000001315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW This article discusses commonly encountered medical and neurological complications in patients with brain tumors and highlights recommendations for their management based on updated evidence. RECENT FINDINGS Use of dexamethasone is correlated with worse prognosis in patients with glioblastoma, and in brain metastases, high doses may lead to increased side effects without additional clinical benefit. There are multiple antiseizure medications (ASM) to choose from and possible interactions and toxicity must be considered when choosing an agent. Additionally, there is growing interest in the use of AMPA receptor blockers as ASM in patients with brain tumors. Nonpharmacological strategies for the management of fatigue remain paramount. Cognitive decline is common after whole brain radiation (WBRT) and hippocampal-sparing WBRT results in superior cognitive outcomes. Venous thromboembolism is a common complication and there is growing evidence on the use of direct oral anticoagulants (DOACs) in this population. SUMMARY There is evolving evidence on the management of medical and neurological complications in patients with brain tumors. These complications, require early identification and multidisciplinary collaboration and expertise.
Collapse
Affiliation(s)
- Juan Pablo Ospina
- Center for Neuro-Oncology, Dana-Farber Cancer Institute
- Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
- Department of Neurology, Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute
- Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| |
Collapse
|
3
|
Sampat PJ, Cortese A, Goodman A, Ghelani GH, Mix MD, Graziano S, Basnet A. Treatment of brain metastases from non-small cell lung cancer: preclinical, clinical, and translational research. Front Oncol 2024; 14:1411432. [PMID: 39534096 PMCID: PMC11554526 DOI: 10.3389/fonc.2024.1411432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer is the second most common type of cancer and is the leading cause of cancer-related deaths in the United States. Approximately 10-40% of patients with solid tumors develop brain metastases, with non-small cell lung cancer accounting for approximately 50% of all cases of patients with brain metastases. Many management options are available which can include surgery, radiation, and systemic therapy. A variety of factors go into the selection of management of brain metastases. In this review, we will focus on the treatment strategies and optimizing the management of brain metastases in patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Parth J. Sampat
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alyssa Cortese
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alexandra Goodman
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Ghanshyam H. Ghelani
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Michael D. Mix
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Stephen Graziano
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alina Basnet
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
4
|
Luo S, Lai S, Wu Y, Hong J, Lin D, Lin S, Huang X, Xu X, Weng X. Cost-effectiveness analysis of bevacizumab for cerebral radiation necrosis treatment based on real-world utility value in China. Strahlenther Onkol 2024; 200:805-814. [PMID: 38829437 DOI: 10.1007/s00066-024-02242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/01/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Bevacizumab shows superior efficacy in cerebral radiation necrosis (CRN) therapy, but its economic burden remains heavy due to the high drug price. This study aims to evaluate the cost-effectiveness of bevacizumab for CRN treatment from the Chinese payers' perspective. METHODS A decision tree model was developed to compare the costs and health outcomes of bevacizumab and corticosteroids for CRN therapy. Efficacy and safety data were derived from the NCT01621880 trial, which compared the effectiveness and safety of bevacizumab monotherapy with corticosteroids for CRN in nasopharyngeal cancer patients, and demonstrated that bevacizumab invoked a significantly higher response than corticosteroids (65.5% vs. 31.5%, P < 0.001) with no significant differences in adverse events between two groups. The utility value of the "non-recurrence" status was derived from real-world data. Costs and other utility values were collected from an authoritative Chinese network database and published literature. The primary outcomes were total costs, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratio (ICER). The uncertainty of the model was evaluated via one-way and probabilistic sensitivity analyses. RESULTS Bevacizumab treatment added 0.12 (0.48 vs. 0.36) QALYs compared to corticosteroid therapy, along with incremental costs of $ 2010 ($ 4260 vs. $ 2160). The resultant ICER was $ 16,866/QALY, which was lower than the willingness-to-pay threshold of $ 38,223/QALY in China. The price of bevacizumab, body weight, and the utility value of recurrence status were the key influential parameters for ICER. Probabilistic sensitivity analysis revealed that the probability of bevacizumab being cost-effectiveness was 84.9%. CONCLUSION Compared with corticosteroids, bevacizumab is an economical option for CRN treatment in China.
Collapse
Affiliation(s)
- Shaohong Luo
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
| | - Shufei Lai
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yajing Wu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Fuzhou, China
- Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
| | - Dong Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
| | - Shen Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
| | - Xiaoting Huang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
| | - Xiongwei Xu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
| | - Xiuhua Weng
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China.
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China.
| |
Collapse
|
5
|
Lai S, Luo S, Lin S, Huang X, Wang X, Xu X, Weng X. Is Bevacizumab a Cost-Effective Regimen for Treating Cerebral Radiation Necrosis in the United States? Pract Radiat Oncol 2024:S1879-8500(24)00210-8. [PMID: 39216726 DOI: 10.1016/j.prro.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Bevacizumab has been demonstrated to have superior efficacy in the treatment of cerebral radiation necrosis (CRN), but its high cost may exacerbate the disease burden. This study aimed to assess the cost-effectiveness of bevacizumab in comparison to corticosteroids for treating CRN from the US payers' perspective. METHODS Decision tree models were constructed to simulate the process of bevacizumab and corticosteroids in CRN short-term and long-term therapy. Critical clinical data were derived from the NCT01621880 trial. Costs and utility values were obtained from the US official websites and published literature. The main outcomes were total costs, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratio (ICER). One-way and probabilistic sensitivity analyses were performed to assess the robustness of the models. RESULTS In the short-term and long-term models, bevacizumab added 0.11 (0.46 vs 0.35) and 0.16 (0.54 vs 0.38) QALYs compared with corticosteroids therapy, with corresponding incremental costs of $12,351 and $23,253, respectively. The resultant ICERs were $112,987/QALY and $150,245/QALY for short-term and long-term treatment, respectively. The one-way sensitivity analysis indicated that utility value of nonrecurrence status, body weight, and bevacizumab price per cycle were the most influential factors for ICER of both models. At the willingness-to-pay threshold of $150,000/QALY in the United States, the probabilities of bevacizumab being cost-effective for CRN short and long-term treatment were 63.9% and 49%, respectively. CONCLUSIONS Compared with corticosteroids, bevacizumab is an economical alternative for CRN short-term treatment from the US payers' perspective, whereas long-term therapy draws an opposite conclusion.
Collapse
Affiliation(s)
- Shufei Lai
- School of Pharmacy, Fujian Medical University, Fuzhou, China; Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Shaohong Luo
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Shen Lin
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Xiaoting Huang
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Xiangzhen Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, China; Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Xiongwei Xu
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Xiuhua Weng
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China.
| |
Collapse
|
6
|
You H, He L, Ouyang Z, Yang Y, Xie S, Zhou J, Zhang Y, Shi J. Case report: intracranial lesions in a patient with anxiety and depression: tumor recurrence or radiation encephalopathy? Front Oncol 2024; 14:1422765. [PMID: 39211558 PMCID: PMC11358061 DOI: 10.3389/fonc.2024.1422765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Radiation encephalopathy (REP) is one of the most common complications of radiotherapy for malignant tumors of the head and neck. Symptoms usually appear months to years following radiotherapy, with headache, insomnia, and memory loss as the main clinical features. We report a patient who was admitted to the hospital with anxiety and depressive disorder and was eventually diagnosed with REP. Patients and methods A 48-year-old patient who had undergone over 2 years of radiotherapy for nasopharyngeal carcinoma was admitted to the Department of Psychosomatic Medicine of our hospital because of recurrent fear, low mood, and waking up from dreams. Magnetic resonance imaging (MRI) revealed a mass in the left temporal lobe with a large peripheral edema. After multidisciplinary consultation, the possibility of tumor recurrence could not be excluded. Results Resection of the lesioned brain tissue to obtain pathological tissue showed glial cell proliferation and small focal areas of degeneration and necrosis, which indicated that the lesions were inflammatory. Postoperative MRI showed no abnormal signal, and the patient's condition improved. Conclusion Nasopharyngeal carcinoma patients with a history of radiotherapy and symptoms of increased intracranial pressure and neurological damage should be examined for REP. Furthermore, patients may experience anxiety and depressive disorders as a result of temporal lobe damage caused by REP.
Collapse
Affiliation(s)
- Haiping You
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Lin He
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Zhibo Ouyang
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yao Yang
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Shu Xie
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Jiwei Zhou
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yun Zhang
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Jian Shi
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
7
|
Zoto Mustafayev T, Turna M, Bolukbasi Y, Tezcanli E, Guney Y, Dincbas FO, Atasoy BM, Ugurluer G, Caglar HB, Atalar B, Ozyar E. Clinical and radiological effects of Bevacizumab for the treatment of radionecrosis after stereotactic brain radiotherapy. BMC Cancer 2024; 24:918. [PMID: 39080602 PMCID: PMC11290153 DOI: 10.1186/s12885-024-12643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
PURPOSE The purpose of this multicenter retrospective study was to analyze the clinical and radiological effects of bevacizumab (BV) on radionecrosis (RN) that developed after stereotactic radiotherapy (SRT) for brain metastasis. METHODS Forty patients with SRT related symptomatic brain RN treated in 10 radiation oncology centers were analyzed. The clinical response to BV treatment was categorized as follows: complete (no additional treatment required), partial (requiring either steroids or repeat BV), and unresponsive (requiring surgery). The radiological features of brain RN were analyzed in 10 patients whose serial MRI scans were available after corticosteroid and BV treatments. RESULTS BV was used as a first line treatment in 11 (27.5%) and as a second line treatment in 29 (72.5%) of patients. The neurological symptoms regressed in 77.5% of patients after treatment with BV (45% complete response, 32.5% partial response). The median edema volume increased from 75.9 cc (range: 5.9-125.8 cc) at RN to 113.65 cc (range: 1.5-382.1 cc) after use of corticosteroids, representing a rate of 39.8% increase (p = 0.074). However, after BV treatment the median volume of edema decreased to 19.5 cc (range: 0-163.3 cc) which represents a difference of 62.2% (p = 0.041) from RN. CONCLUSION The use of BV caused clinical response rate of 77.5% and a good radiological response in corticosteroid unresponsive patients. The role of BV should be further investigated in prospective studies.
Collapse
Affiliation(s)
| | - Menekse Turna
- Department of Radiation Oncology, Anadolu Medical Center affiliated with Johns Hopkins Medicine, Kocaeli, Turkey
| | - Yasemin Bolukbasi
- Department of Radiation Oncology, Koc University School of Medicine, Istanbul, Turkey
| | - Evrim Tezcanli
- Department of Radiation Oncology, Acibadem Altunizade Hospital, Istanbul, Turkey
| | - Yildiz Guney
- Department of Radiation Oncology, Memorial Ankara Hospital, Ankara, Turkey
| | - Fazilet Oner Dincbas
- Cerrahpasa Medical School, Department of Radiation Oncology, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of Radiation Oncology, Memorial Bahcelievler Hospital, Istanbul, Turkey
| | - Beste Melek Atasoy
- Department of Radiation Oncology, Marmara University School of Medicine, Istanbul, Turkey
| | - Gamze Ugurluer
- Department of Radiation Oncology, Acibadem MAA University School of Medicine, Istanbul, Turkey
| | - Hale Basak Caglar
- Department of Radiation Oncology, Anadolu Medical Center affiliated with Johns Hopkins Medicine, Kocaeli, Turkey
| | - Banu Atalar
- Department of Radiation Oncology, Acibadem MAA University School of Medicine, Istanbul, Turkey
| | - Enis Ozyar
- Department of Radiation Oncology, Acibadem MAA University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
8
|
Zhong K, Liu K, Song Y, Chen S, Hu X, Xue R, Ma X, Li S, Yang J, Deng Z, Zhu X, Yuan M, Huang Y, Yin W, Chen Y, Tang Y, Shi Z. A Synthetic Steroid 5α-Androst-3β, 5, 6β-triol Alleviates Radiation-Induced Brain Injury in Mice via Inhibiting GBP5/NF-κB/NLRP3 Signal Axis. Mol Neurobiol 2024; 61:4074-4089. [PMID: 38057643 DOI: 10.1007/s12035-023-03831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Radiotherapy for head and neck tumors can lead to a severe complication known as radiation-induced brain injury (RIBI). However, the underlying mechanism of RIBI development remains unclear, and limited prevention and treatment options are available. Neuroactive steroids have shown potential in treating neurological disorders. 5α-Androst-3β, 5, 6β-triol (TRIOL), a synthetic neuroprotective steroid, holds promise as a treatment candidate for RIBI patients. However, the neuroprotective effects and underlying mechanism of TRIOL on RIBI treatment are yet to be elucidated. In the present study, our findings demonstrate TRIOL's potential as a neuroprotective agent against RIBI. In gamma knife irradiation mouse model, TRIOL treatment significantly reduced brain necrosis volume, microglial activation, and neuronal loss. RNA-sequencing, immunofluorescence, real-time quantitative polymerase chain reaction, siRNA transfection, and western blotting techniques revealed that TRIOL effectively decreased microglial activation, proinflammatory cytokine release, neuron loss, and guanylate-binding protein 5 (GBP5) expression, along with its downstream signaling pathways NF-κB and NLRP3 activation in vitro. In summary, TRIOL effectively alleviate RIBI by inhibiting the GBP5/NF-κB/NLRP3 signal axis, reducing microglia activation and pro-inflammation cytokines release, rescuing neuron loss. This study highlights the potential of TRIOL as a novel and promising therapy drug for RIBI treatment.
