1
|
Kinslow CJ, Mehta MP. Future Directions in the Treatment of Low-Grade Gliomas. Cancer J 2025; 31:e0759. [PMID: 39841425 DOI: 10.1097/ppo.0000000000000759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
ABSTRACT There is major interest in deintensifying therapy for isocitrate dehydrogenase-mutant low-grade gliomas, including with single-agent cytostatic isocitrate dehydrogenase inhibitors. These efforts need head-to-head comparisons with proven modalities, such as chemoradiotherapy. Ongoing clinical trials now group tumors by intrinsic molecular subtype, rather than classic clinical risk factors. Advances in imaging, surgery, and radiotherapy have improved outcomes in low-grade gliomas. Emerging biomarkers, targeted therapies, immunotherapy, radionuclides, and novel medical devices are a promising frontier for future treatment. Diverse representation in glioma research and clinical trials will help to ensure that advancements in care are realized by all groups.
Collapse
Affiliation(s)
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| |
Collapse
|
2
|
Tom MC, Nagpal S, Palmer JD, Breen WG, Pollom EL, Lehrer EJ, McGranahan TM, Shiue K, Chundury A, McClelland Iii S, Saeed H, Chang EL, Chiang VLS, Wang TJC, Knisely JPS, Chao ST, Milano MT. An update to the American Radium Society's appropriate use criteria of lower grade gliomas: Integration of IDH inhibitors. Radiother Oncol 2025; 202:110640. [PMID: 39557126 DOI: 10.1016/j.radonc.2024.110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/09/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
The ARS brain committee recommends that vorasidenib may be appropriate for recurrent or residual IDH-mutant grade 2 oligodendroglioma or astrocytoma. Vorasidenib is usually not appropriate for completely resected grade 2 oligodendroglioma or astrocytoma, any grade 3 oligodendroglioma or astrocytoma, or combined with radiotherapy and/or chemotherapy for any grade 2-3 glioma.
Collapse
Affiliation(s)
- Martin C Tom
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Seema Nagpal
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua D Palmer
- Department of Radiation Oncology, The James Cancer Hospital and Solove Research Institute at The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric J Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Tresa M McGranahan
- Division of Hematology and Oncology, Scripps Cancer Center, La Jolla, CA, USA
| | - Kevin Shiue
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anupama Chundury
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University, Maywood, IL, USA
| | - Shearwood McClelland Iii
- Departments of Radiation Oncology and Neurological Surgery, University Hospitals Seidman Cancer Center Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hina Saeed
- Department of Radiation Oncology, Lynn Cancer Institute, Baptist Health South Florida, Boca Raton, FL, USA
| | - Eric L Chang
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Veronica L S Chiang
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jonathan P S Knisely
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Samuel T Chao
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
3
|
Che J, Sun Y, Deng Y, Zhang J. Blood-brain barrier disruption: a culprit of cognitive decline? Fluids Barriers CNS 2024; 21:63. [PMID: 39113115 PMCID: PMC11305076 DOI: 10.1186/s12987-024-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Cognitive decline covers a broad spectrum of disorders, not only resulting from brain diseases but also from systemic diseases, which seriously influence the quality of life and life expectancy of patients. As a highly selective anatomical and functional interface between the brain and systemic circulation, the blood-brain barrier (BBB) plays a pivotal role in maintaining brain homeostasis and normal function. The pathogenesis underlying cognitive decline may vary, nevertheless, accumulating evidences support the role of BBB disruption as the most prevalent contributing factor. This may mainly be attributed to inflammation, metabolic dysfunction, cell senescence, oxidative/nitrosative stress and excitotoxicity. However, direct evidence showing that BBB disruption causes cognitive decline is scarce, and interestingly, manipulation of the BBB opening alone may exert beneficial or detrimental neurological effects. A broad overview of the present literature shows a close relationship between BBB disruption and cognitive decline, the risk factors of BBB disruption, as well as the cellular and molecular mechanisms underlying BBB disruption. Additionally, we discussed the possible causes leading to cognitive decline by BBB disruption and potential therapeutic strategies to prevent BBB disruption or enhance BBB repair. This review aims to foster more investigations on early diagnosis, effective therapeutics, and rapid restoration against BBB disruption, which would yield better cognitive outcomes in patients with dysregulated BBB function, although their causative relationship has not yet been completely established.
