1
|
Chirilă ME, Kraja F, Marta GN, Neves Junior WFP, de Arruda GV, Gouveia AG, Franco P, Poortmans P, Ratosa I. Organ-sparing techniques and dose-volume constrains used in breast cancer radiation therapy - Results from European and Latin American surveys. Clin Transl Radiat Oncol 2024; 46:100752. [PMID: 38425691 PMCID: PMC10900109 DOI: 10.1016/j.ctro.2024.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
Background Advances in local and systemic therapies have improved the outcomes of patients with breast cancer (BC), leading to a possible increased risk for postoperative radiation therapy (RT) late adverse events. The most adequate technologies and dose constraints for organs at risk (OAR) in BC RT have yet to be defined. Methods An online survey was distributed to radiation oncologists (ROs) practicing in Europe and Latin America including the Caribbean (LAC) through personal contacts, RO and BC professional groups' networks. Demographic data and clinical practice information were collected. Results The study included 585 responses from ROs practicing in 57 different countries. The most frequently contoured OAR by European and LAC participants were the whole heart (96.6 % and 97.7 %), the ipsilateral (84.3 % and 90.8 %), and contralateral lung (71.3 % and 77.4 %), whole lung (69.8 % and 72.9 %), and the contralateral breast (66.4 % and. 83.2 %). ESTRO guidelines were preferred in Europe (33.3 %) and the RTOG contouring guideline was the most popular in LAC (62.2 %), while some participants used both recommendations (13.2 % and 19.2 %). IMRT (68.6 % and 59.1 %) and VMAT (65.6 % and 60.2 %) were the preferred modalities used in heart sparing strategies, followed by deep inspiration breath-hold (DIBH) (54.8 % and 37.4 %) and partial breast irradiation (PBI) (41.6 % and 24.6 %). Only a small percentage of all ROs reported the dose-volume constraints for OAR used in routine clinical practice. A mean heart dose (Heart-Dmean) between 4 and 5 Gy was the most frequently reported parameter (17.2 % and 39.3 %). Conclusion The delineation approaches and sparing techniques for OAR in BC RT vary between ROs worldwide. The low response rate to the dose constraints subset of queries reflects the uncertainty surrounding this topic and supports the need for detailed consensus recommendations in the clinical practice.
Collapse
Affiliation(s)
- Monica-Emila Chirilă
- Radiation Oncology Department, Amethyst Radiotherapy Centre, Cluj-Napoca, Romania
- Department of Clinical Development, MVision AI, Helsinki, Finland
| | - Fatjona Kraja
- Surgery Department, Faculty of Medicine, University of Medicine Tirana, Albania
- Department of Oncology, University Hospital Centre Mother Teresa, Tirana, Albania
| | - Gustavo Nader Marta
- Department of Radiation Oncology, Hospital Sirio Libanês, São Paulo, Brazil
- Post-Graduation Program, Radiology and Oncology Department, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- Latin America Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
| | - Wellington Furtado Pimenta Neves Junior
- Department of Radiation Oncology, Hospital Sirio Libanês, São Paulo, Brazil
- Post-Graduation Program, Radiology and Oncology Department, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo Viani de Arruda
- Latin America Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - André Guimarães Gouveia
- Latin America Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
- Department of Oncology, Division of Radiation Oncology, Juravinski Cancer Centre, Hamilton, ON, Canada
| | - Pierfrancesco Franco
- Department of Translational Sciences (DIMET), University of Eastern Piedmont, Novara, Italy
| | - Philip Poortmans
- Department of Radiation Oncology, Faculty of Medicine and Health Sciences, University of Antwerp, Iridium Netwerk, Wilrijk-Antwerp, Belgium
| | - Ivica Ratosa
- Division of Radiation Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Slovenia
| |
Collapse
|
2
|
Hassan J, Saeed SM, Deka L, Uddin MJ, Das DB. Applications of Machine Learning (ML) and Mathematical Modeling (MM) in Healthcare with Special Focus on Cancer Prognosis and Anticancer Therapy: Current Status and Challenges. Pharmaceutics 2024; 16:260. [PMID: 38399314 PMCID: PMC10892549 DOI: 10.3390/pharmaceutics16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The use of data-driven high-throughput analytical techniques, which has given rise to computational oncology, is undisputed. The widespread use of machine learning (ML) and mathematical modeling (MM)-based techniques is widely acknowledged. These two approaches have fueled the advancement in cancer research and eventually led to the uptake of telemedicine in cancer care. For diagnostic, prognostic, and treatment purposes concerning different types of cancer research, vast databases of varied information with manifold dimensions are required, and indeed, all this information can only be managed by an automated system developed utilizing ML and MM. In addition, MM is being used to probe the relationship between the pharmacokinetics and pharmacodynamics (PK/PD interactions) of anti-cancer substances to improve cancer treatment, and also to refine the quality of existing treatment models by being incorporated at all steps of research and development related to cancer and in routine patient care. This review will serve as a consolidation of the advancement and benefits of ML and MM techniques with a special focus on the area of cancer prognosis and anticancer therapy, leading to the identification of challenges (data quantity, ethical consideration, and data privacy) which are yet to be fully addressed in current studies.