Collapse
Affiliation(s)
- Ke Zhong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kejia Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu Song
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Sitai Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xia Hu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruiqi Xue
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xueying Ma
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shaojian Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jingwen Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhenhong Deng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoqiu Zhu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Mingjun Yuan
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., H Building F/1, 3 Juquan Road, Science City, Guangzhou, 510670, China
| | - Yijun Huang
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., H Building F/1, 3 Juquan Road, Science City, Guangzhou, 510670, China
| | - Wei Yin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., H Building F/1, 3 Juquan Road, Science City, Guangzhou, 510670, China
| | - Yupin Chen
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., H Building F/1, 3 Juquan Road, Science City, Guangzhou, 510670, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
9
|
Zhou F, Jiang L, Sun X, Wang Z, Feng J, Liu M, Ma Z. Surgery of enlarging lesions after stereotactic radiosurgery for brain metastases in patients with non-small cell lung cancer with oncogenic driver mutations frequently reveals radiation necrosis: case series and review. APMIS 2024; 132:375-381. [PMID: 38466886 DOI: 10.1111/apm.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
In brain metastases, radiation necrosis (RN) is a complication that arises after single or multiple fractionated stereotactic radiosurgery (SRS/FSRS), which is challenging to distinguish from local recurrence (LR). Studies have shown increased RN incidence rates in non-small cell lung cancer (NSCLC) patients with oncogenic driver mutations (ODMs) or receiving tyrosine kinase inhibitors (TKIs). This study investigated enlarging brain lesions following SRS/FSRS, for which additional surgeries were performed to distinguish between RN and LR. We investigated seven NSCLC patients with ODMs undergoing SRS/FSRS for BM and undergoing surgery for suspicion of LR on MRI imaging. Descriptive statistics were performed. Among the seven patients, six were EGFR+, while one was ALK+. The median irradiation dose was 30 Gy (range, 20-35 Gy). The median time to develop RN after SRS/FSRS was 11.1 months (range: 6.3-31.2 months). Moreover, gradually enlarging lesions were found in all patients after 6 months post-SRS/FSR. Brain radiation necrosis was pathologically confirmed in all the patients. RN should be suspected in NSCLC patients when lesions keep enlarging after 6 months post-SRS/FSRS, especially for patients with ODMs and receiving TKIs. Further, this case series indicates that further dose reduction might be necessary to avoid RN for such patients.
Collapse
Affiliation(s)
- Fang Zhou
- Departments of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Leilei Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Peking University, Beijing, China
| | - Xuankai Sun
- Departments of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhen Wang
- Departments of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jialin Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Peking University, Beijing, China
| | - Ming Liu
- Departments of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhao Ma
- Departments of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
10
|
Mayo ZS, Billena C, Suh JH, Lo SS, Chao ST. The dilemma of radiation necrosis from diagnosis to treatment in the management of brain metastases. Neuro Oncol 2024; 26:S56-S65. [PMID: 38437665 PMCID: PMC10911797 DOI: 10.1093/neuonc/noad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Radiation therapy with stereotactic radiosurgery (SRS) or whole brain radiation therapy is a mainstay of treatment for patients with brain metastases. The use of SRS in the management of brain metastases is becoming increasingly common and provides excellent local control. Cerebral radiation necrosis (RN) is a late complication of radiation treatment that can be seen months to years following treatment and is often indistinguishable from tumor progression on conventional imaging. In this review article, we explore risk factors associated with the development of radiation necrosis, advanced imaging modalities used to aid in diagnosis, and potential treatment strategies to manage side effects.
Collapse
Affiliation(s)
- Zachary S Mayo
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cole Billena
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - John H Suh
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Samuel T Chao
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Ma X, Zuo Y, Hu X, Chen S, Zhong K, Xue R, Gui S, Liu K, Li S, Zhu X, Yang J, Deng Z, Liu X, Xu Y, Liu S, Shi Z, Zhou M, Tang Y. Terminally differentiated cytotoxic CD4 + T cells were clonally expanded in the brain lesion of radiation-induced brain injury. CNS Neurosci Ther 2024; 30:e14682. [PMID: 38499993 PMCID: PMC10948588 DOI: 10.1111/cns.14682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/04/2024] [Accepted: 02/25/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Accumulating evidence supports the involvement of adaptive immunity in the development of radiation-induced brain injury (RIBI). Our previous work has emphasized the cytotoxic function of CD8+ T cells in RIBI. In this study, we aimed to investigate the presence and potential roles of cytotoxic CD4+ T cells (CD4+ CTLs) in RIBI to gain a more comprehensive understanding of adaptive immunity in this context. MAIN TEXT Utilizing single-cell RNA sequencing (scRNA-seq), we analyzed 3934 CD4+ T cells from the brain lesions of four RIBI patients and identified six subclusters within this population. A notable subset, the cytotoxic CD4+ T cells (CD4+ CTLs), was marked with high expression of cytotoxicity-related genes (NKG7, GZMH, GNLY, FGFBP2, and GZMB) and several chemokine and chemokine receptors (CCL5, CX3CR1, and CCL4L2). Through in-depth pseudotime analysis, which simulates the development of CD4+ T cells, we observed that the CD4+ CTLs exhibited signatures of terminal differentiation. Their functions were enriched in protein serine/threonine kinase activity, GTPase regulator activity, phosphoprotein phosphatase activity, and cysteine-type endopeptidase activity involved in the apoptotic signaling pathway. Correspondingly, mice subjected to gamma knife irradiation on the brain showed a time-dependent infiltration of CD4+ T cells, an increase of MHCII+ cells, and the existence of CD4+ CTLs in lesions, along with an elevation of apoptotic-related proteins. Finally, and most crucially, single-cell T-cell receptor sequencing (scTCR-seq) analysis at the patient level determined a large clonal expansion of CD4+ CTLs in lesion tissues of RIBI. Transcriptional factor-encoding genes TBX21, RORB, and EOMES showed positive correlations with the cytotoxic functions of CD4+ T cells, suggesting their potential to distinguish RIBI-related CD4+ CTLs from other subsets. CONCLUSION The present study enriches the understanding of the transcriptional landscape of adaptive immune cells in RIBI patients. It provides the first description of a clonally expanded CD4+ CTL subset in RIBI lesions, which may illuminate new mechanisms in the development of RIBI and offer potential biomarkers or therapeutic targets for the disease.
Collapse
Affiliation(s)
- Xueying Ma
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Brain Research Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - You Zuo
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Brain Research Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xia Hu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
- Jiangmen Central HospitalAffiliated Jiangmen Hospital of Sun Yat‐sen UniversityJiangmenChina
| | - Sitai Chen
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Brain Research Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ke Zhong
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of Pharmacy, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ruiqi Xue
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Brain Research Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shushu Gui
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Brain Research Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Kejia Liu
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Brain Research Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shaojian Li
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Brain Research Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xiaoqiu Zhu
- Department of Anesthesiology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jingwen Yang
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Brain Research Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhenhong Deng
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Brain Research Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xiaolu Liu
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Brain Research Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yongteng Xu
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Brain Research Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceSun Yat‐sen UniversityGuangzhouChina
| | - Zhongshan Shi
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Brain Research Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
- Jiangmen Central HospitalAffiliated Jiangmen Hospital of Sun Yat‐sen UniversityJiangmenChina
| | - Yamei Tang
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Brain Research Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
12
|
Gao M, Wang X, Wang X, Niu G, Liu X, Zhao S, Wang Y, Yu H, Huo S, Su H, Song Y, Wang X, Zhuang H, Yuan Z. Can low-dose intravenous bevacizumab be as effective as high-dose bevacizumab for cerebral radiation necrosis? Cancer Sci 2024; 115:589-599. [PMID: 38146096 PMCID: PMC10859604 DOI: 10.1111/cas.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023] Open
Abstract
Although intravenous bevacizumab (IVBEV) is the most promising treatment for cerebral radiation necrosis (CRN), there is no conclusion on the optimal dosage. Our retrospective study aimed to compare the efficacy and safety of high-dose with low-dose IVBEV in treating CRN associated with radiotherapy for brain metastases (BMs). This paper describes 75 patients who were diagnosed with CRN secondary to radiotherapy for BMs, treated with low-dose or high-dose IVBEV and followed up for a minimum of 6 months. The clinical data collected for this study include changes in brain MRI, clinical symptoms, and corticosteroid usage before, during, and after IVBEV treatment. At the 3-month mark following administration of IVBEV, a comparison of two groups revealed that the median percentage decreases in CRN volume on T2-weighted fluid-attenuated inversion recovery and T1-weighted gadolinium contrast-enhanced image (T1CE), as well as the signal ratio reduction on T1CE, were 65.8% versus 64.8% (p = 0.860), 41.2% versus 51.9% (p = 0.396), and 37.4% versus 35.1% (p = 0.271), respectively. Similarly, at 6 months post-IVBEV, the median percentage reductions of the aforementioned parameters were 59.5% versus 62.0% (p = 0.757), 39.1% versus 31.3% (p = 0.851), and 35.4% versus 28.2% (p = 0.083), respectively. Notably, the incidence of grade ≥3 adverse events was higher in the high-dose group (n = 4, 9.8%) than in the low-dose group (n = 0). Among patients with CRN secondary to radiotherapy for BMs, the administration of high-dose IVBEV did not demonstrate superiority over low-dose IVBEV. Moreover, the use of high-dose IVBEV was associated with a higher incidence of grade ≥3 adverse events compared with low-dose IVBEV.
Collapse
Affiliation(s)
- Miaomiao Gao
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xin Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xiaofeng Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Gengmin Niu
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xiaoye Liu
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Shuzhou Zhao
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yue Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Huiwen Yu
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Siyuan Huo
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Hui Su
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yongchun Song
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xiaoguang Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Hong‐Qing Zhuang
- Department of Radiation OncologyPeking University Third HospitalBeijingChina
| | - Zhi‐Yong Yuan
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
13
|
Vellayappan B, Lim-Fat MJ, Kotecha R, De Salles A, Fariselli L, Levivier M, Ma L, Paddick I, Pollock BE, Regis J, Sheehan JP, Suh JH, Yomo S, Sahgal A. A Systematic Review Informing the Management of Symptomatic Brain Radiation Necrosis After Stereotactic Radiosurgery and International Stereotactic Radiosurgery Society Recommendations. Int J Radiat Oncol Biol Phys 2024; 118:14-28. [PMID: 37482137 DOI: 10.1016/j.ijrobp.2023.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Radiation necrosis (RN) secondary to stereotactic radiosurgery is a significant cause of morbidity. The optimal management of corticosteroid-refractory brain RN remains unclear. Our objective was to summarize the literature specific to efficacy and toxicity of treatment paradigms for patients with symptomatic corticosteroid-refractory RN and to provide consensus guidelines for grading and management of RN on behalf of the International Stereotactic Radiosurgery Society. A systematic review of articles pertaining to treatment of RN with bevacizumab, laser interstitial thermal therapy (LITT), surgical resection, or hyperbaric oxygen therapy was performed. The primary composite outcome was clinical and/or radiologic stability/improvement (ie, proportion of patients achieving improvement or stability with the given intervention). Proportions of patients achieving the primary outcome were pooled using random weighted-effects analysis but not directly compared between interventions. Twenty-one articles were included, of which only 2 were prospective studies. Thirteen reports were relevant for bevacizumab, 5 for LITT, 5 for surgical resection and 1 for hyperbaric oxygen therapy. Weighted effects analysis revealed that bevacizumab had a pooled symptom improvement/stability rate of 86% (95% CI 77%-92%), pooled T2 imaging improvement/stability rate of 93% (95% CI 87%-98%), and pooled T1 postcontrast improvement/stability rate of 94% (95% CI 87%-98%). Subgroup analysis showed a statistically significant improvement favoring treatment with low-dose (below median, ≤7.5 mg/kg every 3 weeks) versus high-dose bevacizumab with regards to symptom improvement/stability rate (P = .02) but not for radiologic T1 or T2 changes. The pooled T1 postcontrast improvement/stability rate for LITT was 88% (95% CI 82%-93%), and pooled symptom improvement/stability rate for surgery was 89% (95% CI 81%-96%). Toxicity was inconsistently reported but was generally low for all treatment paradigms. Corticosteroid-refractory RN that does not require urgent surgical intervention, with sufficient noninvasive diagnostic testing that favors RN, can be treated medically with bevacizumab in carefully selected patients as a strong recommendation. The role of LITT is evolving as a less invasive image guided surgical modality; however, the overall evidence for each modality is of low quality. Prospective head-to-head comparisons are needed to evaluate the relative efficacy and toxicity profile among treatment approaches.