Collapse
Affiliation(s)
- Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
4
|
Milano MT, Marks LB, Olch AJ, Yorke ED, Jackson A, Bentzen SM, Constine LS. Comparison of Risks of Late Effects From Radiation Therapy in Children Versus Adults: Insights From the QUANTEC, HyTEC, and PENTEC Efforts. Int J Radiat Oncol Biol Phys 2024; 119:387-400. [PMID: 38069917 DOI: 10.1016/j.ijrobp.2023.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 05/19/2024]
Abstract
Pediatric Normal Tissue Effects in the Clinic (PENTEC) seeks to refine quantitative radiation dose-volume relationships for normal-tissue complication probabilities (NTCPs) in survivors of pediatric cancer. This article summarizes the evolution of PENTEC and compares it with similar adult-focused efforts (eg, Quantitative Analysis of Normal Tissue Effects in the Clinic [QUANTEC] and Hypofractionated Treatment Effects in the Clinic [HyTEC]) with respect to content, oversight, support, scope, and methodology of literature review. It then summarizes key organ-specific findings from PENTEC in an attempt to compare NTCP estimates in children versus adults. In brief, select normal-tissue risks within developing organs and tissues (eg, maldevelopment of musculoskeletal tissue, teeth, breasts, and reproductive organs) are primarily relevant only in children. For some organs and tissues, children appear to have similar (eg, brain for necrosis, optic apparatus, parotid gland, liver), greater (eg, brain for neurocognition, cerebrovascular, breast for lactation), less (ovary), or perhaps slightly less (eg, lung) risks of toxicity versus adults. Similarly, even within the broad pediatric age range (including adolescence), for some endpoints, younger children have greater (eg, hearing and brain for neurocognition) or lesser (eg, ovary, thyroid) risks of radiation-associated toxicities. NTCP comparisons in adults versus children are often confounded by marked differences in treatment paradigms that expose normal tissues to radiation (ie, cancer types, prescribed radiation therapy dose and fields, and chemotherapy agents used). To add to the complexity, it is unclear if age is best analyzed as a continuous variable versus with age groupings (eg, infants, young children, adolescents, young adults, middle-aged adults, older adults). Further work is needed to better understand the complex manner in which age and developmental status affect risk.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York.
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Arthur J Olch
- Radiation Oncology Program, Children's Hospital Los Angeles/Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Ellen D Yorke
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Jackson
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Søren M Bentzen
- Greenebaum Comprehensive Cancer Center and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
5
|
Ru Y, Zhang X, Shen B, Yang C, Yu H, Liu Z, Wu X, Li F, Cui J, Lai C, Wang Y, Gao Y. Delayed Reaction of Radiation on the Central Nervous System and Bone System in C57BL/6J Mice. Int J Mol Sci 2023; 25:337. [PMID: 38203507 PMCID: PMC10779003 DOI: 10.3390/ijms25010337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The aim of this study was to provide a suitable mouse model of radiation-induced delayed reaction and identify potential targets for drug development related to the prevention and treatment of radiation injury. C57BL/6J mice were subjected to singular (109 cGy/min, 5 Gy*1) and fractional (109 cGy/min, 5 Gy*2) total body irradiation. The behavior and activity of mice were assessed 60 days after ionizing radiation (IR) exposure. After that, the pathological changes and mechanism of the mouse brain and femoral tissues were observed by HE, Nissl, Trap staining micro-CT scanning and RNA sequencing (RNA-Seq), and Western blot. The results show that singular or fractional IR exposure led to a decrease in spatial memory ability and activity in mice, and the cognitive and motor functions gradually recovered after singular 5 Gy IR in a time-dependent manner, while the fractional 10 Gy IR group could not recover. The decrease in bone density due to the increase in osteoclast number may be relative to the down-regulation of RUNX2, sclerostin, and beta-catenin. Meanwhile, the brain injury caused by IR exposure is mainly linked to the down-regulation of BNDF and Tau. IR exposure leads to memory impairment, reduced activity, and self-recovery, which are associated with time and dose. The mechanism of cognitive and activity damage was mainly related to oxidative stress and apoptosis induced by DNA damage. The damage caused by fractional 10 Gy TBI is relatively stable and can be used as a stable multi-organ injury model for radiation mechanism research and anti-radiation medicine screening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yuguang Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.R.); (X.Z.); (B.S.); (C.Y.); (H.Y.); (Z.L.); (X.W.); (F.L.); (J.C.); (C.L.)