Collapse
Affiliation(s)
- Jasmin Hassan
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (S.M.S.)
| | | | - Lipika Deka
- Faculty of Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK;
| | - Md Jasim Uddin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
3
|
Chang JS, Lee J, Vicini FA, Kim JS, Kim J, Choi SH, Lee IJ, Kim YB. Large institutional experience of early outcomes and dosimetric findings with postoperative stereotactic partial breast irradiation in breast cancer. Radiother Oncol 2024; 191:110066. [PMID: 38142936 DOI: 10.1016/j.radonc.2023.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
PURPOSE To analyze the dosimetric and toxicity outcomes of patients treated with postoperative stereotactic partial breast irradiation (S-PBI). METHODS We identified 799 women who underwent S-PBI at our institution between January 2016 and December 2022. The most commonly used dose-fraction and technique were 30 Gy in 5 fractions (91.7 %) and a robotic stereotactic radiation system with real-time tracking (83.7 %). The primary endpoints were dosimetric parameters and radiation-related toxicities. For comparison, a control group undergoing ultra-hypofractionated whole breast irradiation (UF-WBI, n = 468) at the same institution was selected. RESULTS A total of 815 breasts from 799 patients, with a median planning target volume (PTV) volume of 89.6 cm3, were treated with S-PBI. Treatment plans showed that the mean and maximum doses received by the PTV were 96.2 % and 104.8 % of the prescription dose, respectively. The volume of the ipsilateral breast that received 50 % of the prescription dose was 32.3 ± 8.9 %. The mean doses for the ipsilateral lung and heart were 2.5 ± 0.9 Gy and 0.65 ± 0.39 Gy, respectively. Acute toxicity occurred in 175 patients (21.5 %), predominantly of grade 1. Overall rate of late toxicity was 4 % with a median follow-up of 31.6 months. Compared to the UF-WBI group, the S-PBI group had comparably low acute toxicity (21.5 % vs. 25.2 %, p = 0.12) but significantly lower dosimetric parameters for all organs-at-risks (all p < 0.05). CONCLUSION In this large cohort, S-PBI demonstrated favorable dosimetric and toxicity profiles. Considering the reduced radiation exposure to surrounding tissues, external beam PBI with advanced techniques should at least be considered over traditional WBI-based approaches for PBI candidates.
