1
|
Jackson MR, Richards AR, Oladipupo ABA, Chahal SK, Caragher S, Chalmers AJ, Gomez-Roman N. ClonoScreen3D - A Novel 3-Dimensional Clonogenic Screening Platform for Identification of Radiosensitizers for Glioblastoma. Int J Radiat Oncol Biol Phys 2024; 120:162-177. [PMID: 38493899 DOI: 10.1016/j.ijrobp.2024.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE Glioblastoma (GBM) is a lethal brain tumor. Standard-of-care treatment comprising surgery, radiation, and chemotherapy results in median survival rates of 12 to 15 months. Molecular-targeted agents identified using conventional 2-dimensional (2D) in vitro models of GBM have failed to improve outcome in patients, rendering such models inadequate for therapeutic target identification. A previously developed 3D GBM in vitro model that recapitulates key GBM clinical features and responses to molecular therapies was investigated for utility for screening novel radiation-drug combinations using gold-standard clonogenic survival as readout. METHODS AND MATERIALS Patient-derived GBM cell lines were optimized for inclusion in a 96-well plate 3D clonogenic screening platform, ClonoScreen3D. Radiation responses of GBM cells in this system were highly reproducible and comparable to those observed in low-throughout 3D assays. The screen methodology provided quantification of candidate drug single agent activity (half maximal effective concentration or EC50) and the interaction between drug and radiation (radiation interaction ratio). RESULTS The poly(ADP-ribose) polymerase inhibitors talazoparib, rucaparib, and olaparib each showed a significant interaction with radiation by ClonoScreen3D and were subsequently confirmed as true radiosensitizers by full clonogenic assay. Screening a panel of DNA damage response inhibitors revealed the expected propensity of these compounds to interact significantly with radiation (13/15 compounds). A second screen assessed a panel of compounds targeting pathways identified by transcriptomic analysis and demonstrated single agent activity and a previously unreported interaction with radiation of dinaciclib and cytarabine (radiation interaction ratio 1.28 and 1.90, respectively). These compounds were validated as radiosensitizers in full clonogenic assays (sensitizer enhancement ratio 1.47 and 1.35, respectively). CONCLUSIONS The ClonoScreen3D platform was demonstrated to be a robust method to screen for single agent and radiation-drug combination activity. Using gold-standard clonogenicity, this assay is a tool for identification of radiosensitizers. We anticipate this technology will accelerate identification of novel radiation-drug combinations with genuine translational value.
Collapse
Affiliation(s)
- Mark R Jackson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Amanda R Richards
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Sandeep K Chahal
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Seamus Caragher
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK; Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Massachussetts, USA
| | - Anthony J Chalmers
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Natividad Gomez-Roman
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
2
|
Zhao X, Luo T, Qiu Y, Yang Z, Wang D, Wang Z, Zeng J, Bi Z. Mechanisms of traditional Chinese medicine overcoming of radiotherapy resistance in breast cancer. Front Oncol 2024; 14:1388750. [PMID: 38993643 PMCID: PMC11237312 DOI: 10.3389/fonc.2024.1388750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Breast cancer stands as the most prevalent malignancy among women, with radiotherapy serving as a primary treatment modality. Despite radiotherapy, a subset of breast cancer patients experiences local recurrence, attributed to the intrinsic resistance of tumors to radiation. Therefore, there is a compelling need to explore novel approaches that can enhance cytotoxic effects through alternative mechanisms. Traditional Chinese Medicine (TCM) and its active constituents exhibit diverse pharmacological actions, including anti-tumor effects, offering extensive possibilities to identify effective components capable of overcoming radiotherapy resistance. This review delineates the mechanisms underlying radiotherapy resistance in breast cancer, along with potential candidate Chinese herbal medicines that may sensitize breast cancer cells to radiotherapy. The exploration of such herbal interventions holds promise for improving therapeutic outcomes in the context of breast cancer radiotherapy resistance.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oncology, Shenshan Medical Centre, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Luo
- Department of Oncology, Shenshan Medical Centre, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Yuting Qiu
- Department of Oncology, Shenshan Medical Centre, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Zhiwei Yang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danni Wang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zairui Wang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiale Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuofei Bi
