1
|
Hamada K, Fujibuchi T, Arakawa H, Yokoyama Y, Yoshida N, Ohura H, Kunitake N, Masuda M, Honda T, Tokuda S, Sasaki M. A novel approach to predict acute radiation dermatitis in patients with head and neck cancer using a model based on Bayesian probability. Phys Med 2023; 116:103181. [PMID: 38000101 DOI: 10.1016/j.ejmp.2023.103181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE In this study, we aimed to establish a method for predicting the probability of each acute radiation dermatitis (ARD) grade during the head and neck Volumetric Modulated Arc Therapy (VMAT) radiotherapy planning phase based on Bayesian probability. METHODS The skin dose volume >50 Gy (V50), calculated using the treatment planning system, was used as a factor related to skin toxicity. The empirical distribution of each ARD grade relative to V50 was obtained from the ARD grades of 119 patients (55, 50, and 14 patients with G1, G2, and G3, respectively) determined by head and neck cancer specialists. Using Bayes' theorem, the Bayesian probabilities of G1, G2, and G3 for each value of V50 were calculated with an empirical distribution. Conversely, V50 was obtained based on the Bayesian probabilities of G1, G2, and G3. RESULTS The empirical distribution for each graded patient group demonstrated a normal distribution. The method predicted ARD grades with 92.4 % accuracy and provided a V50 value for each grade. For example, using the graph, we could predict that V50 should be ≤24.5 cm3 to achieve G1 with 70 % probability. CONCLUSIONS The Bayesian probability-based ARD prediction method could predict the ARD grade at the treatment planning stage using limited patient diagnostic data that demonstrated a normal distribution. If the probability of an ARD grade is high, skin care can be initiated in advance. Furthermore, the V50 value during treatment planning can provide radiation oncologists with data for strategies to reduce ARD.
Collapse
Affiliation(s)
- Keisuke Hamada
- Department of Radiological Technology, National Hospital Organization Kyushu Cancer Center, 3-1-1, Notame, Minami-ku, Fukuoka City, Fukuoka 811-1395, Japan; Department of Health Sciences, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Toshioh Fujibuchi
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Hiroyuki Arakawa
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yuichi Yokoyama
- Department of Radiological Technology, National Hospital Organization Kyushu Cancer Center, 3-1-1, Notame, Minami-ku, Fukuoka City, Fukuoka 811-1395, Japan.
| | - Naoki Yoshida
- Department of Radiological Technology, National Hospital Organization Kyushu Cancer Center, 3-1-1, Notame, Minami-ku, Fukuoka City, Fukuoka 811-1395, Japan.
| | - Hiroki Ohura
- Department of Radiological Technology, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka City, Fukuoka 810-8563, Japan.
| | - Naonobu Kunitake
- Department of Radiation Oncology, National Hospital Organization Kyushu Cancer Center, 3-1-1, Notame, Minami-ku, Fukuoka City, Fukuoka 811-1395, Japan.
| | - Muneyuki Masuda
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, 3-1-1, Notame, Minami-ku, Fukuoka City, Fukuoka 811-1395, Japan.
| | - Takeo Honda
- Department of Radiological Technology, National Hospital Organization Kyushu Cancer Center, 3-1-1, Notame, Minami-ku, Fukuoka City, Fukuoka 811-1395, Japan.
| | - Satoru Tokuda
- Research Institute for Information Technology, Kyushu University, 6-1, Kasuga koen, Kasuga City, Fukuoka 816-8580, Japan.
| | - Makoto Sasaki
- College of Industrial Technology, Nihon University, 1-2-1 Izumi-cho, Narashino City, Chiba 275-8575, Japan.
| |
Collapse
|
2
|
Atkinson J, Bezak E, Le H, Kempson I. The current status of FLASH particle therapy: a systematic review. Phys Eng Sci Med 2023; 46:529-560. [PMID: 37160539 DOI: 10.1007/s13246-023-01266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Particle therapies are becoming increasingly available clinically due to their beneficial energy deposition profile, sparing healthy tissues. This may be further promoted with ultra-high dose rates, termed FLASH. This review comprehensively summarises current knowledge based on studies relevant to proton- and carbon-FLASH therapy. As electron-FLASH literature presents important radiobiological findings that form the basis of proton and carbon-based FLASH studies, a summary of key electron-FLASH papers is also included. Preclinical data suggest three key mechanisms by which proton and carbon-FLASH are able to reduce normal tissue toxicities compared to conventional dose rates, with equipotent, or enhanced, tumour kill efficacy. However, a degree of caution is needed in clinically translating these findings as: most studies use transmission and do not conform the Bragg peak to tumour volume; mechanistic understanding is still in its infancy; stringent verification of dosimetry is rarely provided; biological assays are prone to limitations which need greater acknowledgement.