Collapse
Affiliation(s)
- Jee Suk Chang
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jeongshim Lee
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Inha University Hospital, Inha University College of Medicine, Incheon, Republic of Korea
| | - Frank A Vicini
- Department of Radiation Oncology, Michigan Healthcare Professionals, Farmington Hills, MI, USA
| | - Jin Sung Kim
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihun Kim
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Hee Choi
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ik Jae Lee
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Bae Kim
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Casson CL, John SA, Ferrall-Fairbanks MC. Mathematical modeling of cardio-oncology: Modeling the systemic effects of cancer therapeutics on the cardiovascular system. Semin Cancer Biol 2023; 97:30-41. [PMID: 37979714 DOI: 10.1016/j.semcancer.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/25/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Cardiotoxicity is a common side-effect of many cancer therapeutics; however, to-date there has been very little push to understand the mechanisms underlying this group of pathologies. This has led to the emergence of cardio-oncology, a field of medicine focused on understanding the effects of cancer and its treatment on the human heart. Here, we describe how mechanistic modeling approaches have been applied to study open questions in the cardiovascular system and how these approaches are being increasingly applied to advance knowledge of the underlying effects of cancer treatments on the human heart. A variety of mechanistic, mathematical modeling techniques have been applied to explore the link between common cancer treatments, such as chemotherapy, radiation, targeted therapy, and immunotherapy, and cardiotoxicity, nevertheless there is limited coverage in the different types of cardiac dysfunction that may be associated with these treatments. Moreover, cardiac modeling has a rich heritage of mathematical modeling and is well suited for the further development of novel approaches for understanding the cardiotoxicities associated with cancer therapeutics. There are many opportunities to combine mechanistic, bottom-up approaches with data-driven, top-down approaches to improve personalized, precision oncology to better understand, and ultimately mitigate, cardiac dysfunction in cancer patients.
Collapse
Affiliation(s)
- Camara L Casson
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Sofia A John
- Department of Statistics, University of Florida, Gainesville, FL 32611, USA
| | - Meghan C Ferrall-Fairbanks
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
5
|
Hoppen L, Sarria GR, Kwok CS, Boda-Heggemann J, Buergy D, Ehmann M, Giordano FA, Fleckenstein J. Dosimetric benefits of adaptive radiation therapy for patients with stage III non-small cell lung cancer. Radiat Oncol 2023; 18:34. [PMID: 36814271 PMCID: PMC9945670 DOI: 10.1186/s13014-023-02222-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Daily adaptive radiation therapy (ART) of patients with non-small cell lung cancer (NSCLC) lowers organs at risk exposure while maintaining the planning target volume (PTV) coverage. Thus, ART allows an isotoxic approach with increased doses to the PTV that could improve local tumor control. Herein we evaluate daily online ART strategies regarding their impact on relevant dose-volume metrics. METHODS Daily cone-beam CTs (1 × n = 28, 1 × n = 29, 11 × n = 30) of 13 stage III NSCLC patients were converted into synthetic CTs (sCTs). Treatment plans (TPs) were created retrospectively on the first-fraction sCTs (sCT1) and subsequently transferred unaltered to the sCTs of the remaining fractions of each patient (sCT2-n) (IGRT scenario). Two additional TPs were generated on sCT2-n: one minimizing the lung-dose while preserving the D95%(PTV) (isoeffective scenario), the other escalating the D95%(PTV) with a constant V20Gy(lungipsilateral) (isotoxic scenario). RESULTS Compared to the original TPs predicted dose, the median D95%(PTV) in the IGRT scenario decreased by 1.6 Gy ± 4.2 Gy while the V20Gy(lungipsilateral) increased in median by 1.1% ± 4.4%. The isoeffective scenario preserved the PTV coverage and reduced the median V20Gy(lungipsilateral) by 3.1% ± 3.6%. Furthermore, the median V5%(heart) decreased by 2.9% ± 6.4%. With an isotoxic prescription, a median dose-escalation to the gross target volume of 10.0 Gy ± 8.1 Gy without increasing the V20Gy(lungipsilateral) and V5%(heart) was feasible. CONCLUSIONS We demonstrated that even without reducing safety margins, ART can reduce lung-doses, while still reaching adequate target coverage or escalate target doses without increasing ipsilateral lung exposure. Clinical benefits by means of toxicity and local control of both strategies should be evaluated in prospective clinical trials.