Collapse
Affiliation(s)
- Balamurugan Vellayappan
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, Singapore.
| | - Mary Jane Lim-Fat
- Division of Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Antonio De Salles
- Department of Neurosurgery, University of California, Los Angeles, California; HCor Neuroscience, São Paulo, Brazil
| | - Laura Fariselli
- Department of Neurosurgery, Unit of Radiotherapy, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Marc Levivier
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lijun Ma
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Ian Paddick
- Division Physics, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Bruce E Pollock
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jean Regis
- Department of Functional Neurosurgery, Aix Marseille University, Timone University Hospital, Marseille, France
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Shoji Yomo
- Division of Radiation Oncology, Aizawa Comprehensive Cancer Center, Aizawa Hospital, Matsumoto, Japan
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Taylor JW. Neurologic Complications of Conventional Chemotherapy and Radiation Therapy. Continuum (Minneap Minn) 2023; 29:1809-1826. [PMID: 38085899 DOI: 10.1212/con.0000000000001358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE Neurologic complications are among the most common and feared outcomes of cancer treatments. This review discusses the signs and symptoms, mechanisms, and management of the most common peripheral and central neurologic complications of chemotherapy, radiation therapy, and antiangiogenic therapy during cancer treatment and in survivors. LATEST DEVELOPMENTS The landscape of cancer treatments is evolving to include more targeted and biologic therapies, in addition to more traditional cytotoxic therapies and radiation therapy. With increasingly complex regimens and longer survival for patients with cancer, the early recognition and management of neurologic complications is key to improving the morbidity and mortality of patients living with cancer. ESSENTIAL POINTS Neurologists should be familiar with acute central and peripheral toxicities that can occur during cancer treatment and delayed toxicities that can occur years after exposure. Neurologists should be familiar with the clinical and radiologic presentations of these complications and strategies for management.
Collapse
|
15
|
Hua Y, Gao D, Wang K, Ding X, Xu W, Li Y, Shi W, Sun S, Li X. Bevacizumab reduces peritumoral brain edema in lung cancer brain metastases after radiotherapy. Thorac Cancer 2023; 14:3133-3139. [PMID: 37718465 PMCID: PMC10626225 DOI: 10.1111/1759-7714.15106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the efficacy of bevacizumab (Bev) in reducing peritumoral brain edema (PTBE) after stereotactic radiotherapy (SRT) for lung cancer brain metastases. METHODS A retrospective analysis was conducted on 44 patients with lung cancer brain metastases (70 lesions) who were admitted to our oncology and Gamma Knife center from January 2020 to May 2022. All patients received intracranial SRT and had PTBE. Based on treatment with Bev, patients were categorized as SRT + Bev and SRT groups. Follow-up head magnetic resonance imaging was performed to calculate PTBE and tumor volume changes. The edema index (EI) was used to assess the severity of PTBE. Additionally, the extent of tumor reduction and intracranial progression-free survival (PFS) were compared between the two groups. RESULTS The SRT + Bev group showed a statistically significant difference in EI values before and after radiotherapy (p = 0.0115), with lower values observed after treatment, but there was no difference in the SRT group (p = 0.4008). There was a difference in the distribution of EI grades in the SRT + Bev group (p = 0.0186), with an increased proportion of patients at grades 1-2 after radiotherapy, while there was no difference in the SRT group (p > 0.9999). Both groups demonstrated a significant reduction in tumor volume after radiotherapy (p < 0.05), but there was no difference in tumor volume changes between the two groups (p = 0.4089). There was no difference in intracranial PFS between the two groups (p = 0.1541). CONCLUSION Bevacizumab significantly reduces the severity of PTBE after radiotherapy for lung cancer. However, its impact on tumor volume reduction and intracranial PFS does not reach statistical significance.
Collapse
Affiliation(s)
- Yi‐Chun Hua
- Department of Oncology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - De‐Zhi Gao
- Department of Gamma Knife center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Kuan‐Yu Wang
- Department of Gamma Knife center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiao‐Sheng Ding
- Department of Oncology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wei‐Ran Xu
- Department of Oncology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yu‐Bin Li
- Department of Oncology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wei‐Wei Shi
- Department of OncologyPLA General HospitalBeijingChina
| | - Shi‐Bin Sun
- Department of Gamma Knife center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiao‐Yan Li
- Department of Oncology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
16
|
Chen B, Fan Y, Wang L, Zhang J, Xin D, Qiu X, Jiang H, Li B, Chen Q, Wang C, Xiao X, Huang L, Xu Y. Case Report: Radiation necrosis mimicking tumor progression in a patient with extranodal natural killer/T-cell lymphoma. FRONTIERS IN RADIOLOGY 2023; 3:1257565. [PMID: 37954919 PMCID: PMC10634224 DOI: 10.3389/fradi.2023.1257565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
Radiation-induced cerebral necrosis, also known as radiation encephalopathy, is a debilitating condition that significantly impacts the quality of life for affected patients. Secondary central nervous system lymphoma (SCNSL) typically arises from highly aggressive mature B-cell lymphoma, but rarely from extranodal natural killer T-cell lymphoma (ENKTL). Treatment will be guided by differentiation between lymphoma progression from brain necrosis, and is particularly important for critically ill patients in an acute setting. However, differential diagnosis remains challenging because they share similar clinical manifestations and have no specific imaging features. We present the case of a 52-year-old man with ENKTL who suffered an emergency brain herniation secondary to massive radiation necrosis. The diagnosis established by brain biopsy ultimately led to appropriate treatment. The importance of the diagnostic biopsy is highlighted in this case for distinguishing between radiation necrosis and SCNSL.
Collapse
Affiliation(s)
- Boxiao Chen
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yili Fan
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyao Wang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiawei Zhang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dijia Xin
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Qiu
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huawei Jiang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Chen
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xibin Xiao
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liansheng Huang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Lee SH, Choi JW, Kong DS, Seol HJ, Nam DH, Lee JI. Effect of Bevacizumab Treatment in Cerebral Radiation Necrosis : Investigation of Response Predictors in a Single-Center Experience. J Korean Neurosurg Soc 2023; 66:562-572. [PMID: 36642947 PMCID: PMC10483166 DOI: 10.3340/jkns.2022.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Bevacizumab is a feasible option for treating cerebral radiation necrosis (RN). We investigated the clinical outcome of RN after treatment with bevacizumab and factors related to the initial response and the sustained effect. METHODS Clinical data of 45 patients treated for symptomatic RN between September 2019 and February 2021 were retrospectively collected. Bevacizumab (7.5 mg/kg) was administered at 3-week intervals with a maximum four-cycle schedule. Changes in the lesions magnetic resonance image (MRI) scans were examined for the response evaluation. The subgroup analysis was performed based on the initial response and the long-term maintenance of the effect. RESULTS Of the 45 patients, 36 patients (80.0%) showed an initial response, and eight patients (17.8%) showed delayed worsening of the corresponding lesion. The non-responders showed a significantly higher incidence of diffusion restriction on MRI than the responders (100.0% vs. 25.0%, p<0.001). The delayed worsening group showed a significantly higher proportion of glioma pathology than the maintenance group (87.5% vs. 28.6%, p=0.005). Cumulative survival rates with sustained effect were significantly higher in the groups with non-glioma pathology (p=0.019) and the absence of diffusion restriction (p<0.001). Pathology of glioma and diffusion restriction in MRI were the independent risk factors for non-response or delayed worsening after initial response. CONCLUSION The initial response of RN to bevacizumab was favorable, with improvement in four-fifths of the patients. However, a certain proportion of patients showed non-responsiveness or delayed exacerbations. Bevacizumab may be more effective in treating RN in patients with non-glioma pathology and without diffusion restriction in the MRI.
Collapse
Affiliation(s)
- Shin Heon Lee
- Department of Neurosurgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jung Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Doo-Sik Kong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Jun Seol
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Shaaban SG, LeCompte MC, Kleinberg LR, Redmond KJ, Page BR. Recognition and Management of the Long-term Effects of Cranial Radiation. Curr Treat Options Oncol 2023; 24:880-891. [PMID: 37145381 DOI: 10.1007/s11864-023-01078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 05/06/2023]
Abstract
OPINION STATEMENT Cranial radiation is ubiquitous in the treatment of primary malignant and benign brain tumors as well as brain metastases. Improvement in radiotherapy targeting and delivery has led to prolongation of survival outcomes. As long-term survivorship improves, we also focus on prevention of permanent side effects of radiation and mitigating the impact when they do occur. Such chronic treatment-related morbidity is a major concern with significant negative impact on patient's and caregiver's respective quality of life. The actual mechanisms responsible for radiation-induced brain injury remain incompletely understood. Multiple interventions have been introduced to potentially prevent, minimize, or reverse the cognitive deterioration. Hippocampal-sparing intensity modulated radiotherapy and memantine represent effective interventions to avoid damage to regions of adult neurogenesis. Radiation necrosis frequently develops in the high radiation dose region encompassing the tumor and surrounding normal tissue. The radiographic findings in addition to the clinical course of the patients' symptoms are taken into consideration to differentiate between tissue necrosis and tumor recurrence. Radiation-induced neuroendocrine dysfunction becomes more pronounced when the hypothalamo-pituitary (HP) axis is included in the radiation treatment field. Baseline and post-treatment evaluation of hormonal profile is warranted. Radiation-induced injury of the cataract and optic system can develop when these structures receive an amount of radiation that exceeds their tolerance. Special attention should always be paid to avoid irradiation of these sensitive structures, if possible, or minimize their dose to the lowest limit.
Collapse
Affiliation(s)
- Sherif G Shaaban
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, 401 North Broadway, Suite 1440, Baltimore, MD, 21287, USA
| | - Michael C LeCompte
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, 401 North Broadway, Suite 1440, Baltimore, MD, 21287, USA
| | - Lawrence R Kleinberg
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, 401 North Broadway, Suite 1440, Baltimore, MD, 21287, USA
| | - Kristin J Redmond
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, 401 North Broadway, Suite 1440, Baltimore, MD, 21287, USA
| | - Brandi R Page
- Department of Radiation Oncology-National Capitol Region, Johns Hopkins Medicine, 6420 Rockledge Drive Suite 1200, Bethesda, MD, 20817, USA.
| |
Collapse
|
19
|
Merkin RD, Chiang VL, Goldberg SB. Management of patients with brain metastases from NSCLC without a genetic driver alteration: upfront radiotherapy or immunotherapy? Ther Adv Med Oncol 2023; 15:17588359231175438. [PMID: 37275964 PMCID: PMC10233588 DOI: 10.1177/17588359231175438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
Lung cancer is the second most common cancer and the most common cause of cancer-related death in the United States. Brain metastases (BM) are detected in 21% of patients with lung cancer at the time of diagnosis and are the sole metastatic site in 35% of patients with stage IV disease. The best upfront therapy for non-small-cell lung cancer depends on both tumor programmed death 1 ligand-1 (PD-L1) expression and the presence or absence of a targetable genetic alteration in genes such as epidermal growth factor receptor and anaplastic lymphoma kinase. In the absence of a targetable genetic alteration, options include chemotherapy, immune checkpoint inhibitors (ICIs), and ICI combined with chemotherapy. Upfront local therapy followed by systemic therapy is the current standard of care for the management of BM, and may include whole brain radiotherapy, stereotactic radiosurgery (SRS), or craniotomy for surgical resection followed by consolidative SRS. This paradigm is effective in achieving local control, but it remains unclear if this approach is necessary for every patient. Prospective and retrospective data suggest that ICIs with or without chemotherapy can have activity against BM; however, appropriately selecting patients who are able to safely forgo local therapy and start an ICI-based treatment remains a challenge. To be considered for upfront ICI-based therapy, a patient should be free of neurologic symptoms, lesions should be small and not located in a critical region of the central nervous system, if corticosteroids are indicated the requirement should be low (prednisone 10 mg/d or less), and PD-L1 expression should be high. The decision to proceed with upfront ICI without local therapy to BM should be made in a multidisciplinary fashion and patients should undergo frequent surveillance imaging so that salvage local therapy can be administered when necessary. Prospective clinical trials are needed to validate this approach before it can be widely adopted.