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Dou Z, Lei H, Su W, Zhang T, Chen X, Yu B, Zhen X, Si J, Sun C, Zhang H, Di C. Modification of BCLX pre-mRNA splicing has antitumor efficacy alone or in combination with radiotherapy in human glioblastoma cells. Cell Death Dis 2024; 15:160. [PMID: 38383492 PMCID: PMC10881996 DOI: 10.1038/s41419-024-06507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Dysregulation of anti-apoptotic and pro-apoptotic protein isoforms arising from aberrant splicing is a crucial hallmark of cancers and may contribute to therapeutic resistance. Thus, targeting RNA splicing to redirect isoform expression of apoptosis-related genes could lead to promising anti-cancer phenotypes. Glioblastoma (GBM) is the most common type of malignant brain tumor in adults. In this study, through RT-PCR and Western Blot analysis, we found that BCLX pre-mRNA is aberrantly spliced in GBM cells with a favored splicing of anti-apoptotic Bcl-xL. Modulation of BCLX pre-mRNA splicing using splice-switching oligonucleotides (SSOs) efficiently elevated the pro-apoptotic isoform Bcl-xS at the expense of the anti-apoptotic Bcl-xL. Induction of Bcl-xS by SSOs activated apoptosis and autophagy in GBM cells. In addition, we found that ionizing radiation could also modulate the alternative splicing of BCLX. In contrast to heavy (carbon) ion irradiation, low energy X-ray radiation-induced an increased ratio of Bcl-xL/Bcl-xS. Inhibiting Bcl-xL through splicing regulation can significantly enhance the radiation sensitivity of 2D and 3D GBM cells. These results suggested that manipulation of BCLX pre-mRNA alternative splicing by splice-switching oligonucleotides is a novel approach to inhibit glioblastoma tumorigenesis alone or in combination with radiotherapy.
Collapse
Affiliation(s)
- Zhihui Dou
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Huiwen Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Boyi Yu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaogang Zhen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jing Si
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Chao Sun
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
4
|
Wu Y, Song Y, Wang R, Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer 2023; 22:96. [PMID: 37322433 PMCID: PMC10268375 DOI: 10.1186/s12943-023-01801-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Cancer is the most prevalent cause of death globally, and radiotherapy is considered the standard of care for most solid tumors, including lung, breast, esophageal, and colorectal cancers and glioblastoma. Resistance to radiation can lead to local treatment failure and even cancer recurrence. MAIN BODY In this review, we have extensively discussed several crucial aspects that cause resistance of cancer to radiation therapy, including radiation-induced DNA damage repair, cell cycle arrest, apoptosis escape, abundance of cancer stem cells, modification of cancer cells and their microenvironment, presence of exosomal and non-coding RNA, metabolic reprogramming, and ferroptosis. We aim to focus on the molecular mechanisms of cancer radiotherapy resistance in relation to these aspects and to discuss possible targets to improve treatment outcomes. CONCLUSIONS Studying the molecular mechanisms responsible for radiotherapy resistance and its interactions with the tumor environment will help improve cancer responses to radiotherapy. Our review provides a foundation to identify and overcome the obstacles to effective radiotherapy.
Collapse
Affiliation(s)
- Yu Wu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
| | - Runze Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
5
|
Fairlie WD, Lee EF. Targeting the BCL-2-regulated apoptotic pathway for the treatment of solid cancers. Biochem Soc Trans 2021; 49:2397-2410. [PMID: 34581776 PMCID: PMC8589438 DOI: 10.1042/bst20210750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
The deregulation of apoptosis is a key contributor to tumourigenesis as it can lead to the unwanted survival of rogue cells. Drugs known as the BH3-mimetics targeting the pro-survival members of the BCL-2 protein family to induce apoptosis in cancer cells have achieved clinical success for the treatment of haematological malignancies. However, despite our increasing knowledge of the pro-survival factors mediating the unwanted survival of solid tumour cells, and our growing BH3-mimetics armamentarium, the application of BH3-mimetic therapy in solid cancers has not reached its full potential. This is mainly attributed to the need to identify clinically safe, yet effective, combination strategies to target the multiple pro-survival proteins that typically mediate the survival of solid tumours. In this review, we discuss current and exciting new developments in the field that has the potential to unleash the full power of BH3-mimetic therapy to treat currently recalcitrant solid malignancies.