Collapse
Affiliation(s)
- Lea Hoppen
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Gustavo R. Sarria
- grid.10388.320000 0001 2240 3300Department of Radiation Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Chung S. Kwok
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Judit Boda-Heggemann
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Daniel Buergy
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Michael Ehmann
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Frank A. Giordano
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Jens Fleckenstein
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
6
|
[Patient selection and early tolerance of whole breast irradiation according to the "Fast Forward" protocol: Preliminary results]. Cancer Radiother 2021; 26:542-546. [PMID: 34454837 DOI: 10.1016/j.canrad.2021.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Moderate hypofractionated radiotherapy has become routine practice for a selected population of patients treated for early-stage breast cancer. In April 2020, the Fast Forward (FF) study was published which introduced another extreme hypofractionated radiotherapy regimen in five sessions over a week. The aim of this work is to evaluate the population of first patients in whom this regimen was used in our department, as well as the results in terms of early toxicity. MATERIAL AND METHODS We retrospectively analysed all the patients treated in our department according to the Fast Forward protocol after establishing an institutional consensus regarding the selection of patients with breast cancer without indication for lymph node irradiation. All patients received breast-only irradiation at a total dose of 26Gy in five fractions according to protocol. All patients were treated by modern conformational techniques with planning large volume coverage between 95 and 100%. Acute toxicity of the treatment was assessed using the NCI CTC v4.0 scale and the general condition was assessed according to the WHO classification. RESULTS Between August 2020 and May 2021, 30 patients were included, treated on the breast alone without complement on the tumour bed or irradiation of the lymph node areas. The median age of the patients was 80years (range: 60-85years) with performance status 2 in 27 cases (89%). Only one patient had metastatic disease (3%), one patient presented locally advanced and 28 (94%) patients had early stage disease. Three patients (10%) were treated in dorsal decubitus according to the "field in the field" technique and 27 patients (90%) in isocentric lateral decubitus, which made it possible to avoid the organs at risk such as the heart (average dose of less than 1Gy) and the lungs. The early toxicity observed was grade I radio dermatitis in 8 patients (27%). No grade 2 and 3 toxicity, as well as radiation-induced pain or lymphedema were observed. CONCLUSIONS The results of this series of patients treated with hypofractionated radiotherapy according to the Fast Forward protocol on the breast alone with adapted techniques show that the protocol is feasible, with little early toxicity but a greater follow-up is necessary to assess long-term toxicity.
Collapse
|
7
|
Loap P, Tkatchenko N, Goudjil F, Ribeiro M, Baron B, Fourquet A, Kirova Y. Cardiac substructure exposure in breast radiotherapy: a comparison between intensity modulated proton therapy and volumetric modulated arc therapy. Acta Oncol 2021; 60:1038-1044. [PMID: 33788665 DOI: 10.1080/0284186x.2021.1907860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Proton therapy for breast cancer treatment reduces cardiac radiation exposure. Left-sided breast cancer patients with indication for internal mammary chain (IMC) irradiation are most at risk of radiation-induced cardiotoxicity. This study aims to evaluate in this situation the potential dosimetric benefit of intensity modulated proton therapy (IMPT) over volumetric modulated arc therapy (VMAT) at the cardiac substructure level. MATERIALS AND METHODS Cardiac substructures were retrospectively delineated according to ESTRO guidelines on the simulation CT scans of fourteen left-sided breast cancer patients having undergone conserving surgery and adjuvant locoregional free-breathing (FB-) or deep inspiration breath-hold (DIBH-) VMAT with internal mammary chain irradiation. IMPT treatment was re-planned on the simulation CT scans. Mean doses to cardiac substructures were retrieved and compared between VMAT treatment plans and IMPT simulation plans. Pearson correlation coefficients were calculated between mean doses delivered to cardiac substructures using these two techniques. RESULTS Mean doses to all cardiac substructures were significantly lower with IMPT than with VMAT. Regardless of the irradiation technique, the most exposed cardiac substructure was the mid segment of the left anterior descending coronary artery (LADCA). Pearson correlation coefficients between mean doses to cardiac substructures were usually weak and statistically non-significant for IMPT; mean heart dose (MHD) only correlated with mean doses delivered to the right ventricle, to the mid segment of the right coronary artery (RCA) and, to a lesser extent, to the LADCA. CONCLUSION The dosimetric benefit of IMPT over conformal photon therapy was consistently observed for all cardiac substructures. MHD may not be a reliable dosimetric parameter for precise cardiac exposure evaluation when planning IMPT.