Collapse
Affiliation(s)
- Ross D. Merkin
- Department of Medicine, Section of Medical
Oncology, Yale University School of Medicine, Yale Cancer Center, 333 Cedar
Street, PO Box 208028, New Haven, CT 06520, USA
| | - Veronica L. Chiang
- Department of Medicine, Section of Medical
Oncology, Yale University School of Medicine, Yale Cancer Center, New Haven,
CT, USA
| | - Sarah B. Goldberg
- Department of Neurosurgery, Yale University
School of Medicine, Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
20
|
AlAmeer AM, Davis JB, Carey AR, Henderson AD. Outcomes of systemic bevacizumab in radiation-induced optic neuropathy, case series. J Neurooncol 2023:10.1007/s11060-023-04346-y. [PMID: 37227651 DOI: 10.1007/s11060-023-04346-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE Optic neuropathy is a rare, delayed complication after radiation with no universally accepted treatment modality. We report the outcomes of 6 patients with radiation-induced optic neuropathy (RION) who were treated with systemic bevacizumab. METHODS This is a retrospective series of 6 cases of RION, treated with intravenous (IV) bevacizumab. "Improved" or "worse" visual outcomes were defined as a change in best corrected visual acuity of ≥ 3 Snellen lines. Otherwise, the visual outcome was noted as "stable". RESULTS In our series, RION was diagnosed 8 to 36 months after radiotherapy. IV bevacizumab was initiated as treatment within 6 weeks of the onset of visual symptoms in 3 cases and after 3 months in the other cases. Although no improvement in visual function was observed, stabilization of vision was noted in 4 of the 6 cases. In the other 2 cases, the level of vision declined from counting fingers to no light perception. In 2 cases, bevacizumab treatment was discontinued prior to completion of the planned course due to renal stone formation or worsening of renal disease. One patient developed ischemic stroke 4 months after bevacizumab completion. CONCLUSION Systemic bevacizumab may stabilize vision in some patients with RION, though the limitations of our study do not allow us to draw this conclusion definitively. Therefore, the risks and potential benefits of using IV bevacizumab should be considered in each individual case.
Collapse
Affiliation(s)
- Ahmad Mohammed AlAmeer
- Division of Neuro-Ophthalmology, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, MD, USA.
- Division of Ophthalmology, King Abdullah bin Abdulaziz University Hospital, Riyadh, Saudi Arabia.
| | - James Brian Davis
- Division of Neuro-Ophthalmology, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Andrew Rising Carey
- Division of Neuro-Ophthalmology, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Amanda Dean Henderson
- Division of Neuro-Ophthalmology, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Tijtgat J, Calliauw E, Dirven I, Vounckx M, Kamel R, Vanbinst AM, Everaert H, Seynaeve L, Van Den Berge D, Duerinck J, Neyns B. Low-Dose Bevacizumab for the Treatment of Focal Radiation Necrosis of the Brain (fRNB): A Single-Center Case Series. Cancers (Basel) 2023; 15:cancers15092560. [PMID: 37174026 PMCID: PMC10177060 DOI: 10.3390/cancers15092560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Focal radiation necrosis of the brain (fRNB) is a late adverse event that can occur following the treatment of benign or malignant brain lesions with stereotactic radiation therapy (SRT) or stereotactic radiosurgery (SRS). Recent studies have shown that the incidence of fRNB is higher in cancer patients who received immune checkpoint inhibitors. The use of bevacizumab (BEV), a monoclonal antibody that targets the vascular endothelial growth factor (VEGF), is an effective treatment for fRNB when given at a dose of 5-7.5 mg/kg every two weeks. In this single-center retrospective case series, we investigated the effectiveness of a low-dose regimen of BEV (400 mg loading dose followed by 100 mg every 4 weeks) in patients diagnosed with fRNB. A total of 13 patients were included in the study; twelve of them experienced improvement in their existing clinical symptoms, and all patients had a decrease in the volume of edema on MRI scans. No clinically significant treatment-related adverse effects were observed. Our preliminary findings suggest that this fixed low-dose regimen of BEV can be a well-tolerated and cost-effective alternative treatment option for patients diagnosed with fRNB, and it is deserving of further investigation.
Collapse
Affiliation(s)
- Jens Tijtgat
- Department of Medical Oncology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Evan Calliauw
- Department of Medical Oncology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Iris Dirven
- Department of Medical Oncology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Manon Vounckx
- Department of Medical Oncology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Randa Kamel
- Department of Radiotherapy, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Anne Marie Vanbinst
- Department of Medical Imaging, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Hendrik Everaert
- Department of Nuclear Medicine, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Laura Seynaeve
- Department of Neurology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Dirk Van Den Berge
- Department of Radiotherapy, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Johnny Duerinck
- Department of Neurosurgery, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Bart Neyns
- Department of Medical Oncology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
22
|
Carey AR. Case Report: Successful treatment of external beam radiation-induced optic papillopathy with intravitreal anti-VEGF. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1144241. [PMID: 38983066 PMCID: PMC11182080 DOI: 10.3389/fopht.2023.1144241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/04/2023] [Indexed: 07/11/2024]
Abstract
Three cases of optic disc edema arising from radiation optic neuropathy isolated to the intra-ocular optic nerve following external beam radiation for head and neck squamous cell carcinoma are presented. A literature review of the etiology, presentation, and treatment is included for discussion, along with proposed diagnostic criteria.
Collapse
Affiliation(s)
- Andrew R Carey
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
23
|
Bompaire F, Birzu C, Bihan K, Desestret V, Fargeot G, Farina A, Joubert B, Leclercq D, Nichelli L, Picca A, Tafani C, Weiss N, Psimaras D, Ricard D. Advances in treatments of patients with classical and emergent neurological toxicities of anticancer agents. Rev Neurol (Paris) 2023; 179:405-416. [PMID: 37059646 DOI: 10.1016/j.neurol.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/16/2023]
Abstract
The neurotoxicity associated to the anticancer treatments has received a growing body of interest in the recent years. The development of innovating therapies over the last 20years has led to the emergence of new toxicities. Their diagnosis and management can be challenging in the clinical practice and further research is warranted to improve the understanding of their pathogenic mechanisms. Conventional treatments as radiation therapy and chemotherapy are associated to well-known and under exploration emerging central nervous system (CNS) and peripheral nervous system (PNS) toxicities. The identification of the risk factors and a better understanding of their pathogeny through a "bench to bedside and back again" approach, are the first steps towards the development of toxicity mitigation strategies. New imaging techniques and biological explorations are invaluable for their diagnosis. Immunotherapies have changed the cancer treatment paradigm from tumor cell centered to immune modulation towards an efficient anticancer immune response. The use of the immune checkpoints inhibitors (ICI) and chimeric antigen receptor (CAR-T cells) lead to an increase in the incidence of immune-mediated toxicities and new challenges in the neurological patient's management. The neurological ICI-related adverse events (n-irAE) are rare but potentially severe and may present with both CNS and PNS involvement. The most frequent and well characterized, from a clinical and biological standpoint, are the PNS phenotypes: myositis and polyradiculoneuropathy, but the knowledge on CNS phenotypes and their treatments is expanding. The n-irAE management requires a good balance between dampening the autoimmune toxicity without impairing the anticancer immunity. The adoptive cell therapies as CAR-T cells, a promising anticancer strategy, trigger cellular activation and massive production of proinflammatory cytokines inducing frequent and sometime severe toxicity known as cytokine release syndrome and immune effector cell-associated neurologic syndrome. Their management requires a close partnership between oncologist-hematologists, neurologists, and intensivists. The oncological patient's management requires a multidisciplinary clinical team (oncologist, neurologist and paramedical) as well as a research team leading towards a better understanding and a better management of the neurological toxicities.
Collapse
Affiliation(s)
- Flavie Bompaire
- Service de Neurologie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, Clamart, France; UMR 9010 Centre Borelli, Université Paris-Saclay, École Normale Supérieure Paris-Saclay, CNRS, Service de Santé des Armées, Université Paris Cité, Inserm, Saclay, France; OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France
| | - Cristina Birzu
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; AP-HP, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles-Foix, Service de Neurologie 2-Mazarin, Sorbonne Université, Paris, France
| | - Kevin Bihan
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; AP-HP, Service de Pharmacologie, Centre Régional de Pharmacovigilance, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles-Foix, Inserm, CIC-1901, Sorbonne Universités, Paris, France
| | - Virginie Desestret
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; Service de Neurocognition et Neuro-ophtalmologie, Hospices Civils de Lyon, Hôpital Neurologique Pierre-Wertheimer, Lyon, France; Centre de Référence Maladies Rares pour les Syndromes Neurologiques Paranéoplasiques et les Encéphalites Auto-Immunes, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France; MeLiS, UCBL-CNRS UMR 5284, Inserm U1314, Université Claude-Bernard Lyon 1, Lyon, France
| | - Guillaume Fargeot
- AP-HP, Service de Neurologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Antonio Farina
- Centre de Référence Maladies Rares pour les Syndromes Neurologiques Paranéoplasiques et les Encéphalites Auto-Immunes, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France; MeLiS, UCBL-CNRS UMR 5284, Inserm U1314, Université Claude-Bernard Lyon 1, Lyon, France; Service de Neurologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Bastien Joubert
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; Centre de Référence Maladies Rares pour les Syndromes Neurologiques Paranéoplasiques et les Encéphalites Auto-Immunes, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France; MeLiS, UCBL-CNRS UMR 5284, Inserm U1314, Université Claude-Bernard Lyon 1, Lyon, France; Service de Neurologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Delphine Leclercq
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; AP-HP, Service de Neuroradiologie, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles-Foix, Sorbonne Universités, Paris, France
| | - Lucia Nichelli
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; AP-HP, Service de Neuroradiologie, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles-Foix, Sorbonne Universités, Paris, France
| | - Alberto Picca
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; AP-HP, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles-Foix, Service de Neurologie 2-Mazarin, Sorbonne Université, Paris, France
| | - Camille Tafani
- Service de Neurologie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, Clamart, France; OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France
| | - Nicolas Weiss
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino. Università di Firenze, Firenze, Italy; AP-HP, Service de Soins Intensifs en Neurologie, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles-Foix, Sorbonne Universités, Paris, France; École du Val-de-Grâce, Service de Santé des Armées, Paris, France
| | - Dimitri Psimaras
- OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; AP-HP, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles-Foix, Service de Neurologie 2-Mazarin, Sorbonne Université, Paris, France
| | - Damien Ricard
- Service de Neurologie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, Clamart, France; UMR 9010 Centre Borelli, Université Paris-Saclay, École Normale Supérieure Paris-Saclay, CNRS, Service de Santé des Armées, Université Paris Cité, Inserm, Saclay, France; OncoNeuroTox Group: Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpêtrière - Charles-Foix et Hôpital d'Instruction des Armées Percy, Paris, France; École du Val-de-Grâce, Service de Santé des Armées, Paris, France.
| |
Collapse
|
24
|
Barillaro A, Caroprese M, Cella L, Viggiano A, Buccelli F, Daponte C, Feoli C, Oliviero C, Clemente S, Farella A, Conson M, Pacelli R. Stereotactic Radiation Therapy for Brain Metastases: Factors Affecting Outcomes and Radiation Necrosis. Cancers (Basel) 2023; 15:cancers15072094. [PMID: 37046755 PMCID: PMC10093341 DOI: 10.3390/cancers15072094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Stereotactic radiation therapy (SRT) is a proven effective treatment for brain metastases (BM); however, symptomatic radiation necrosis (RN) is a late effect that may impact on patient’s quality of life. The aim of our study was to retrospectively evaluate survival outcomes and characterize the occurrence of RN in a cohort of BM patients treated with ablative SRT at Federico II University Hospital. Clinical and dosimetric factors of 87 patients bearing a total of 220 BMs treated with SRT from 2016 to 2022 were analyzed. Among them, 46 patients with 127 BMs having clinical and MRI follow-up (FUP) ≥ 6 months were selected for RN evaluation. Dosimetric parameters of the uninvolved brain (brain without GTV) were extracted. The crude local control was 91% with neither clinical factors nor prescription dose correlating with local failure (LF). At a median FUP of 9 (1–68) months, the estimated median overall survival (OS), progression-free survival (PFS), and brain progression-free survival (bPFS) were 16, 6, and 9 months, respectively. The estimated OS rates at 1 and 3 years were 59.8% and 18.3%, respectively; bPFS at 1 and 3 years was 29.9% and 13.5%, respectively; PFS at 1 and 3 years was 15.7% and 0%, respectively; and local failure-free survival (LFFS) at 1 and 3 years was 87.2% and 83.8%, respectively. Extracranial disease status was an independent factor related to OS. Fourteen (30%) patients manifested RN. At multivariate analysis, adenocarcinoma histology, left location, and absence of chemotherapy were confirmed as independent risk factors for any-grade RN. Nine (20%) patients developed symptomatic (G2) RN, which improved or stabilized after 1–16 months of steroid therapy. With prompt recognition and, when necessary, medical therapy, RN radiological and clinical amelioration can be obtained.