Collapse
Affiliation(s)
- W. Douglas Fairlie
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- Cell Death and Survival Laboratory, School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Erinna F. Lee
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- Cell Death and Survival Laboratory, School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
6
|
Dou Z, Zhao D, Chen X, Xu C, Jin X, Zhang X, Wang Y, Xie X, Li Q, Di C, Zhang H. Aberrant Bcl-x splicing in cancer: from molecular mechanism to therapeutic modulation. J Exp Clin Cancer Res 2021; 40:194. [PMID: 34118966 PMCID: PMC8196531 DOI: 10.1186/s13046-021-02001-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022] Open
Abstract
Bcl-x pre-mRNA splicing serves as a typical example to study the impact of alternative splicing in the modulation of cell death. Dysregulation of Bcl-x apoptotic isoforms caused by precarious equilibrium splicing is implicated in genesis and development of multiple human diseases, especially cancers. Exploring the mechanism of Bcl-x splicing and regulation has provided insight into the development of drugs that could contribute to sensitivity of cancer cells to death. On this basis, we review the multiple splicing patterns and structural characteristics of Bcl-x. Additionally, we outline the cis-regulatory elements, trans-acting factors as well as epigenetic modifications involved in the splicing regulation of Bcl-x. Furthermore, this review highlights aberrant splicing of Bcl-x involved in apoptosis evade, autophagy, metastasis, and therapy resistance of various cancer cells. Last, emphasis is given to the clinical role of targeting Bcl-x splicing correction in human cancer based on the splice-switching oligonucleotides, small molecular modulators and BH3 mimetics. Thus, it is highlighting significance of aberrant splicing isoforms of Bcl-x as targets for cancer therapy.
Collapse
Affiliation(s)
- Zhihui Dou
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Dapeng Zhao
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaohua Chen
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Caipeng Xu
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaodong Jin
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xuetian Zhang
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yupei Wang
- Medical Genetics Center of Gansu Maternal and Child Health Care Center, Lanzhou, 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qiang Li
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Cuixia Di
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| |
Collapse
|
7
|
A novel BH3-mimetic, AZD0466, targeting BCL-XL and BCL-2 is effective in pre-clinical models of malignant pleural mesothelioma. Cell Death Discov 2021; 7:122. [PMID: 34050131 PMCID: PMC8163735 DOI: 10.1038/s41420-021-00505-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 05/01/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with treatment limited to Cisplatin and Pemetrexed chemotherapy. Recently, we showed that drugs targeting the BCL-2-regulated apoptosis pathway could kill MPM cell lines in vitro, and control tumor growth in vivo. These studies showed BCL-XL was the dominant pro-survival BCL-2 family member correlating with its high-level expression in cells and patient tumor samples. In this study we show another inhibitor, AZD4320 that targets BCL-XL (and BCL-2), can also potently kill MPM tumor cells in vitro (EC50 values in the 200 nM range) and this effect is enhanced by co-inhibition of MCL-1 using AZD5991. Moreover, we show that a novel nanoparticle, AZD0466, where AZD4320 is chemically conjugated to a PEGylated poly-lysine dendrimer, was as effective as standard-of-care chemotherapy, Cisplatin, at inhibiting tumor growth in mouse xenograft studies, and this effect was enhanced when both drugs were combined. Critically, the degree of thrombocytopenia, an on-target toxicity associated with BCL-XL inhibition, was significantly reduced throughout the treatment period compared to other BCL-XL-targeting BH3-mimetics. These pre-clinical findings provide a rationale for the future clinical evaluation for novel BH3-mimetic formulations in MPM, and indeed, other solid tumor types dependent on BCL-XL.
Collapse
|
8
|
Malignant pleural mesothelioma co-opts BCL-X L and autophagy to escape apoptosis. Cell Death Dis 2021; 12:406. [PMID: 33859162 PMCID: PMC8050302 DOI: 10.1038/s41419-021-03668-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022]
Abstract
Escape from programmed cell death is a hallmark of cancer. In this study, we investigated the anti-apoptotic mechanisms and explored the therapeutic potential of BCL-2 homology domain-3 (BH3) mimetics in malignant pleural mesothelioma (MPM), a lethal thoracic malignancy with an extreme dearth of treatment options. By implementing integrated analysis of functional genomic data of MPM cells and quantitative proteomics of patients’ tumors, we identified BCL-XL as an anti-apoptotic driver that is overexpressed and confers an oncogenic dependency in MPM. MPM cells harboring genetic alterations that inactivate the NF2/LATS1/2 signaling are associated with increased sensitivity to A-1155463, a BCL-XL-selective BH3 mimetic. Importantly, BCL-XL inhibition elicits protective autophagy, and concomitant blockade of BCL-XL and autophagic machinery with A-1155463 and hydroxychloroquine (HCQ), the US Food and Drug Administration (FDA)-approved autophagy inhibitor, synergistically enhances anti-MPM effects in vitro and in vivo. Together, our work delineates the molecular basis underlying resistance to apoptosis and uncovers an evasive mechanism that limits response to BH3 mimetics in MPM, suggesting a novel strategy to target this aggressive disease.