Collapse
Affiliation(s)
- Pierre Loap
- Institut Curie, Department of Radiation Oncology, Paris, France
| | | | - Farid Goudjil
- Institut Curie, Department of Radiation Oncology, Paris, France
| | - Madison Ribeiro
- Institut Curie, Department of Radiation Oncology, Paris, France
| | - Brian Baron
- Institut Curie, Department of Radiation Oncology, Paris, France
| | - Alain Fourquet
- Institut Curie, Department of Radiation Oncology, Paris, France
| | - Youlia Kirova
- Institut Curie, Department of Radiation Oncology, Paris, France
| |
Collapse
|
8
|
Cardiac substructures exposure in left-sided breast cancer radiotherapy: Is the mean heart dose a reliable predictor of cardiac toxicity? Cancer Radiother 2021; 25:229-236. [DOI: 10.1016/j.canrad.2020.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/11/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022]
|
9
|
Piroth MD, Krug D, Fastner G, Sedlmayer F, Budach W. Reply to: The challenge of cardiac dose constraint adaptation to hypofractionated breast radiotherapy in clinical practice. Strahlenther Onkol 2021; 197:558-559. [PMID: 33891127 PMCID: PMC8154799 DOI: 10.1007/s00066-021-01775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Marc D. Piroth
- Department of Radiation Oncology, Helios University Hospital Wuppertal, Witten/Herdecke University, Heusnerstraße 40, 42283 Wuppertal, Germany
| | - David Krug
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gerd Fastner
- Department of Radiation Oncology, Paracelsus Medical University Hospital, Salzburg, Austria
| | - Felix Sedlmayer
- Department of Radiation Oncology, Paracelsus Medical University Hospital, Salzburg, Austria
| | - Wilfried Budach
- Department of Radiation Oncology, Heinrich-Heine-University Hospital, Düsseldorf, Germany
| | | |
Collapse
|
10
|
The challenge of cardiac dose constraint adaptation to hypofractionated breast radiotherapy in clinical practice. Strahlenther Onkol 2021; 197:555-557. [PMID: 33891125 DOI: 10.1007/s00066-021-01777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
|
11
|
Ko H, Chang JS, Moon JY, Lee WH, Shah C, Shim JSA, Han MC, Baek JG, Park RH, Kim YB, Kim JS. Dosimetric Comparison of Radiation Techniques for Comprehensive Regional Nodal Radiation Therapy for Left-Sided Breast Cancer: A Treatment Planning Study. Front Oncol 2021; 11:645328. [PMID: 33912459 PMCID: PMC8072050 DOI: 10.3389/fonc.2021.645328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose How modern cardiac sparing techniques and beam delivery systems using advanced x-ray and proton beam therapy (PBT) can reduce incidental radiation exposure doses to cardiac and pulmonary organs individually or in any combination is poorly investigated. Methods Among 15 patients with left-sided breast cancer, partial wide tangential 3D-conformal radiotherapy (3DCRT) delivered in conventional fractionation (CF) or hypofractionated (HF) schedules; PBT delivered in a CF schedule; and volumetric modulated arc therapy (VMAT) delivered in an HF schedule, each under continuous positive airway pressure (CPAP) and free-breathing (FB) conditions, were examined. Target volume coverage and doses to organs-at-risk (OARs) were calculated for each technique. Outcomes were compared with one-way analysis of variance and the Bonferroni test, with p-values <0.05 considered significant. Results Target volume coverage was within acceptable levels in all interventions, except for the internal mammary lymph node D95 (99% in PBT, 90% in VMAT-CPAP, 84% in VMAT-FB, and 74% in 3DCRT). The mean heart dose (MHD) was the lowest in PBT (<1 Gy) and VMAT-CPAP (2.2 Gy) and the highest in 3DCRT with CF/FB (7.8 Gy), respectively. The mean lung dose (MLD) was the highest in 3DCRT-CF-FB (20 Gy) and the lowest in both VMAT-HF-CPAP and PBT (approximately 5-6 Gy). VMAT-HF-CPAP and PBT delivered a comparable maximum dose to the left ascending artery (7.2 and 6.13 Gy, respectively). Conclusions Both proton and VMAT in combination with CPAP can minimize the radiation exposure to heart and lung with optimal target coverage in regional RT for left-sided breast cancer. The clinical relevance of these differences is yet to be elucidated. Continued efforts are needed to minimize radiation exposures during RT treatment to maximize its therapeutic index.