Collapse
Affiliation(s)
- Angela Barillaro
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| | - Mara Caroprese
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| | - Laura Cella
- National Research Council (CNR), Institute of Biostructures and Bioimaging, 80145 Naples, Italy
| | - Anna Viggiano
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| | - Francesca Buccelli
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| | - Chiara Daponte
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| | - Chiara Feoli
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| | | | | | | | - Manuel Conson
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| |
Collapse
|
25
|
Management of initial and recurrent radiation-induced contrast enhancements following radiotherapy for brain metastases: Clinical and radiological impact of bevacizumab and corticosteroids. Clin Transl Radiat Oncol 2023; 39:100600. [PMID: 36873269 PMCID: PMC9975203 DOI: 10.1016/j.ctro.2023.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Purpose The appearance of radiation-induced contrast enhancements (RICE) after radiotherapy for brain metastases can go along with severe neurological impairments. The aim of our analysis was to evaluate radiological changes, the course and recurrence of RICE and identify associated prognostic factors. Methods We retrospectively identified patients diagnosed with brain metastases, who were treated with radiotherapy and subsequently developed RICE. Patient demographic and clinical data, radiation-, cancer-, and RICE-treatment, radiological results, and oncological outcomes were reviewed in detail. Results A total of 95 patients with a median follow-up of 28.8 months were identified. RICE appeared after a median time of 8.0 months after first radiotherapy and 6.4 months after re-irradiation. Bevacizumab in combination with corticosteroids achieved an improvement of clinical symptoms and imaging features in 65.9% and 75.6% of cases, respectively, both significantly superior compared to treatment with corticosteroids only, and further significantly prolonged RICE-progression-free survival to a median of 5.6 months. Recurrence of RICE after initially improved or stable imaging occurred in 63.1% of cases, significantly more often in patients after re-irradiation and was associated with high mortality of 36.6% after the diagnosis of flare-up. Response of recurrence significantly depended on the applied treatment and multiple courses of bevacizumab achieved good response. Conclusion Our results suggest that bevacizumab in combination with corticosteroids is superior in achieving short-term imaging and symptom improvement of RICE and prolongs the progression-free time compared to corticosteroids alone. Long-term RICE flare-up rates after bevacizumab discontinuation are high, but repeated treatments achieved effective symptomatic control.
Collapse
|
26
|
Zhuo X, Zhao H, Chen M, Mu Y, Li Y, Cai J, Li H, Xu Y, Tang Y. A radiomics model for predicting the response to methylprednisolone in brain necrosis after radiotherapy for nasopharyngeal carcinoma. Radiat Oncol 2023; 18:43. [PMID: 36859353 PMCID: PMC9979431 DOI: 10.1186/s13014-023-02235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Methylprednisolone is recommended as the front-line therapy for radiation-induced brain necrosis (RN) after radiotherapy for nasopharyngeal carcinoma. However, some patients fail to benefit from methylprednisolone or even progress. This study aimed to develop and validate a radiomic model to predict the response to methylprednisolone in RN. METHODS Sixty-six patients receiving methylprednisolone were enrolled. In total, 961 radiomic features were extracted from the pre-treatment magnetic resonance imagings of the brain. Least absolute shrinkage and selection operator regression was then applied to construct the radiomics signature. Combined with independent clinical predictors, a radiomics model was built with multivariate logistic regression analysis. Discrimination, calibration and clinical usefulness of the model were assessed. The model was internally validated using 10-fold cross-validation. RESULTS The radiomics signature consisted of 16 selected features and achieved favorable discrimination performance. The radiomics model incorporating the radiomics signature and the duration between radiotherapy and RN diagnosis, yielded an AUC of 0.966 and an optimism-corrected AUC of 0.967 via 10-fold cross-validation, which also revealed good discrimination. Calibration curves showed good agreement. Decision curve analysis confirmed the clinical utility of the model. CONCLUSIONS The presented radiomics model can be conveniently used to facilitate individualized prediction of the response to methylprednisolone in patients with RN.
Collapse
Affiliation(s)
- Xiaohuang Zhuo
- grid.12981.330000 0001 2360 039XDepartment of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, NO.107 Yan Jiang Xi Road, Guangzhou, Guangdong Province People’s Republic of China
| | - Huiying Zhao
- grid.12981.330000 0001 2360 039XDepartment of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province People’s Republic of China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province People’s Republic of China
| | - Meiwei Chen
- grid.12981.330000 0001 2360 039XDepartment of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Youqing Mu
- grid.12981.330000 0001 2360 039XSchool of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yi Li
- grid.12981.330000 0001 2360 039XDepartment of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, NO.107 Yan Jiang Xi Road, Guangzhou, Guangdong Province People’s Republic of China
| | - Jinhua Cai
- grid.12981.330000 0001 2360 039XDepartment of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, NO.107 Yan Jiang Xi Road, Guangzhou, Guangdong Province People’s Republic of China
| | - Honghong Li
- grid.12981.330000 0001 2360 039XDepartment of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, NO.107 Yan Jiang Xi Road, Guangzhou, Guangdong Province People’s Republic of China
| | - Yongteng Xu
- grid.12981.330000 0001 2360 039XDepartment of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, NO.107 Yan Jiang Xi Road, Guangzhou, Guangdong Province People’s Republic of China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, NO.107 Yan Jiang Xi Road, Guangzhou, Guangdong Province, People's Republic of China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People's Republic of China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
27
|
Cheng J, Jiang J, He B, Lin WJ, Li Y, Duan J, Li H, Huang X, Cai J, Xie J, Zhang Z, Yang Y, Xu Y, Hu X, Wu M, Zhuo X, Liu Q, Shi Z, Yu P, Rong X, Ye X, Saw PE, Wu LJ, Simone CB, Chua MLK, Mai HQ, Tang Y. A phase 2 study of thalidomide for the treatment of radiation-induced blood-brain barrier injury. Sci Transl Med 2023; 15:eabm6543. [PMID: 36812346 DOI: 10.1126/scitranslmed.abm6543] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Radiation-induced brain injury (RIBI) is a debilitating sequela after radiotherapy to treat head and neck cancer, and 20 to 30% of patients with RIBI fail to respond to or have contraindications to the first-line treatments of bevacizumab and corticosteroids. Here, we reported a Simon's minmax two-stage, single-arm, phase 2 clinical trial (NCT03208413) to assess the efficacy of thalidomide in patients with RIBI who were unresponsive to or had contraindications to bevacizumab and corticosteroid therapies. The trial met its primary endpoint, with 27 of 58 patients enrolled showing ≥25% reduction in the volume of cerebral edema on fluid-attenuated inversion recovery-magnetic resonance imaging (FLAIR-MRI) after treatment (overall response rate, 46.6%; 95% CI, 33.3 to 60.1%). Twenty-five (43.1%) patients demonstrated a clinical improvement based on the Late Effects Normal Tissues-Subjective, Objective, Management, Analytic (LENT/SOMA) scale, and 36 (62.1%) experienced cognitive improvement based on the Montreal Cognitive Assessment (MoCA) scores. In a mouse model of RIBI, thalidomide restored the blood-brain barrier and cerebral perfusion, which were attributed to the functional rescue of pericytes secondary to elevation of platelet-derived growth factor receptor β (PDGFRβ) expression by thalidomide. Our data thus demonstrate the therapeutic potential of thalidomide for the treatment of radiation-induced cerebral vasculature impairment.
Collapse
Affiliation(s)
- Jinping Cheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jingru Jiang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Baixuan He
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Yi Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Honghong Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaolong Huang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhan Zhang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuhua Yang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xia Hu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Minyi Wu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaohuang Zhuo
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qiang Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Pei Yu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaojing Ye
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA
| | - Melvin L K Chua
- Department of Head and Neck and Thoracic Cancers, Division of Radiation Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore.,Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore.,Oncology Academic Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| |
Collapse
|
28
|
Carey AR, Page BR, Miller N. Radiation-induced optic neuropathy: a review. Br J Ophthalmol 2022; 107:743-749. [DOI: 10.1136/bjo-2022-322854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
Abstract
Radiation is a commonly used treatment modality for head and neck as well as CNS tumours, both benign and malignant. As newer oncology treatments such as immunotherapies allow for longer survival, complications from radiation therapy are becoming more common. Radiation-induced optic neuropathy is a feared complication due to rapid onset and potential for severe and bilateral vision loss. Careful monitoring of high-risk patients and early recognition are crucial for initiating treatment to prevent severe vision loss due to a narrow therapeutic window. This review discusses presentation, aetiology, recent advances in diagnosis using innovative MRI techniques and best practice treatment options based on the most recent evidence-based medicine.
Collapse
|
29
|
Aizer AA, Lamba N, Ahluwalia MS, Aldape K, Boire A, Brastianos PK, Brown PD, Camidge DR, Chiang VL, Davies MA, Hu LS, Huang RY, Kaufmann T, Kumthekar P, Lam K, Lee EQ, Lin NU, Mehta M, Parsons M, Reardon DA, Sheehan J, Soffietti R, Tawbi H, Weller M, Wen PY. Brain metastases: A Society for Neuro-Oncology (SNO) consensus review on current management and future directions. Neuro Oncol 2022; 24:1613-1646. [PMID: 35762249 PMCID: PMC9527527 DOI: 10.1093/neuonc/noac118] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Brain metastases occur commonly in patients with advanced solid malignancies. Yet, less is known about brain metastases than cancer-related entities of similar incidence. Advances in oncologic care have heightened the importance of intracranial management. Here, in this consensus review supported by the Society for Neuro-Oncology (SNO), we review the landscape of brain metastases with particular attention to management approaches and ongoing efforts with potential to shape future paradigms of care. Each coauthor carried an area of expertise within the field of brain metastases and initially composed, edited, or reviewed their specific subsection of interest. After each subsection was accordingly written, multiple drafts of the manuscript were circulated to the entire list of authors for group discussion and feedback. The hope is that the these consensus guidelines will accelerate progress in the understanding and management of patients with brain metastases, and highlight key areas in need of further exploration that will lead to dedicated trials and other research investigations designed to advance the field.
Collapse
Affiliation(s)
- Ayal A Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Nayan Lamba
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA
| | | | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Adrienne Boire
- Department of Neurology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Priscilla K Brastianos
- Departments of Neuro-Oncology and Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - D Ross Camidge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Veronica L Chiang
- Departments of Neurosurgery and Radiation Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Leland S Hu
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, Arizona, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Priya Kumthekar
- Department of Neurology at The Feinberg School of Medicine at Northwestern University and The Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Keng Lam
- Department of Neurology, Kaiser Permanente, Los Angeles Medical Center, Los Angeles, California, USA
| | - Eudocia Q Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Minesh Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| | - Michael Parsons
- Departments of Oncology and Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Pan D, Rong X, Chen D, Jiang J, Ng WT, Mai H, Li Y, Li H, Cai J, Cheng J, Xu Y, Chua MLK, Simone CB, Lattanzi S, Tang Y. Mortality of early treatment for radiation-induced brain necrosis in head and neck cancer survivors: A multicentre, retrospective, registry-based cohort study. EClinicalMedicine 2022; 52:101618. [PMID: 36034411 PMCID: PMC9399256 DOI: 10.1016/j.eclinm.2022.101618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The evidence of early treatment for radiation-induced brain necrosis (RN) in head and neck cancer survivors remains insufficient. This study aimed to determine whether early anti-RN treatment was associated with lower mortality. METHODS In this cohort study, we utilized data from the Study in Radiotherapy-related Nervous System Complications (NCT03908502) and Hong Kong Cancer Registry. We included consecutive patients who had received radiotherapy (RT) for head and neck cancers and had subsequently developed RN between Jan 8, 2005 and Jan 19, 2020. Patients who had tumor progression before the diagnosis of RN, underwent surgical brain necrosis lesions resection before corticosteroids and/or bevacizumab treatment, had intracranial metastases before the diagnosis of RN, lacked follow-up data, or had a follow-up period of less than three months were excluded. Individual-level data were extracted from electronic medical records of the above-mentioned registries. The primary outcome was all-cause death. The vital status of each patient was confirmed through a standardized telephone interview. We compared patients who received early treatment (initiating bevacizumab or corticosteroids treatment within three months after RN diagnosis) with patients who did not (following a "watch-and-wait" policy). FINDINGS Of 641 eligible patients, 451 patients (70·4%) received early treatment after RN diagnosis and 190 patients (29·6%) did not. Overall, 112 patients (17·5%) died, of whom 73 (16·2%) in the early treatment group and 39 (20·5%) in the watch-and-wait group, during a median follow-up of 3·87 years. The early treatment group showed a lower risk of all-cause death compared with the watch-and-wait group after adjusting for age, sex, absence or presence of neurological symptoms at baseline, RN lesion features on brain magnetic resonance imaging, history of stroke, prior tumor-related characteristics (TNM stage, RT dose and techniques, and chemotherapy), and the time interval from RT to RN (HR 0·48, 95%CI 0·30 to 0·77; p = 0·0027), and extensive sensitivity analyses yielded similar results. There was no significant difference in the effect of early treatment on post-RN survival among subgroups stratified by presence or absence of neurological symptoms at diagnosis (p for interaction=0·41). INTERPRETATION Among head and neck cancer survivors with RN, initiating treatment early after RN diagnosis is associated with a lower risk of all-cause mortality as compared with following the watch-and-wait policy, irrespective of whether patients exhibit symptoms or not. Further prospective randomised studies would be needed to validate our findings since the observational study design might lead to some potential confounding. In the absence of data from randomised trials, our study will have an important implication for clinicians regarding the optimal timing of treatment for RN, and provides the foundation and supporting data for future trials on this topic. FUNDING National Natural Science Foundation of China (81925031, 81820108026, 81872549, 81801229, 82003389), the Science and Technology Program of Guangzhou (202007030001), Young Teacher Training Program of Sun Yat-sen University (20ykpy106), Key-Area Research and Development Program of Guangdong Province (2018B030340001), the National Medical Research Council Singapore Clinician Scientist Award (NMRC/CSA-INV/0027/2018, CSAINV20nov-0021), the Duke-NUS Oncology Academic Program Goh Foundation Proton Research Programme, NCCS Cancer Fund, the Kua Hong Pak Head and Neck Cancer Research Programme, and the National Research Foundation Clinical Research Programme Grant (NRF-CRP17-2017-05).