Collapse
|
9
|
Shang Y, Wang L, Zhu Z, Gao W, Li D, Zhou Z, Chen L, Fu CG. Downregulation of miR-423-5p Contributes to the Radioresistance in Colorectal Cancer Cells. Front Oncol 2021; 10:582239. [PMID: 33505907 PMCID: PMC7832584 DOI: 10.3389/fonc.2020.582239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Resistance to radiotherapy is the main reason causing treatment failure in locally advanced rectal cancer. MicroRNAs (miRNAs) have been well demonstrated to regulate cancer development and progression. However, how miRNAs regulate radiotherapy resistance in colorectal cancer remains unknown. Herein, we established two human colorectal cancer cell lines resistant to radiotherapy, named HCT116-R and RKO-R, using the strategy of fractionated irradiation. The radioresistant phenotypical changes of the two cell lines were validated by cell viability assay, colony formation assay and apoptosis assay. The miRNA expression profilings of HCT116-R and RKO-R were determined using RNA-seq analyses, and further confirmed by quantitative real-time PCR. Multiple miRNAs, including miR-423-5p, miR-7-5p, miR-522-3p, miR-3184-3p, and miR-3529-3p, were identified with altered expression in both of the radiotherapy-resistant cells, compared to the parental cells. The downregulation of miR-423-5p was further validated in the rectal cancer tissues from radiotherapy-resistant patients. Silencing of miR-423-5p in parental HCT116 and RKO cells decreased the sensitivity to radiation treatment, and inhibited the radiation-induced apoptosis. In consistence, overexpression of miR-423-5p in HCT116-R and RKO-R cells partially rescued their sensitivity to radiotherapy, and promoted the radiation-induced apoptosis. Bcl-xL (Bcl-2-like protein 1) was predicted to be a potential target gene for miR-423-5p, and miR-423-5p/Bcl-xL axis could be a critical mediator of radiosensitivity in colorectal cancer cells. The current finding not only revealed a novel role of miR-423-5p in regulating the radiosensitivity in colorectal cancer, but also suggested miR-423-5p as a molecular candidate for combination therapy with radiation to treat colorectal cancer.
Collapse
Affiliation(s)
- Yuanyuan Shang
- Department of General Surgery and Colorectal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingfei Wang
- Department of Oncology, The 903rd Hospital of PLA, Hangzhou, China
| | - Zhe Zhu
- Department of General Surgery and Colorectal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Gao
- Department of General Surgery and Colorectal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dan Li
- Department of General Surgery and Colorectal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuqing Zhou
- Department of General Surgery and Colorectal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Chen
- Department of General Surgery and Colorectal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuan-Gang Fu
- Department of General Surgery and Colorectal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Arulananda S, Lee EF, Fairlie WD, John T. The role of BCL-2 family proteins and therapeutic potential of BH3-mimetics in malignant pleural mesothelioma. Expert Rev Anticancer Ther 2020; 21:413-424. [PMID: 33238762 DOI: 10.1080/14737140.2021.1856660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: With limited recent therapeutic changes, malignant pleural mesothelioma (MPM) is associated with poor survival and death within 12 months, making it one of the most lethal malignancies. Due to unregulated asbestos use in developing countries and home renovation exposures, cases of MPM are likely to present for decades. As MPM is largely driven by dysregulation of tumor suppressor genes, researchers have examined other mechanisms of subverting tumor proliferation and spread. Over-expression of pro-survival BCL-2 family proteins impairs cells from undergoing apoptosis, and BH3-mimetics targeting them are a novel treatment option across various cancers, though have not been widely investigated in MPM.Areas covered: This review provides an overview of MPM and its current treatment landscape. It summarizes the role of BCL-2 family proteins in tumorigenesis and the therapeutic potential of BH3-mimetics . Finally, it discusses the role of BCL-2 proteins in MPM and the pre-clinical rationale for investigating BH3-mimetics as a therapeutic strategy.Expert opinion: As a disease without readily actionable oncogene driver mutations and with modest benefit from immune checkpoint inhibition, novel therapeutic options are urgently needed for MPM. Hence, BH3-mimetics provide a promising treatment option, with evidence supporting dependence on pro-survival BCL-2 proteins for MPM cell survival.