Collapse
Affiliation(s)
- Heejoo Ko
- College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jee Suk Chang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Young Moon
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Won Hee Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Chirag Shah
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | | | - Min Cheol Han
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Geol Baek
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Ryeong Hwang Park
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Bae Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Loap P, Beddok A, Cao KI, Goudjil F, Fourquet A, Dendale R, Kirova Y. Clinical practice of breast cancer protontherapy: A single-centre experience from selection to treatment. Cancer Radiother 2021; 25:358-365. [PMID: 33676830 DOI: 10.1016/j.canrad.2021.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Breast protontherapy efficiently limits cardiac, lung and contralateral breast exposure, which may clinically translate into better late tolerance profile compared with classic photon techniques. While breast protontherapy is already implemented in the United States and in some European countries, clinical experience of breast cancer protontherapy is currently limited in France. The aim of this study is to evaluate the clinical practice of breast cancer protontherapy at the Institut Curie in order to implement this technique at a larger scale. MATERIALS AND METHODS Data from all breast cancer patients that have been addressed to the protontherapy centre of Orsay (CPO, Institut Curie) for adjuvant breast protontherapy were retrieved. We analysed why these patients were ultimately treated with protontherapy or not. RESULTS Between November 2019 and November 2020, eleven breast cancer patients have been evaluated for adjuvant protontherapy at the CPO. Two of them were ultimately treated with proton beams; adjuvant breast protontherapy therapy was well tolerated. The nine other patients were not treated with protontherapy due to lack of availability of protontherapy treatment rooms in acceptable time limits, at the time of patient evaluation. CONCLUSION Despite dosimetric advantages and excellent clinical tolerance, lack of availability of protontherapy machines currently limits wider implementation of breast protontherapy.
Collapse
Affiliation(s)
- P Loap
- Department of radiation oncology, Institut Curie, Paris, France
| | - A Beddok
- Department of radiation oncology, Institut Curie, Paris, France
| | - K I Cao
- Department of radiation oncology, Institut Curie, Paris, France
| | - F Goudjil
- Department of radiation oncology, Institut Curie, Paris, France
| | - A Fourquet
- Department of radiation oncology, Institut Curie, Paris, France
| | - R Dendale
- Department of radiation oncology, Institut Curie, Paris, France
| | - Y Kirova
- Department of radiation oncology, Institut Curie, Paris, France.
| |
Collapse
|
13
|
Chung SY, Oh J, Chang JS, Shin J, Kim KH, Chun KH, Keum KC, Suh CO, Kang SM, Kim YB. Risk of Cardiac Disease in Patients With Breast Cancer: Impact of Patient-Specific Factors and Individual Heart Dose From Three-Dimensional Radiation Therapy Planning. Int J Radiat Oncol Biol Phys 2021; 110:473-481. [PMID: 33421556 DOI: 10.1016/j.ijrobp.2020.12.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE This retrospective cohort study aimed to determine whether adjuvant radiation therapy increases the risk of cardiac toxicity in Asian women with breast cancer, with a focus on patient-specific factors. METHODS AND MATERIALS We evaluated women who underwent primary breast surgery for breast cancer with (n = 520) or without (n = 774) adjuvant radiation therapy between January 2005 and May 2013. Patients who underwent breast surgery without radiation therapy were categorized as patients who received 0 Gy to the heart. The primary endpoint was the occurrence of a breast cancer treatment-related heart disease (BCT-HD), defined as a diagnosis of angina pectoris, unstable angina, myocardial infarction, ischemic heart disease, heart failure, or atrial fibrillation. RESULTS In total, 1294 patients were included. The overall 5- and 10-year BCT-HD rates were 2.4% and 5.7%, respectively. The risk of an BCT-HD significantly increased per 1-Gy increase in the mean heart dose (adjusted hazard ratio: 1.23). Additionally, histories of hypertension (hazard ratio: 1.92), and diabetes (hazard ratio: 2.51) were found to be adverse risk factors, whereas regular physical exercise (hazard ratio: 0.17) was a protective factor. Subgroup analysis according to risk groups showed that the effect of increasing mean heart dose (per Gy) was similar between women without or with minimal risk factors (hazard ratio: 1.23) and women with multiple risk factors (hazard ratio: 1.27). CONCLUSIONS The results indicate a radiation dose-effect relationship for cardiac disease in breast cancer patients, highlighting that there remains a considerable risk of cardiac toxicity even with 3-dimensional radiation therapy planning. Thus, measures to minimize the heart dose in breast cancer patients undergoing adjuvant radiation therapy, even in those without any risk factor for cardiac disease, should be routinely implemented.