Collapse
Affiliation(s)
- Jake Atkinson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, South Australia, 5000, Australia
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.
| |
Collapse
|
3
|
Lv Y, Lv Y, Wang Z, Lan T, Feng X, Chen H, Zhu J, Ma X, Du J, Hou G, Liao W, Yuan K, Wu H. FLASH radiotherapy: A promising new method for radiotherapy. Oncol Lett 2022; 24:419. [PMID: 36284652 PMCID: PMC9580247 DOI: 10.3892/ol.2022.13539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/10/2022] [Indexed: 11/06/2022] Open
Abstract
Among the treatments for malignant tumors, radiotherapy is of great significance both as a main treatment and as an adjuvant treatment. Radiation therapy damages cancer cells with ionizing radiation, leading to their death. However, radiation-induced toxicity limits the dose delivered to the tumor, thereby constraining the control effect of radiotherapy on tumor growth. In addition, the delayed toxicity caused by radiotherapy significantly harms the physical and mental health of patients. FLASH-RT, an emerging class of radiotherapy, causes a phenomenon known as the 'FLASH effect', which delivers radiotherapy at an ultra-high dose rate with lower toxicity to normal tissue than conventional radiotherapy to achieve local tumor control. Although its mechanism remains to be fully elucidated, this modality constitutes a potential new approach to treating malignant tumors. In the present review, the current research progress of FLASH-RT and its various particular effects are described, including the status of research on FLASH-RT and its influencing factors. The hypothetic mechanism of action of FLASH-RT is also summarized, providing insight into future tumor treatments.
Collapse
Affiliation(s)
- Yinghao Lv
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Yue Lv
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Zhen Wang
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Tian Lan
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xuping Feng
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Hao Chen
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Jiang Zhu
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xiao Ma
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Jinpeng Du
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Guimin Hou
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Wenwei Liao
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Kefei Yuan
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Hong Wu
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
4
|
Potential Molecular Mechanisms behind the Ultra-High Dose Rate "FLASH" Effect. Int J Mol Sci 2022; 23:ijms232012109. [PMID: 36292961 PMCID: PMC9602825 DOI: 10.3390/ijms232012109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
FLASH radiotherapy, or the delivery of a dose at an ultra-high dose rate (>40 Gy/s), has recently emerged as a promising tool to enhance the therapeutic index in cancer treatment. The remarkable sparing of normal tissues and equivalent tumor control by FLASH irradiation compared to conventional dose rate irradiation—the FLASH effect—has already been demonstrated in several preclinical models and even in a first patient with T-cell cutaneous lymphoma. However, the biological mechanisms responsible for the differential effect produced by FLASH irradiation in normal and cancer cells remain to be elucidated. This is of great importance because a good understanding of the underlying radiobiological mechanisms and characterization of the specific beam parameters is required for a successful clinical translation of FLASH radiotherapy. In this review, we summarize the FLASH investigations performed so far and critically evaluate the current hypotheses explaining the FLASH effect, including oxygen depletion, the production of reactive oxygen species, and an altered immune response. We also propose a new theory that assumes an important role of mitochondria in mediating the normal tissue and tumor response to FLASH dose rates.