Collapse
Affiliation(s)
- Surein Arulananda
- Department of Medical Oncology, Austin Health, Heidelberg, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia
| | - Erinna F Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - W Douglas Fairlie
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Thomas John
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
11
|
Ghirardelli P, Franceschini D, D'Aveni A, Dominici L, Ravasio A, Marzo M, Villa E, Di Noia V, Scorsetti M, Vavassori V, Ceresoli GL. Salvage radiotherapy for oligo-progressive malignant pleural mesothelioma. Lung Cancer 2020; 152:1-6. [PMID: 33310300 DOI: 10.1016/j.lungcan.2020.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES No standard treatment option is available for patients with unresectable malignant pleural mesothelioma (MPM) progressing after upfront chemotherapy. We aimed to explore the role of focal radiotherapy (FRT) as a treatment modality for oligo-progressive MPM. MATERIALS AND METHODS In this retrospective study, consecutive patients pretreated with ≥1 lines of chemotherapy were included. Oligo-progressive MPM was defined as an unresectable disease with radiological progression at ≤3 sites according to a chest-abdominal contrast-enhanced computed tomography. Patients were treated with either stereotactic body radiotherapy (SBRT, ≥5 Gy per fraction) or hypo-fractionated radiotherapy (hypoRT, <5 Gy per fraction). Time to further systemic therapy (TFST) and local control (LC) after FRT were the primary endpoints. Biologically effective dose (BED) was calculated using three different alpha/beta models (1.5 Gy, 3 Gy and 10 Gy). RESULTS From April 2006 to March 2019, 37 patients were treated on 43 pleural lesions; 16/37 (43 %) had undergone upfront multimodality treatment (MMT) including surgery. FRT was given in 22/37 (59.5 %) after one line of chemotherapy. SBRT was delivered for 26/43 lesions (60.5 %), hypoRT for 17/43 (39.5 %). Median TFST was 6 months (95 % CI 4.9-7.1). LC at 6 months and 1 year was 84 % and 76 %, respectively. Median TFST was longer in patients treated after 1 vs >1 line of chemotherapy (9 vs 4 months, p = 0.001) and in patients pretreated with MMT (6 vs 3 months, p = 0.021). Six-month LC was better in patients treated with a BED > 100 using alpha/beta 1.5 and 3. No ≥ G3 acute or late toxicities were reported. CONCLUSION FRT was feasible in selected patients with oligo-progressive MPM, allowing delay of further systemic therapies, with no severe toxicity. FRT was more effective when performed at progression after one line of systemic therapy. Our results suggest a radio-resistant behavior of MPM.
Collapse
Affiliation(s)
- Paolo Ghirardelli
- Department of Radiotherapy, Cliniche Humanitas Gavazzeni, Via Gavazzeni 21, 24125, Bergamo, Italy
| | - Davide Franceschini
- Department of Radiotherapy, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Alessandro D'Aveni
- Department of Medical Oncology, Cliniche Humanitas Gavazzeni, Via Gavazzeni 21, 24125 Bergamo, Italy
| | - Luca Dominici
- Department of Radiotherapy, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Andrea Ravasio
- Department of Radiotherapy, Cliniche Humanitas Gavazzeni, Via Gavazzeni 21, 24125, Bergamo, Italy
| | - Marco Marzo
- Department of Radiotherapy, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Elisa Villa
- Department of Radiotherapy, Cliniche Humanitas Gavazzeni, Via Gavazzeni 21, 24125, Bergamo, Italy
| | - Vincenzo Di Noia
- Department of Medical Oncology, Cliniche Humanitas Gavazzeni, Via Gavazzeni 21, 24125 Bergamo, Italy
| | - Marta Scorsetti
- Department of Radiotherapy, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, 20089, Rozzano, Milan, Italy; Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
| | - Vittorio Vavassori
- Department of Radiotherapy, Cliniche Humanitas Gavazzeni, Via Gavazzeni 21, 24125, Bergamo, Italy
| | - Giovanni L Ceresoli
- Department of Medical Oncology, Cliniche Humanitas Gavazzeni, Via Gavazzeni 21, 24125 Bergamo, Italy.