Collapse
Affiliation(s)
- Seung Yeun Chung
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea; Department of Radiation Oncology, Ajou University School of Medicine, Suwon, South Korea
| | - Jaewon Oh
- Cardiology Division, Severance Cardiovascular Hospital and Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jee Suk Chang
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea.
| | - Jaeyong Shin
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyeong-Hyeon Chun
- Cardiology Division, Severance Cardiovascular Hospital and Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ki Chang Keum
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang-Ok Suh
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea; Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, South Korea
| | - Seok-Min Kang
- Cardiology Division, Severance Cardiovascular Hospital and Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Bae Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
14
|
Loap P, Fourquet A, Kirova Y. Cardiac radiation-induced sarcomas: A SEER population-based study and a literature review. Cancer Radiother 2021; 25:21-25. [PMID: 33384223 DOI: 10.1016/j.canrad.2020.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The aim of this study was to better understand the incidence and the clinical characteristics of cardiac radiation-induced sarcomas (RIS). MATERIAL AND METHODS We used the surveillance, epidemiology, and end results (SEER) program cancer registry data, the largest cancer database in the United States in order to identify all cardiac RIS between 1973 and 2015. We relied on the Memorial Sloan-Kettering Cancer Center (MSKCC)-modified 1948 Cahan criterions for RIS identification. RESULTS Out of 8,136,951 cancer patients from the SEER database, we identified 448 patients diagnosed with cardiac sarcomas. Of these 448 cardiac sarcoma patients, two were considered to have developed a cardiac RIS: a metastatic rhabdomyosarcoma occurring after one to two years following lung carcinoma irradiation, and a soft tissue sarcoma (of unspecified type) developed six years after radiation therapy for an aggressive left-sided breast carcinoma. Based on this observation, we estimated that cardiac RIS represented about 0.4% (95% CI 0.1%-1.6%) of all cardiac sarcomas. A literature review has been conducted and yielded three additional cases of cardiac RIS. CONCLUSION Cardiac RIS are extremely rare malignancies, associated with a very pejorative prognosis. The two reported histologies are angiosarcomas and rhabdomyosarcomas, which might be over-represented among cardiac RIS. A metastatic evolution is possible for cardiac radiation-induced rhabdomyosarcomas. Surgical excision, when feasible, is a therapeutic option and is the only specific treatment reported to this date.
Collapse
Affiliation(s)
- P Loap
- Department of radiation oncology, institut Curie, Paris, France.