Collapse
Affiliation(s)
- Dong Pan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongping Chen
- The 5th Ward of Radiotherapy Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jingru Jiang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wai Tong Ng
- Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haiqiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Yi Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Honghong Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology and Medical Sciences, National Cancer Centre Singapore, Singapore
- Oncology Academic Programme, Duke-NUS Medical School, Singapore
| | - Charles B. Simone
- Department of Radiation Oncology, New York Proton Centre and Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Italy
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, China
- Corresponding author at: Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Rd., Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
31
|
Spotted Temporal Lobe Necrosis following Concurrent Chemoradiation Therapy Using Image-Guided Radiotherapy for Nasopharyngeal Carcinoma. Case Rep Otolaryngol 2022; 2022:5877106. [PMID: 36204045 PMCID: PMC9532156 DOI: 10.1155/2022/5877106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background. To explore spotted temporal lobe necrosis (TLN) and changes in brain magnetic resonance imaging (MRI) after image-guided radiotherapy (IGRT) in a patient with nasopharyngeal carcinoma (NPC). Case presentation: a 57-year-old male was diagnosed with stage III NPC, cT1N2M0, in 2017. He underwent concurrent chemoradiation therapy (CCRT) with cisplatin (30 mg/m2) and 5- fluorouracil (5-FU, 500 mg/m2) plus IGRT with 70 Gy in 35 fractions for 7 weeks. The following MRI showed a complete response in the NPC. However, the patient suffered from fainting periodically when standing up approximately 3 years after CCRT. Neck sonography showed mild atherosclerosis (< 15%) of bilateral carotid bifurcations and bilateral small-diameter vertebral arteries, with reduced flow volume. The following MRI showed a 9 mm × 7 mm enhancing lesion in the right temporal lobe without locoregional recurrence, and TLN was diagnosed. The lesion was near the watershed area between the anterior temporal and temporo-occipital arteries. The volume of the necrotic lesion was 0.51 c.c., and the mean dose and Dmax of the lesion were 64.4 Gy and 73.7 Gy, respectively. Additionally, the mean dose, V45, D1 c.c. (dose to 1 ml of the temporal lobe volume), D0.5 c.c. and Dmax of the right and left temporal lobes were 11.1 Gy and 11.4 Gy, 8.5 c.c. and 6.7 c.c., 70.1 Gy and 67.1 Gy, 72.0 Gy and 68.8 Gy, and 74.2 Gy and 72.1 Gy, respectively. Conclusion. Spotted TLN in patients with NPC treated by IGRT may be difficult to diagnose due to a lack of clinical symptoms and radiological signs. Endothelial damage may occur in carotid and vertebral arteries within the irradiated area, affecting the small branches supplying the temporal lobe and inducing spotted TLN. Future research on the relationship between vessels and RT or CCRT and the development of TLN is warranted.
Collapse
|
32
|
DEGRO practical guideline for central nervous system radiation necrosis part 1: classification and a multistep approach for diagnosis. Strahlenther Onkol 2022; 198:873-883. [PMID: 36038669 PMCID: PMC9515024 DOI: 10.1007/s00066-022-01994-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 10/31/2022]
Abstract
PURPOSE The Working Group for Neuro-Oncology of the German Society for Radiation Oncology in cooperation with members of the Neuro-Oncology Working Group of the German Cancer Society aimed to define a practical guideline for the diagnosis and treatment of radiation-induced necrosis (RN) of the central nervous system (CNS). METHODS Panel members of the DEGRO working group invited experts, participated in a series of conferences, supplemented their clinical experience, performed a literature review, and formulated recommendations for medical treatment of RN including bevacizumab in clinical routine. CONCLUSION Diagnosis and treatment of RN requires multidisciplinary structures of care and defined processes. Diagnosis has to be made on an interdisciplinary level with the joint knowledge of a neuroradiologist, radiation oncologist, neurosurgeon, neuropathologist, and neuro-oncologist. A multistep approach as an opportunity to review as many characteristics as possible to improve diagnostic confidence is recommended. Additional information about radiotherapy (RT) techniques is crucial for the diagnosis of RN. Misdiagnosis of untreated and progressive RN can lead to severe neurological deficits. In this practice guideline, we propose a detailed nomenclature of treatment-related changes and a multistep approach for their diagnosis.
Collapse
|
33
|
DEGRO practical guideline for central nervous system radiation necrosis part 2: treatment. Strahlenther Onkol 2022; 198:971-980. [PMID: 36038670 PMCID: PMC9581806 DOI: 10.1007/s00066-022-01973-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/08/2022]
Abstract
Purpose The Working Group for Neurooncology of the German Society for Radiation Oncology (DEGRO; AG NRO) in cooperation with members of the Neurooncological Working Group of the German Cancer Society (DKG-NOA) aimed to define a practical guideline for the diagnosis and treatment of radiation-induced necrosis (RN) of the central nervous system (CNS). Methods Panel members of the DEGRO working group invited experts, participated in a series of conferences, supplemented their clinical experience, performed a literature review, and formulated recommendations for medical treatment of RN, including bevacizumab, in clinical routine. Conclusion Diagnosis and treatment of RN requires multidisciplinary structures of care and defined processes. Diagnosis has to be made on an interdisciplinary level with the joint knowledge of a neuroradiologist, radiation oncologist, neurosurgeon, neuropathologist, and neurooncologist. If the diagnosis of blood–brain barrier disruptions (BBD) or RN is likely, treatment should be initiated depending on the symptoms, location, and dynamic of the lesion. Multiple treatment options are available (such as observation, surgery, steroids, and bevacizumab) and the optimal approach should be discussed in an interdisciplinary setting. In this practice guideline, we offer detailed treatment strategies for various scenarios.
Collapse
|
34
|
Eichkorn T, Lischalk JW, Sandrini E, Meixner E, Regnery S, Held T, Bauer J, Bahn E, Harrabi S, Hörner-Rieber J, Herfarth K, Debus J, König L. Iatrogenic Influence on Prognosis of Radiation-Induced Contrast Enhancements in Patients with Glioma WHO 1-3 following Photon and Proton Radiotherapy. Radiother Oncol 2022; 175:133-143. [PMID: 36041565 DOI: 10.1016/j.radonc.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Radiation-induced contrast enhancement (RICE) is a common side effect following radiotherapy for glioma, but both diagnosis and handling are challenging. Due to the potential risks associated with RICE and its challenges in differentiating RICE from tumor progression, it is critical to better understand how RICE prognosis depends on iatrogenic influence. MATERIALS AND METHODS We identified 99 patients diagnosed with RICE who were previously treated with either photon or proton therapy for World Health Organization (WHO) grade 1-3 primary gliomas. Post-treatment brain MRI-based volumetric analysis and clinical data collection was performed at multiple time points. RESULTS The most common histologic subtypes were astrocytoma (50%) and oligodendroglioma (46%). In 67%, it was graded WHO grade 2 and in 86% an IDH mutation was present. RICE first occurred after 16 months (range: 1 - 160) in median. At initial RICE occurrence, 39% were misinterpreted as tumor progression. A tumor-specific therapy including chemotherapy or re-irradiation led to a RICE size progression in 86% and 92% of cases, respectively and RICE symptom progression in 57% and 65% of cases, respectively. A RICE-specific therapy such as corticosteroids or Bevacizumab for larger or symptomatic RICE led to a RICE size regression in 81% of cases with symptom stability or regression in 62% of cases. CONCLUSIONS While with chemotherapy and re-irradiation a RICE progression was frequently observed, anti-edematous or anti-VEGF treatment frequently went along with a RICE regression. For RICE, correct diagnosis and treatment decisions are challenging and critical and should be made interdisciplinarily.
Collapse
Affiliation(s)
- Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Jonathan W Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Health at Long Island, New York, NY, USA.
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Julia Bauer
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Emanuel Bahn
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Heidelberg, Germany.
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Heidelberg, Germany.
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
35
|
Radiation myelopathy following stereotactic body radiation therapy for spine metastases. J Neurooncol 2022; 159:23-31. [PMID: 35737172 DOI: 10.1007/s11060-022-04037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Stereotactic body radiation therapy (SBRT) is now considered a standard of care treatment option in the management of spine metastases. One of the most feared complications of spine SBRT is radiation myelopathy (RM). METHODS We provided a narrative review of RM following spine SBRT based on review of the published literature, including data on spinal cord dose constraints associated with the risk of RM, strategies to mitigate the risk, and management options for RM. RESULTS There are limited published data of cases of RM following spine SBRT with detailed spinal cord dosimetry. The HyTEC report provided recommendations for the point maximal dose (Dmax) for the spinal cord that is associated with a < 5% risk of RM for 1-5 fractions spine SBRT. In the setting of spine SBRT reirradiation after previous conventional external beam radiation therapy (cEBRT), factors associated with RM are: SBRT spinal cord Dmax, cumulative spinal cord Dmax, and the time interval between previous RT and SBRT reirradiation. There are various strategies to mitigate the risk of RM, including accurate delineation of the spinal cord (or thecal sac), strict adherence to the recommended spinal cord dose constraints, and robust treatment immobilisation set-up and delivery. Limited effective treatment options are available for patients who develop RM, and these include corticosteroids, hyperbaric oxygen, and bevacizumab; however, none have been supported by high quality evidence. CONCLUSION RM is a rare but devastating complication following SBRT for spine metastases. There are strategies to minimise the risk of RM to ensure safe delivery of spine SBRT.
Collapse
|
36
|
Lin X, Li Z, Chen S, Yang Y, He H, Lv X, Qiu Y. Divergent white matter changes in patients with nasopharyngeal carcinoma post-radiotherapy with different outcomes: a potential biomarker for prediction of radiation necrosis. Eur Radiol 2022; 32:7036-7047. [PMID: 35687134 DOI: 10.1007/s00330-022-08907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To investigate the effects of standard radiotherapy on temporal white matter (WM) and its relationship with radiation necrosis (RN) in patients with nasopharyngeal carcinoma (NPC), and to determine the predictive value of WM volume alterations at the early stage for RN occurrence at the late-delay stage. METHODS Seventy-four treatment-naive NPC patients treated with standard radiotherapy were longitudinally followed up for 36 months. Structural MRIs were collected at multiple time points during the first year post-radiotherapy. Longitudinal structural images were processed using FreeSurfer. Linear mixed models were used to delineate divergent trajectories of temporal WM changes between patients who developed RN and who did not. Four machine learning methods were used to construct predictive models for RN with temporal WM volume alterations at early-stage. RESULTS The superior temporal gyrus (STG) had divergent atrophy trajectories in NPC patients with different outcomes (RN vs. NRN) post-radiotherapy. Patients with RN showed more rapid atrophy than those with NRN. A predictive model constructed with temporal WM volume alterations at early-stage post-radiotherapy had good performance for RN; the areas under the curve (AUC) were 0.879 and 0.806 at 1-3 months and 6 months post-radiotherapy, respectively. Moreover, the predictive model constructed with absolute temporal volume at 1-3 months post-radiotherapy also presented good performance; the AUC was 0.842, which was verified by another independent dataset (AUC = 0.773). CONCLUSIONS NPC patients with RN had more sharp atrophy in the STG than those with NRN. Temporal WM volume at early-stage post-radiotherapy may serve as an in vivo biomarker to identify and predict RN occurrence. KEY POINTS • The STG had divergent atrophy trajectories in NPC patients with different outcomes (RN vs. NRN) post-radiotherapy. • Although both groups exhibited time-dependent atrophy in the STG, the patients with RN showed a more rapid volume decrease than those with NRN. • Temporal WM volume alteration (or absolute volume) at the early stage could predict RN occurrence at the late-delay stage after radiotherapy.