| |
Collapse
|
12
|
Arulananda S, O'Brien M, Evangelista M, Harris TJ, Steinohrt NS, Jenkins LJ, Walkiewicz M, O'Donoghue RJJ, Poh AR, Thapa B, Williams DS, Leong T, Mariadason JM, Li X, Cebon J, Lee EF, John T, Fairlie WD. BCL-XL is an actionable target for treatment of malignant pleural mesothelioma. Cell Death Discov 2020; 6:114. [PMID: 33298868 PMCID: PMC7603509 DOI: 10.1038/s41420-020-00348-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/20/2020] [Indexed: 12/29/2022] Open
Abstract
Despite having one of the lowest survival rates of all cancers, there have been no new approved treatments for malignant pleural mesothelioma (MPM) in over a decade. Standard-of-care treatment relies on Cisplatin plus Pemetrexed chemotherapy. Here, we tested a suite of BH3-mimetic drugs targeting BCL-2 pro-survival proteins of the intrinsic apoptotic pathway. We found BCL-XL is the dominant pro-survival protein in a panel of cell lines in vitro, though potent, synergistic cell killing occurred with MCL-1 co-targeting. This correlates with high-level expression of BCL-XL and MCL-1 in cell lines and a large cohort of patient tumour samples. BCL-XL inhibition combined with Cisplatin also enhanced cell killing. In vivo BCL-XL inhibition was as effective as Cisplatin, and the combination enhanced tumour growth control and survival. Genetic ablation of MCL-1 also enhanced the effects of BCL-XL inhibitors, in vivo. Combined, these data provide a compelling rationale for the clinical investigation of BH3-mimetics targeting BCL-XL in MPM.
Collapse
Affiliation(s)
- Surein Arulananda
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.,Department of Medical Oncology, Austin Health, Heidelberg, VIC, Australia
| | - Megan O'Brien
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Marco Evangelista
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Tiffany J Harris
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Nikita S Steinohrt
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Laura J Jenkins
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Marzena Walkiewicz
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Robert J J O'Donoghue
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Bibhusal Thapa
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia.,Department of Pathology, Austin Health, Heidelberg, VIC, Australia
| | - Trishe Leong
- Department of Medical Oncology, Austin Health, Heidelberg, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia.,Department of Pathology, Austin Health, Heidelberg, VIC, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Bundoora, VIC, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.,Department of Medical Oncology, Austin Health, Heidelberg, VIC, Australia
| | - Erinna F Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia. .,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia. .,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.
| | - Thomas John
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia. .,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia. .,Department of Medical Oncology, Austin Health, Heidelberg, VIC, Australia. .,Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| | - W D Fairlie
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia. .,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia. .,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
13
|
Xu D, Yang H, Schmid RA, Peng RW. Therapeutic Landscape of Malignant Pleural Mesothelioma: Collateral Vulnerabilities and Evolutionary Dependencies in the Spotlight. Front Oncol 2020; 10:579464. [PMID: 33072611 PMCID: PMC7538645 DOI: 10.3389/fonc.2020.579464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is the epitome of a recalcitrant cancer driven by pharmacologically intractable tumor suppressor proteins. A significant but largely unmet challenge in the field is the translation of genetic information on alterations in tumor suppressor genes (TSGs) into effective cancer-specific therapies. The notion that abnormal tumor genome subverts physiological cellular processes, which creates collateral vulnerabilities contextually related to specific genetic alterations, offers a promising strategy to target TSG-driven MPM. Moreover, emerging evidence has increasingly appreciated the therapeutic potential of genetic and pharmacological dependencies acquired en route to cancer development and drug resistance. Here, we review the most recent progress on vulnerabilities co-selected by functional loss of major TSGs and dependencies evolving out of cancer development and resistance to cisplatin based chemotherapy, the only first-line regimen approved by the US Food and Drug Administration (FDA). Finally, we highlight CRISPR-based functional genomics that has emerged as a powerful platform for cancer drug discovery in MPM. The repertoire of MPM-specific “Achilles heel” rises on the horizon, which holds the promise to elucidate therapeutic landscape and may promote precision oncology for MPM.
Collapse
Affiliation(s)
- Duo Xu
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Haitang Yang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph A Schmid
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|