| | - A Fourquet
- Department of radiation oncology, institut Curie, Paris, France
| | - Y Kirova
- Department of radiation oncology, institut Curie, Paris, France
| |
Collapse
|
15
|
Loap P, Kirova Y. Evaluating cardiac substructure radiation exposure in breast rotational intensity modulated radiation therapy: Effects of cancer laterality, fractionation and deep inspiration breath-hold. Cancer Radiother 2020; 25:13-20. [PMID: 33288407 DOI: 10.1016/j.canrad.2020.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Rotational intensity-modulated radiation therapy currently has a growing role in breast cancer radiation therapy, since this radiation technique reduces cardiac radiation exposure while homogeneously covering target volumes. This study aims to evaluate radiation exposure of cardiac substructures across a broad spectrum of breast cancer cases differing by cancer laterality, fractionation regimen and addition of deep-inspiration breath hold. MATERIALS AND METHODS Cardiac substructures were delineated following guidelines endorsed by the European Society for Radiotherapy and Oncology (ESTRO) for forty-four breast cancer patients having undergone conserving surgery and adjuvant rotational intensity-modulated radiation therapy. Target volumes consisted of the whole breast with a boost, axillary and internal mammary nodes. Patients were treated using free-breathing technique for left-sided or right-sided, normofractionated or hypofractionated helical tomotherapy or volumetric modulated arc therapy, or using deep-inspiration breath hold for left-sided normofractionated volumetric modulated arc therapy. Mean and maximum doses to cardiac substructures were retrieved. Correlations were performed between mean- and maximum radiation doses to cardiac substructures. RESULTS Left-sided and right-sided irradiations were associated with different cardiac substructure exposure patterns despite comparable mean heart dose: 7.21Gy for left-sided normofractionated regimen, 6.28Gy for right-sided normofractionated regimen. Deep-inspiration breath hold reduced mean doses to almost all cardiac substructures for left-sided irradiation, but did not decrease maximum doses to coronary arteries. Correlations between mean- and maximum doses to cardiac substructures were usually moderate, but stronger for right-sided irradiation. CONCLUSION Despite comparable mean heart dose, cardiac substructure radiation exposure patterns with rotational intensity-modulated radiation therapy strongly depend on the breast side, which could trigger clinically different long-term cardiotoxicity events. Deep-inspiration breath hold improves cardiac substructure dosimetry. Mean- and maximum heart dose could probably not be used as surrogate markers for precise cardiac substructure evaluation. In a near future, clinical practice and cardiotoxicity studies could possibly gain by considering cardiac substructure in a more systematic manner, possibly relying on cardiac autosegmentation algorithms.
Collapse
Affiliation(s)
- P Loap
- Department of Radiation Oncology, institut Curie, 26, rue d'Ulm, 75005 Paris, France.
| | - Y Kirova
- Department of Radiation Oncology, institut Curie, 26, rue d'Ulm, 75005 Paris, France
| |
Collapse
|
16
|
Loap P, Tkatchenko N, Nicolas E, Fourquet A, Kirova Y. Optimization and auto-segmentation of a high risk cardiac zone for heart sparing in breast cancer radiotherapy. Radiother Oncol 2020; 153:146-154. [DOI: 10.1016/j.radonc.2020.09.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/06/2023]
|
17
|
Schlaak RA, Frei A, Fish BL, Harmann L, Gasperetti T, Pipke JL, Sun Y, Rui H, Flister MJ, Gantner BN, Bergom C. Acquired Immunity Is Not Essential for Radiation-Induced Heart Dysfunction but Exerts a Complex Impact on Injury. Cancers (Basel) 2020; 12:E983. [PMID: 32316187 PMCID: PMC7226421 DOI: 10.3390/cancers12040983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
While radiation therapy (RT) can improve cancer outcomes, it can lead to radiation-induced heart dysfunction (RIHD) in patients with thoracic tumors. This study examines the role of adaptive immune cells in RIHD. In Salt-Sensitive (SS) rats, image-guided whole-heart RT increased cardiac T-cell infiltration. We analyzed the functional requirement for these cells in RIHD using a genetic model of T- and B-cell deficiency (interleukin-2 receptor gamma chain knockout (IL2RG-/-)) and observed a complex role for these cells. Surprisingly, while IL2RG deficiency conferred protection from cardiac hypertrophy, it worsened heart function via echocardiogram three months after a large single RT dose, including increased end-systolic volume (ESV) and reduced ejection fraction (EF) and fractional shortening (FS) (p < 0.05). Fractionated RT, however, did not yield similarly increased injury. Our results indicate that T cells are not uniformly required for RIHD in this model, nor do they account for our previously reported differences in cardiac RT sensitivity between SS and SS.BN3 rats. The increasing use of immunotherapies in conjunction with traditional cancer treatments demands better models to study the interactions between immunity and RT for effective therapy. We present a model that reveals complex roles for adaptive immune cells in cardiac injury that vary depending on clinically relevant factors, including RT dose/fractionation, sex, and genetic background.
Collapse
Affiliation(s)
- Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Leanne Harmann
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee WI 53226, USA;
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Jamie L. Pipke
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.S.); (H.R.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.S.); (H.R.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
| | - Michael J. Flister
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Benjamin N. Gantner
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Carmen Bergom
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|