Collapse
|
5
|
Gao Y, Liu R, Chang C, Charyyev S, Zhou J, Bradley JD, Liu T, Yang X. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J Appl Clin Med Phys 2022; 23:e13790. [PMID: 36168677 PMCID: PMC9588273 DOI: 10.1002/acm2.13790] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
FLASH radiotherapy (RT) is a novel technique in which the ultrahigh dose rate (UHDR) (≥40 Gy/s) is delivered to the entire treatment volume. Recent outcomes of in vivo studies show that the UHDR RT has the potential to spare normal tissue without sacrificing tumor control. There is a growing interest in the application of FLASH RT, and the ultrahigh dose irradiation delivery has been achieved by a few experimental and modified linear accelerators. The underlying mechanism of FLASH effect is yet to be fully understood, but the oxygen depletion in normal tissue providing extra protection during FLASH irradiation is a hypothesis that attracts most attention currently. Monte Carlo simulation is playing an important role in FLASH, enabling the understanding of its dosimetry calculations and hardware design. More advanced Monte Carlo simulation tools are under development to fulfill the challenge of reproducing the radiolysis and radiobiology processes in FLASH irradiation. FLASH RT may become one of standard treatment modalities for tumor treatment in the future. This paper presents the history and status of FLASH RT studies with a focus on FLASH irradiation delivery modalities, underlying mechanism of FLASH effect, in vivo and vitro experiments, and simulation studies. Existing challenges and prospects of this novel technique are discussed in this manuscript.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Ruirui Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Chih‐Wei Chang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Serdar Charyyev
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
6
|
Rothwell B, Lowe M, Traneus E, Krieger M, Schuemann J. Treatment planning considerations for the development of FLASH proton therapy. Radiother Oncol 2022; 175:222-230. [PMID: 35963397 DOI: 10.1016/j.radonc.2022.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
With increasing focus on the translation of the observed FLASH effect into clinical practice, this paper presents treatment planning considerations for its development using proton therapy. Potential requirements to induce a FLASH effect are discussed along with the properties of existing proton therapy delivery systems and the changes in planning and delivery approaches required to satisfy these prerequisites. For the exploration of treatment planning approaches for FLASH, developments in treatment planning systems are needed. Flexibility in adapting to new information will be important in such an evolving area. Variations in definitions, threshold values and assumptions can make it difficult to compare different published studies and to interpret previous studies in the context of new information. Together with the fact that much is left to be understood about the underlying mechanism behind the FLASH effect, a systematic and comprehensive approach to information storage is encouraged. Collecting and retaining more detailed information on planned and realised dose delivery as well as reporting the assumptions made in planning studies creates the potential for research to be revisited and re-evaluated in the light of future improvements in understanding. Forward thinking at the time of study development can help facilitate retrospective analysis. This, we hope, will increase the available evidence and accelerate the translation of the FLASH effect into clinical benefit.
Collapse
Affiliation(s)
- Bethany Rothwell
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| | - Matthew Lowe
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Miriam Krieger
- Varian Medical Systems Particle Therapy GmbH & Co. KG, Troisdorf, Germany
| | - Jan Schuemann
- Division of Physics, Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Perstin A, Poirier Y, Sawant A, Tambasco M. Quantifying the DNA-damaging effects of FLASH irradiation with plasmid DNA. Int J Radiat Oncol Biol Phys 2022; 113:437-447. [PMID: 35124135 DOI: 10.1016/j.ijrobp.2022.01.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE To investigate a plasmid DNA nicking assay approach for isolating and quantifying the DNA damaging effects of ultra-high dose rate (i.e., FLASH) irradiation relative to conventional dose rate irradiation. METHODS We constructed and irradiated phantoms containing plasmid DNA to nominal doses of 20 Gy and 30 Gy using 16 MeV electrons at conventional (0.167 Gy/s) and FLASH (46.6 Gy/s and 93.2 Gy/s) dose rates. We delivered conventional dose rates using a standard clinical Varian iX linac and FLASH dose rates (FDR) using a modified Varian 21EX C-series linac. We ran the irradiated DNA and controls (0 Gy) through an agarose gel electrophoresis procedure that sorted and localized the DNA into bands associated with single strand breaks (SSBs), double strand breaks (DSBs), and undamaged DNA. We quantitatively analyzed the gel images to compute the relative yields of SSBs and DSBs, and applied a mathematical model of plasmid DNA damage as a function of dose to compute relative biological effectiveness (RBE) of SSB and DSB (RBESSBandRBEDSB) damage for a given endpoint and FDR. RESULTS Both RBESSBandRBEDSB were less than unity with the FDR irradiations, indicating FLASH sparing. With regard to the more deleterious DNA DSB damage, RBEDSBs of FLASH beams at dose rates of 46.6 Gy/s and 93.2 Gy/s relative to the conventional 16 MeV beam dose rate were 0.54 ± 0.15 and 0.55 ± 0.17, respectively. CONCLUSION We have demonstrated the feasibility of using a DNA-based phantom to isolate and assess the FLASH sparing effect on DNA. We also found that FLASH irradiation causes less damage to DNA compared to a conventional dose rate. This result supports the notion that the protective effect of FLASH irradiation occurs at least partially via fundamental biochemical processes.