Collapse
Affiliation(s)
- Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Zhipeng Li
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Yadi Yang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Haoqiang He
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xiaofei Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
37
|
Bevacizumab for cerebral radionecrosis: A single-centre experience. Can J Neurol Sci 2022:1-6. [DOI: 10.1017/cjn.2022.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
[Expert Consensus on the Treatment of Antiangiogenic Agents for Radiation Brain Necrosis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:291-294. [PMID: 35570144 PMCID: PMC9127755 DOI: 10.3779/j.issn.1009-3419.2022.101.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vascular damage is followed by vascular endothelial growth factor (VEGF) expression at high levels, which is an important mechanism for cerebral radiation necrosis (CRN) development. Antiangiogenic agents (Bevacizumab) alleviates brain edema symptoms caused by CRN through inhibiting VEGF and acting on vascular tissue around the brain necrosis area. Many studies have confirmed that Bevacizumab effectively relieves symptoms caused by brain necrosis, improves patients' performance status and brain necrosis imaging. Considering that the efficacy of antiangiogenic therapy is mainly related to the duration of drug action, low-dose antiangiogenic agents can achieve favorable efficacy. Prevention is the best treatment. The occurrence of CRN is associated with tumor-related factors and treatment-related factors. By controlling these factors, CRN can be effectively prevented.
.
Collapse
|
39
|
He L, Pi Y, Li Y, Wu Y, Jiang J, Rong X, Cai J, Yue Z, Cheng J, Li H, Chua MLK, Simone CB, Aronow WS, Lattanzi S, Palmer JD, Gaertner J, Glass J, Chen P, Tang Y. Efficacy and safety of apatinib in radiation-induced brain injury among head and neck cancer: an open-label, single-arm, phase 2 study. Int J Radiat Oncol Biol Phys 2022; 113:796-804. [PMID: 35378217 DOI: 10.1016/j.ijrobp.2022.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The treatment of radiation-induced brain injury (RI) caused by radiotherapy for head and neck cancer is challenging. Antiangiogenic therapy is a promising treatment. Apatinib is an oral tyrosine kinase inhibitor (TKI) that selectively inhibits vascular endothelial growth factor receptor (VEGFR) 2. We aimed to assess the efficacy and safety of apatinib in patients with RI. PATIENTS AND METHODS In this phase 2, open-label, single-arm, prospective study, we recruited patients aged 35-80 years with prior radiotherapy history for head and neck cancer who had newly diagnosed RI at the Sun Yat-sen Memorial Hospital, China. Apatinib was administered at a dosage of 250 mg once daily orally for 4 weeks. A Simon's mini-max two-stage design was performed. The primary outcome was the proportion of patients with an overall clinical efficacy defined as radiographic response ≥ 25% reduction in baseline brain edema volume on magnetic resonance (MR) fluid attenuated inversion recovery (FLAIR) images at week 4. Secondary endpoints were overall improvement rate of brain necrosis, neurological function, and safety. RESULTS We screened 37 patients, 36 of whom were enrolled between October 17, 2019 and August 3, 2020. At the cutoff date, 36 patients were assessed for efficacy and safety (19 to stage 1 and 17 to stage 2). Of the 36 patients evaluated for overall clinical efficacy, 22 patients (61.1%; 95%CI 43.5-76.9%) achieved the primary endpoint at week 4. Among the 31 patients with brain necrosis lesions, 19 patients (61.3%; 95%CI 42.2%-78.2%) showed improvement of brain necrosis. The most common grade 1 to 2 adverse events were hand-foot syndrome, fatigue and hypertension There were no treatment-related grade 4-5 toxicities. CONCLUSION Oral apatinib shows promising efficacy and is well-tolerated in patients with RI. Further randomized controlled studies are warranted. TRIAL REGISTRATION ClinicalTrials.gov (ID: NCT04152681).
Collapse
Affiliation(s)
- Lei He
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaxuan Pi
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Li
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Wu
- Department of Biostatistics, Southern Medical University, Guangzhou, China
| | - Jingru Jiang
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoming Rong
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinhua Cai
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongwei Yue
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinping Cheng
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Honghong Li
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology and Medical Sciences, National Cancer Centre Singapore, Singapore; Oncology Academic Programme, Duke-NUS Medical School, Singapore
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center and Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wilbert S Aronow
- New York Medical College/Westchester Medical Center, Valhalla, NY, USA
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Joshua D Palmer
- Departments of Radiation Oncology and Neurosurgery, The James Cancer Center at The Ohio State University, Columbus, OH, USA
| | - Jan Gaertner
- Palliative Care Center Hildegard, Basel, Switzerland, University of Basel, Switzerland
| | - Jon Glass
- Departments of Neurology and Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Pingyan Chen
- Department of Biostatistics, Southern Medical University, Guangzhou, China
| | - Yamei Tang
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | | |
Collapse
|
40
|
Cai J, Xue R, Yue Z, Zhang Z, He L, Li H, Li Y, Rong X, Zhang X, Xu Y, Tang Y. Neutrophil to lymphocyte ratio as a predictor for treatment of radiation‐induced brain necrosis with bevacizumab in nasopharyngeal carcinoma patients. Clin Transl Med 2022; 12:e583. [PMID: 35075785 PMCID: PMC8787024 DOI: 10.1002/ctm2.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jinhua Cai
- Department of Neurology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou People's Republic of China
| | - Ruiqi Xue
- Department of Neurology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou People's Republic of China
| | - Zongwei Yue
- Department of Neurology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou People's Republic of China
| | - Zhan Zhang
- Department of Neurology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou People's Republic of China
| | - Lei He
- Department of Neurology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou People's Republic of China
| | - Honghong Li
- Department of Neurology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou People's Republic of China
| | - Yi Li
- Department of Neurology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou People's Republic of China
| | - Xiaoming Rong
- Department of Neurology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou People's Republic of China
| | - Xiaoni Zhang
- Department of Neurology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou People's Republic of China
| | - Yongteng Xu
- Department of Neurology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou People's Republic of China
| | - Yamei Tang
- Department of Neurology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease Zhongshan School of Medicine Sun Yat‐sen University Guangzhou People's Republic of China
| |
Collapse
|
41
|
Treatment of Radiation-Induced Brain Necrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:4793517. [PMID: 34976300 PMCID: PMC8720020 DOI: 10.1155/2021/4793517] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/25/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Radiation-induced brain necrosis (RBN) is a serious complication of intracranial as well as skull base tumors after radiotherapy. In the past, due to the lack of effective treatment, radiation brain necrosis was considered to be progressive and irreversible. With better understanding in histopathology and neuroimaging, the occurrence and development of RBN have been gradually clarified, and new treatment methods are constantly emerging. In recent years, some scholars have tried to treat RBN with bevacizumab, nerve growth factor, and gangliosides and have achieved similar results. Some cases of brain necrosis can be repairable and reversible. We aimed to summarize the incidence, pathogenesis, and treatment of RBN.
Collapse
|
42
|
Mitchell D, Kwon HJ, Kubica PA, Huff WX, O’Regan R, Dey M. Brain metastases: An update on the multi-disciplinary approach of clinical management. Neurochirurgie 2022; 68:69-85. [PMID: 33864773 PMCID: PMC8514593 DOI: 10.1016/j.neuchi.2021.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/16/2021] [Accepted: 04/03/2021] [Indexed: 01/03/2023]
Abstract
IMPORTANCE Brain metastasis (BM) is the most common malignant intracranial neoplasm in adults with over 100,000 new cases annually in the United States and outnumbering primary brain tumors 10:1. OBSERVATIONS The incidence of BM in adult cancer patients ranges from 10-40%, and is increasing with improved surveillance, effective systemic therapy, and an aging population. The overall prognosis of cancer patients is largely dependent on the presence or absence of brain metastasis, and therefore, a timely and accurate diagnosis is crucial for improving long-term outcomes, especially in the current era of significantly improved systemic therapy for many common cancers. BM should be suspected in any cancer patient who develops new neurological deficits or behavioral abnormalities. Gadolinium enhanced MRI is the preferred imaging technique and BM must be distinguished from other pathologies. Large, symptomatic lesion(s) in patients with good functional status are best treated with surgery and stereotactic radiosurgery (SRS). Due to neurocognitive side effects and improved overall survival of cancer patients, whole brain radiotherapy (WBRT) is reserved as salvage therapy for patients with multiple lesions or as palliation. Newer approaches including multi-lesion stereotactic surgery, targeted therapy, and immunotherapy are also being investigated to improve outcomes while preserving quality of life. CONCLUSION With the significant advancements in the systemic treatment for cancer patients, addressing BM effectively is critical for overall survival. In addition to patient's performance status, therapeutic approach should be based on the type of primary tumor and associated molecular profile as well as the size, number, and location of metastatic lesion(s).
Collapse
Affiliation(s)
- D Mitchell
- Department of Neurosurgery, Indiana University School of Medicine, Indiana University Purdue University Indianapolis, IN, USA
| | - HJ Kwon
- Department of Neurosurgery, Indiana University School of Medicine, Indiana University Purdue University Indianapolis, IN, USA
| | - PA Kubica
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, USA
| | - WX Huff
- Department of Neurosurgery, Indiana University School of Medicine, Indiana University Purdue University Indianapolis, IN, USA
| | - R O’Regan
- Department of Medicine/Hematology Oncology, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, USA
| | - M Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, USA,Correspondence Should Be Addressed To: Mahua Dey, MD, University of Wisconsin School of Medicine & Public Health, 600 Highland Ave, Madison, WI 53792; Tel: 317-274-2601;
| |
Collapse
|
43
|
Xue R, Chen M, Cai J, Deng Z, Pan D, Liu X, Li Y, Rong X, Li H, Xu Y, Shen Q, Tang Y. Blood-Brain Barrier Repair of Bevacizumab and Corticosteroid as Prediction of Clinical Improvement and Relapse Risk in Radiation-Induced Brain Necrosis: A Retrospective Observational Study. Front Oncol 2021; 11:720417. [PMID: 34692494 PMCID: PMC8526720 DOI: 10.3389/fonc.2021.720417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background Blood-brain barrier (BBB) disruption after endothelial damage is a crucial part of radiation-induced brain necrosis (RN), but little is known of BBB disruption quantification and its role in the evaluation of therapeutic effect and prognosis for drug treatment. In this retrospective study, BBB repair by bevacizumab and corticosteroid and the correlation between BBB permeability and treatment response and relapse were evaluated by dynamic contrast-enhanced MRI (DCE-MRI). Methods Forty-one patients with RN after radiotherapy for nasopharyngeal carcinoma (NPC) (28 treated with bevacizumab and 13 with corticosteroid), 12 patients with no RN after NPC radiotherapy, and 12 patients with no radiotherapy history were included as RN, non-RN, and normal groups, respectively. DCE-MRI assessed BBB permeability in white matter of bilateral temporal lobe. DCE parameters were compared at baseline among the three groups. DCE parameters after treatment were compared and correlated with RN volume decrease, neurological improvement, and relapse. Results The extent of BBB leakage at baseline increased from the normal group and non-RN group and to RN necrosis lesions, especially K trans (Kruskal-Wallis test, P < 0.001). In the RN group, bevacizumab-induced K trans and v e decrease in radiation necrosis lesions (both P < 0.001), while corticosteroid showed no obvious effect on BBB. The treatment response rate of bevacizumab was significantly higher than that of corticosteroid [30/34 (88.2%) vs. 10/22 (45.4%), P < 0.001]. Spearman analysis showed baseline K trans, K ep, and v p positively correlated with RN volume decrease and improvement of cognition and quality of life in bevacizumab treatment. After a 6-month follow-up for treatment response cases, the relapse rate of bevacizumab and corticosteroid was 10/30 (33.3%) and 2/9 (22.2%), respectively, with no statistical difference. Post-bevacizumab K trans level predicted relapse in 6 months with AUC 0.745 (P < 0.05, 95% CI 0.546-0.943, sensitivity = 0.800, specificity = 0.631). Conclusions Bevacizumab improved BBB leakage in RN necrosis. DCE parameters may be useful to predict therapeutic effect and relapse after bevacizumab.