Collapse
Affiliation(s)
- Alan Perstin
- Physics Graduate Student, San Diego State University
| | - Yannick Poirier
- Assistant Professor, Oncology, Department of Radiation Oncology, University of Maryland
| | - Amit Sawant
- Professor and Vice Chair, Department of Radiation Oncology, University of Maryland
| | - Mauro Tambasco
- Associate Professor/Medical Physicist, Associate Program Director, Medical Physics Residency, Associate Director, Medical Physics , Department of Physics, San Diego State University.
| |
Collapse
|
8
|
Krieger M, van de Water S, Folkerts MM, Mazal A, Fabiano S, Bizzocchi N, Weber DC, Safai S, Lomax AJ. A quantitative FLASH effectiveness model to reveal potentials and pitfalls of high dose rate proton therapy. Med Phys 2022; 49:2026-2038. [PMID: 35032035 PMCID: PMC9305944 DOI: 10.1002/mp.15459] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose In ultrahigh dose rate radiotherapy, the FLASH effect can lead to substantially reduced healthy tissue damage without affecting tumor control. Although many studies show promising results, the underlying biological mechanisms and the relevant delivery parameters are still largely unknown. It is unclear, particularly for scanned proton therapy, how treatment plans could be optimized to maximally exploit this protective FLASH effect. Materials and Methods To investigate the potential of pencil beam scanned proton therapy for FLASH treatments, we present a phenomenological model, which is purely based on experimentally observed phenomena such as potential dose rate and dose thresholds, and which estimates the biologically effective dose during FLASH radiotherapy based on several parameters. We applied this model to a wide variety of patient geometries and proton treatment planning scenarios, including transmission and Bragg peak plans as well as single‐ and multifield plans. Moreover, we performed a sensitivity analysis to estimate the importance of each model parameter. Results Our results showed an increased plan‐specific FLASH effect for transmission compared with Bragg peak plans (19.7% vs. 4.0%) and for single‐field compared with multifield plans (14.7% vs. 3.7%), typically at the cost of increased integral dose compared to the clinical reference plan. Similar FLASH magnitudes were found across the different treatment sites, whereas the clinical benefits with respect to the clinical reference plan varied strongly. The sensitivity analysis revealed that the threshold dose as well as the dose per fraction strongly impacted the FLASH effect, whereas the persistence time only marginally affected FLASH. An intermediate dependence of the FLASH effect on the dose rate threshold was found. Conclusions Our model provided a quantitative measure of the FLASH effect for various delivery and patient scenarios, supporting previous assumptions about potentially promising planning approaches for FLASH proton therapy. Positive clinical benefits compared to clinical plans were achieved using hypofractionated, single‐field transmission plans. The dose threshold was found to be an important factor, which may require more investigation.
Collapse
Affiliation(s)
- Miriam Krieger
- Varian Medical Systems Particle Therapy GmbH & Co. KG, Troisdorf, 53842, Germany.,Center for Proton Therapy, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Steven van de Water
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | | | | | - Silvia Fabiano
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, 5232, Switzerland.,Department of Physics, ETH Zurich, Zurich, 8092, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, 5232, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Zurich, 8091, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, 5232, Switzerland.,Department of Physics, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
9
|
Wang X, Luo H, Zheng X, Ge H. FLASH radiotherapy: Research process from basic experimentation to clinical application. PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xiaohui Wang
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| | - Hui Luo
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| | - Xiaoli Zheng
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| | - Hong Ge
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
10
|
Chua KLM, Chu PL, Tng DJH, Soo KC, Chua MLK. Repurposing Proton Beam Therapy through Novel Insights into Tumour Radioresistance. Clin Oncol (R Coll Radiol) 2021; 33:e469-e481. [PMID: 34509347 DOI: 10.1016/j.clon.2021.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
Despite improvements in radiotherapy, radioresistance remains an important clinical challenge. Radioresistance can be mediated through enhanced DNA damage response mechanisms within the tumour or through selective pressures exerted by the tumour microenvironment (TME). The effects of the TME have in recent times gained increased attention, in part due to the success of immune modulating strategies, but also through improved understanding of the downstream effects of hypoxia and dysregulated wound healing processes on mediating radioresistance. Although we have a better appreciation of these molecular mechanisms, efforts to address them through novel combination approaches have been scarce, owing to limitations of photon therapy and concerns over toxicity. At the same time, proton beam therapy (PBT) represents an advancement in radiotherapy technologies. However, early clinical results have been mixed and the clinical strategies around optimal use and patient selection for PBT remain unclear. Here we highlight the role that PBT can play in addressing radioresistance, through better patient selection, and by providing an improved toxicity profile for integration with novel agents. We will also describe the developments around FLASH PBT. Through close examination of its normal tissue-sparing effects, we will highlight how FLASH PBT can facilitate combination strategies to tackle radioresistance by further improving toxicity profiles and by directly mediating the mechanisms of radioresistance.