Collapse
Affiliation(s)
- Ruiqi Xue
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meiwei Chen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenhong Deng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Pan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohuan Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Honghong Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingyu Shen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Li H, Rong X, Hu W, Yang Y, Lei M, Wen W, Yue Z, Huang X, Chua MLK, Li Y, Cai J, He L, Pan D, Cheng J, Pi Y, Xue R, Xu Y, Tang Y. Bevacizumab Combined with Corticosteroids Does Not Improve the Clinical Outcome of Nasopharyngeal Carcinoma Patients With Radiation-Induced Brain Necrosis. Front Oncol 2021; 11:746941. [PMID: 34650930 PMCID: PMC8506029 DOI: 10.3389/fonc.2021.746941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Objective Our aim was to compare the clinical outcomes of patients treated with bevacizumab combined with corticosteroids and those with bevacizumab monotherapy from a radiation-induced brain necrosis (RN) registry cohort (NCT03908502). Methods We utilized clinical data from a prospective RN registry cohort (NCT03908502) from July 2017 to June 2020. Patients were considered eligible if they had symptomatic RN after radiotherapy for nasopharyngeal carcinoma (NPC) and received bevacizumab (5 mg/kg, two to four cycles) with a minimum follow-up time of 3 months. The primary outcome was a 2-month response rate determined by MRI and clinical symptoms. Secondary outcomes included quality of life [evaluated by the abbreviated World Health Organization Quality of Life (WHOQOL-BREF) questionnaire] and cognitive function (evaluated by the Montreal Cognitive Assessment scale) at 2 months, RN recurrence during follow-up, and adverse events. Results A total of 123 patients (34 in the combined therapy group and 89 in the monotherapy group) were enrolled in our study with a median follow-up time of 0.97 year [interquartile range (IQR) = 0.35-2.60 years]. The clinical efficacy of RN did not differ significantly between patients in these two groups [odds ratio (OR) = 1.642, 95%CI = 0.584-4.614, p = 0.347]. Furthermore, bevacizumab combined with corticosteroids did not reduce recurrence compared with bevacizumab monotherapy [hazard ratio (HR) = 1.329, 95%CI = 0.849-2.079, p = 0.213]. The most common adverse events of bevacizumab were hypertension (17.89%), followed by nosebleed (8.13%) and fatigue (8.13%). There was no difference in grade 2 or more severe adverse events between the two groups (p = 0.811). Interpretation Our results showed that the treatment strategy of combining bevacizumab with corticosteroids did not lead to better clinical outcomes for RN patients with a background of radiotherapy for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Honghong Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weihan Hu
- Department of Radiation Oncology, Cancer Center of Sun Yat-sen University, Guangzhou, China
| | - Yuhua Yang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Lei
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Wen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongwei Yue
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaolong Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Melvin L K Chua
- Oncology Academic Clinical Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore.,Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Yi Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei He
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Pan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaxuan Pi
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruiqi Xue
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Yi Z, Long L, Zeng Y, Liu Z. Current Advances and Challenges in Radiomics of Brain Tumors. Front Oncol 2021; 11:732196. [PMID: 34722274 PMCID: PMC8551958 DOI: 10.3389/fonc.2021.732196] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Imaging diagnosis is crucial for early detection and monitoring of brain tumors. Radiomics enable the extraction of a large mass of quantitative features from complex clinical imaging arrays, and then transform them into high-dimensional data which can subsequently be mined to find their relevance with the tumor's histological features, which reflect underlying genetic mutations and malignancy, along with grade, progression, therapeutic effect, or even overall survival (OS). Compared to traditional brain imaging, radiomics provides quantitative information linked to meaningful biologic characteristics and application of deep learning which sheds light on the full automation of imaging diagnosis. Recent studies have shown that radiomics' application is broad in identifying primary tumor, differential diagnosis, grading, evaluation of mutation status and aggression, prediction of treatment response and recurrence in pituitary tumors, gliomas, and brain metastases. In this descriptive review, besides establishing a general understanding among protocols, results, and clinical significance of these studies, we further discuss the current limitations along with future development of radiomics.
Collapse
Affiliation(s)
- Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lifu Long
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
46
|
Neurologic complications in patients with lymphoid cancer. Blood 2021; 139:1469-1478. [PMID: 34479368 DOI: 10.1182/blood.2019003690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/09/2021] [Indexed: 11/20/2022] Open
Abstract
Neurologic complications of lymphoid cancer can be challenging to recognize and treat. The nervous system can be affected directly by hematogenous or local spread of lymphoma. Indirect neurologic effects of lymphoma include paraneoplastic syndromes and vascular complications. Lymphoma treatments can also cause neurologic complications. Early identification and treatment are crucial to stabilize or reverse neurologic deficits, prevent further nervous system injury, and to optimize overall oncologic therapy. This article provides an overview of different neurologic complications of lymphoma and its treatments, in addition to presentation of case studies that emphasize commonly encountered clinical scenarios.
Collapse
|
47
|
Wang K, Tepper JE. Radiation therapy-associated toxicity: Etiology, management, and prevention. CA Cancer J Clin 2021; 71:437-454. [PMID: 34255347 DOI: 10.3322/caac.21689] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy (RT) is a curative treatment for many malignancies and provides effective palliation in patients with tumor-related symptoms. However, the biophysical effects of RT are not specific to tumor cells and may produce toxicity due to exposure of surrounding organs and tissues. In this article, the authors review the clinical context, pathophysiology, risk factors, presentation, and management of RT side effects in each human organ system. Ionizing radiation works by producing DNA damage leading to tumor death, but effects on normal tissue may result in acute and/or late toxicity. The manifestation of toxicity depends on both cellular characteristics and affected organs' anatomy and physiology. There is usually a direct relationship between the radiation dose and volume to normal tissues and the risk of toxicity, which has led to guidelines and recommended dose limits for most tissues. Side effects are multifactorial, with contributions from baseline patient characteristics and other oncologic treatments. Technological advances in recent decades have decreased RT toxicity by dramatically improving the ability to deliver RT that maximizes tumor dose and minimizes organ dose. Thus the study of RT-associated toxicity is a complex, core component of radiation oncology training that continues to evolve alongside advances in cancer management. Because RT is used in up to one-half of all patients with cancer, an understanding of its acute and late effects in different organ systems is clinically pertinent to both oncologists and nononcologists.
Collapse
Affiliation(s)
- Kyle Wang
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio
| | - Joel E Tepper
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
48
|
The Efficacy of Radiotherapy for Nasopharyngeal Carcinoma under Magnetic Resonance Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:8280479. [PMID: 34393679 PMCID: PMC8349285 DOI: 10.1155/2021/8280479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022]
Abstract
This study aimed to analyze the application value of diffusion tensor imaging (DTI) in the diagnosis of nasopharyngeal carcinoma (NC) radiotherapy. In this study, 102 patients with NC were selected as the experimental group (EG), and 58 healthy people examined in hospital were included in a control group (CG). All subjects were required to be examined with routine magnetic resonance imaging (MRI) and DTI before and after the treatment. The fractional anisotropy (FA) of the patients in EG before and after treatment and the CG were recorded. The apparent diffusion coefficients (ADC) of patients in the two groups were measured and recorded before and after the treatment. The recovery rate and adverse events of the patients in EG were observed and recorded after the treatment. The results showed that the FA values of the right cerebellum and left parietal lobe (LPL) of patients after treatment in the EG were much higher than those before treatment and the CG (P < 0.05); the FA values of the right temporal lobe (RTL), right occipital lobe (ROL), and right parietal lobe (RPL) after treatment in the EG were obviously lower than those before the treatment and the CG (P < 0.05); the complete remission rate (CRR) of the EG after treatment was greatly higher than the partial remission rate (PRR) and disease stability rate (DSR) (P < 0.05), and the objective remission rate (ORR) and disease control rate (DCR) were higher than 90%, respectively. The ADC value of the EG before treatment was (0.752 ± 0.021) × 10−3 mm2/s, which was visibly lower than that after treatment ((1.365 ± 0.058) × 10−3 mm2/s) and that in the CG ((1.856 ± 0.079)) × 10−3 mm2/s), showing statistically obvious differences (P < 0.05). The incidence of anemia, oral reactions, hypertension, and gastrointestinal reaction in the EG after treatment was 61.46%, 45.35%, 47.28%, and 39.67%, respectively. In short, the FA value of DTI parameter could clearly indicate the changes in brain area characteristics of NC patients before and after treatment. The RTL, ROL, and RPL of NC patients were damaged after radiotherapy, and the FA value decreased observably, which may be related to brain edema and demyelination changes. The damage of white matter microstructure in each brain area further affected the cognitive function of the patient.
Collapse
|
49
|
Palmisciano P, Haider AS, Nwagwu CD, Wahood W, Aoun SG, Abdullah KG, El Ahmadieh TY. Bevacizumab vs laser interstitial thermal therapy in cerebral radiation necrosis from brain metastases: a systematic review and meta-analysis. J Neurooncol 2021; 154:13-23. [PMID: 34218396 DOI: 10.1007/s11060-021-03802-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Radiation necrosis (RN) represents a serious post-radiotherapy complication in patients with brain metastases. Bevacizumab and laser interstitial thermal therapy (LITT) are viable treatment options, but direct comparative data is scarce. We reviewed the literature to compare the two treatment strategies. METHODS PubMed, EMBASE, Scopus, and Cochrane databases were searched. All studies of patients with RN from brain metastases treated with bevacizumab or LITT were included. Treatment outcomes were analyzed using indirect meta-analysis with random-effect modeling. RESULTS Among the 18 studies included, 143 patients received bevacizumab and 148 underwent LITT. Both strategies were equally effective in providing post-treatment symptomatic improvement (P = 0.187, I2 = 54.8%), weaning off steroids (P = 0.614, I2 = 25.5%), and local lesion control (P = 0.5, I2 = 0%). Mean number of lesions per patient was not statistically significant among groups (P = 0.624). Similarly, mean T1-contrast-enhancing pre-treatment volumes were not statistically different (P = 0.582). Patterns of radiological responses differed at 6-month follow-ups, with rates of partial regression significantly higher in the bevacizumab group (P = 0.001, I2 = 88.9%), and stable disease significantly higher in the LITT group (P = 0.002, I2 = 81.9%). Survival rates were superior in the LITT cohort, and statistical significance was reached at 18 months (P = 0.038, I2 = 73.7%). Low rates of adverse events were reported in both groups (14.7% for bevacizumab and 12.2% for LITT). CONCLUSION Bevacizumab and LITT can be safe and effective treatments for RN from brain metastases. Clinical and radiological outcomes are mostly comparable, but LITT may relate with superior survival benefits in select patients. Further studies are required to identify the best patient candidates for each treatment group.
Collapse
Affiliation(s)
- Paolo Palmisciano
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Ali S Haider
- Texas A&M University College of Medicine, Houston, TX, USA
| | | | - Waseem Wahood
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Salah G Aoun
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Kalil G Abdullah
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Tarek Y El Ahmadieh
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| |
Collapse
|
50
|
Chen YL, Huang APH, Wang CC, Chen HY, Chen YF, Xiao F, Lu SL, Cheng JCH, Hsu FM. Peri-radiosurgical administration of bevacizumab improves radiographic response to single and fractionated stereotactic radiosurgery for large brain metastasis. J Neurooncol 2021; 153:455-465. [PMID: 34100178 DOI: 10.1007/s11060-021-03782-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Stereotactic radiosurgery (SRS) is a standard of care for brain metastases (BM) patients, yet large BM are at a greater risk for radionecrosis and local progression (LP). Concomitant bevacizumab and radiotherapy has been shown to improve outcomes in primary and metastatic brain tumors. This retrospective study investigated the efficacy and safety of concurrent bevacizumab and SRS for large BM. METHODS From 2015 to 2019, patients with a BM diameter ≥ 2 cm who received either combination therapy (n = 49, SRS + BVZ group), or SRS alone (n = 73, SRS group) were enrolled. Bevacizumab was given peri-radiosurgically with a 2-week interval. Radiographic response was assessed using the RECIST version 1.1. Competing risk and logistic regression analysis were performed to evaluate prognostic factors. RESULTS Radiographic response was achieved in 41 patients (84%) in the SRS + BVZ group and 37 patients (51%) in the SRS group (p = 0.001). In the multivariate regression analysis, concurrent bevacizumab was independently associated with a better radiographic response (p = 0.003). The cumulative incidences of LP and ≥ grade 2 radionecrosis at 12 months between the SRS + BVZ group and SRS group were 2% versus 6.8%, and 14.3% versus 14.6%, respectively. For patients with BM size ≥ 3 cm, the cumulative incidence of LP was significantly lower in the SRS + BVZ group (p = 0.03). No ≥ grade 4 toxicity was observed in either group. CONCLUSIONS Concurrent bevacizumab and SRS for large BM is highly effective, with a better radiographic response and minimal excessive treatment-related toxicities. Peri-radiosurgical bevacizumab preferentially reduced the risk of LP, especially for BM size ≥ 3 cm.
Collapse
Affiliation(s)
- Yi-Lun Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd., Taipei, 10002, Taiwan
| | - Abel Po-Hao Huang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Chun Wang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd., Taipei, 10002, Taiwan
| | - Hung-Yi Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd., Taipei, 10002, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Furen Xiao
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shao-Lun Lu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd., Taipei, 10002, Taiwan
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd., Taipei, 10002, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd., Taipei, 10002, Taiwan.
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|