Collapse
Affiliation(s)
- K L M Chua
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore; Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - P L Chu
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - D J H Tng
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - K C Soo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Division of Surgical Oncology, National Cancer Centre Singapore, Singapore
| | - M L K Chua
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore; Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore.
| |
Collapse
|
11
|
Mazal A, Vera Sanchez JA, Sanchez-Parcerisa D, Udias JM, España S, Sanchez-Tembleque V, Fraile LM, Bragado P, Gutierrez-Uzquiza A, Gordillo N, Garcia G, Castro Novais J, Perez Moreno JM, Mayorga Ortiz L, Ilundain Idoate A, Cremades Sendino M, Ares C, Miralbell R, Schreuder N. Biological and Mechanical Synergies to Deal With Proton Therapy Pitfalls: Minibeams, FLASH, Arcs, and Gantryless Rooms. Front Oncol 2021; 10:613669. [PMID: 33585238 PMCID: PMC7874206 DOI: 10.3389/fonc.2020.613669] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
Proton therapy has advantages and pitfalls comparing with photon therapy in radiation therapy. Among the limitations of protons in clinical practice we can selectively mention: uncertainties in range, lateral penumbra, deposition of higher LET outside the target, entrance dose, dose in the beam path, dose constraints in critical organs close to the target volume, organ movements and cost. In this review, we combine proposals under study to mitigate those pitfalls by using individually or in combination: (a) biological approaches of beam management in time (very high dose rate “FLASH” irradiations in the order of 100 Gy/s) and (b) modulation in space (a combination of mini-beams of millimetric extent), together with mechanical approaches such as (c) rotational techniques (optimized in partial arcs) and, in an effort to reduce cost, (d) gantry-less delivery systems. In some cases, these proposals are synergic (e.g., FLASH and minibeams), in others they are hardly compatible (mini-beam and rotation). Fixed lines have been used in pioneer centers, or for specific indications (ophthalmic, radiosurgery,…), they logically evolved to isocentric gantries. The present proposals to produce fixed lines are somewhat controversial. Rotational techniques, minibeams and FLASH in proton therapy are making their way, with an increasing degree of complexity in these three approaches, but with a high interest in the basic science and clinical communities. All of them must be proven in clinical applications.
Collapse
Affiliation(s)
| | | | - Daniel Sanchez-Parcerisa
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain.,Sedecal Molecular Imaging, Madrid, Spain
| | - Jose Manuel Udias
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Samuel España
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Victor Sanchez-Tembleque
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Luis Mario Fraile
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Paloma Bragado
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain.,Department of Biochemistry and Molecular Biology. U. Complutense, Madrid, Spain
| | - Alvaro Gutierrez-Uzquiza
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain.,Department of Biochemistry and Molecular Biology. U. Complutense, Madrid, Spain
| | - Nuria Gordillo
- Department of Applied Physics, U. Autonoma de Madrid, Madrid, Spain.,Center for Materials Microanalysis, (CMAM), U. Autonoma de Madrid, Madrid, Spain
| | - Gaston Garcia
- Center for Materials Microanalysis, (CMAM), U. Autonoma de Madrid, Madrid, Spain
| | | | | | | | | | | | - Carme Ares
- Centro de Protonterapia Quironsalud, Madrid, Spain
| | | | | |
Collapse
|
12
|
FLASH Radiotherapy: Current Knowledge and Future Insights Using Proton-Beam Therapy. Int J Mol Sci 2020; 21:ijms21186492. [PMID: 32899466 PMCID: PMC7556020 DOI: 10.3390/ijms21186492] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022] Open
Abstract
FLASH radiotherapy is the delivery of ultra-high dose rate radiation several orders of magnitude higher than what is currently used in conventional clinical radiotherapy, and has the potential to revolutionize the future of cancer treatment. FLASH radiotherapy induces a phenomenon known as the FLASH effect, whereby the ultra-high dose rate radiation reduces the normal tissue toxicities commonly associated with conventional radiotherapy, while still maintaining local tumor control. The underlying mechanism(s) responsible for the FLASH effect are yet to be fully elucidated, but a prominent role for oxygen tension and reactive oxygen species production is the most current valid hypothesis. The FLASH effect has been confirmed in many studies in recent years, both in vitro and in vivo, with even the first patient with T-cell cutaneous lymphoma being treated using FLASH radiotherapy. However, most of the studies into FLASH radiotherapy have used electron beams that have low tissue penetration, which presents a limitation for translation into clinical practice. A promising alternate FLASH delivery method is via proton beam therapy, as the dose can be deposited deeper within the tissue. However, studies into FLASH protons are currently sparse. This review will summarize FLASH radiotherapy research conducted to date and the current theories explaining the FLASH effect, with an emphasis on the future potential for FLASH proton beam therapy.
Collapse
|