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.R.); (X.Z.); (B.S.); (C.Y.); (H.Y.); (Z.L.); (X.W.); (F.L.); (J.C.); (C.L.)
| |
Collapse
|
6
|
Hardy SJ, Finkelstein AJ, Tivarus M, Culakova E, Mohile N, Weber M, Lin E, Zhong J, Usuki K, Schifitto G, Milano M, Janelsins-Benton MC. Cognitive and neuroimaging outcomes in individuals with benign and low-grade brain tumours receiving radiotherapy: a protocol for a prospective cohort study. BMJ Open 2023; 13:e066458. [PMID: 36792323 PMCID: PMC9933762 DOI: 10.1136/bmjopen-2022-066458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
INTRODUCTION Radiation-induced cognitive decline (RICD) occurs in 50%-90% of adult patients 6 months post-treatment. In patients with low-grade and benign tumours with long expected survival, this is of paramount importance. Despite advances in radiation therapy (RT) treatment delivery, better understanding of structures important for RICD is necessary to improve cognitive outcomes. We hypothesise that RT may affect network topology and microstructural integrity on MRI prior to any gross anatomical or apparent cognitive changes. In this longitudinal cohort study, we aim to determine the effects of RT on brain structural and functional integrity and cognition. METHODS AND ANALYSIS This study will enroll patients with benign and low-grade brain tumours receiving partial brain radiotherapy. Patients will receive either hypofractionated (>2 Gy/fraction) or conventionally fractionated (1.8-2 Gy/fraction) RT. All participants will be followed for 12 months, with MRIs conducted pre-RT and 6-month and 12 month post-RT, along with a battery of neurocognitive tests and questionnaires. The study was initiated in late 2018 and will continue enrolling through 2024 with final follow-ups completing in 2025. The neurocognitive battery assesses visual and verbal memory, attention, executive function, processing speed and emotional cognition. MRI protocols incorporate diffusion tensor imaging and resting state fMRI to assess structural connectivity and functional connectivity, respectively. We will estimate the association between radiation dose, imaging metrics and cognitive outcomes. ETHICS AND DISSEMINATION This study has been approved by the Research Subjects Review Board at the University of Rochester (STUDY00001512: Cognitive changes in patients receiving partial brain radiation). All results will be published in peer-reviewed journals and at scientific conferences. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT04390906.
Collapse
Affiliation(s)
- Sara J Hardy
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Alan J Finkelstein
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
- Center for Advanced Brain Imaging and Neurophysiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Madalina Tivarus
- Center for Advanced Brain Imaging and Neurophysiology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Eva Culakova
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nimish Mohile
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Miriam Weber
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Edward Lin
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Jianhui Zhong
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
- Center for Advanced Brain Imaging and Neurophysiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Kenneth Usuki
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, USA
| | - Giovanni Schifitto
- Department of Neurology, Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, USA
| | - M C Janelsins-Benton
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
7
|
Lehrer EJ, Jones BM, Dickstein DR, Green S, Germano IM, Palmer JD, Laack N, Brown PD, Gondi V, Wefel JS, Sheehan JP, Trifiletti DM. The Cognitive Effects of Radiotherapy for Brain Metastases. Front Oncol 2022; 12:893264. [PMID: 35847842 PMCID: PMC9279690 DOI: 10.3389/fonc.2022.893264] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
Brain metastases are the most common intracranial neoplasm and are seen in upwards of 10-30% of patients with cancer. For decades, whole brain radiation therapy (WBRT) was the mainstay of treatment in these patients. While WBRT is associated with excellent rates of intracranial tumor control, studies have demonstrated a lack of survival benefit, and WBRT is associated with higher rates of cognitive deterioration and detrimental effects on quality of life. In recent years, strategies to mitigate this risk, such as the incorporation of memantine and hippocampal avoidance have been employed with improved results. Furthermore, stereotactic radiosurgery (SRS) has emerged as an appealing treatment option over the last decade in the management of brain metastases and is associated with superior cognitive preservation and quality of life when compared to WBRT. This review article evaluates the pathogenesis and impact of cranial irradiation on cognition in patients with brain metastases, as well as current and future risk mitigation techniques.
Collapse
Affiliation(s)
- Eric J. Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brianna M. Jones
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Daniel R. Dickstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sheryl Green
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Isabelle M. Germano
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joshua D. Palmer
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Nadia Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Vinai Gondi
- Department of Radiation Oncology, Northwestern Medicine Cancer Center Warrenville and Proton Center, Warrenville, IL, United States
| | - Jeffrey S. Wefel
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, United States
| | - Jason P. Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
- *Correspondence: Daniel M. Trifiletti,
| |
Collapse
|
8
|
Antonelli F, Casciati A, Belles M, Serra N, Linares-Vidal MV, Marino C, Mancuso M, Pazzaglia S. Long-Term Effects of Ionizing Radiation on the Hippocampus: Linking Effects of the Sonic Hedgehog Pathway Activation with Radiation Response. Int J Mol Sci 2021; 22:ijms222212605. [PMID: 34830484 PMCID: PMC8624704 DOI: 10.3390/ijms222212605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Radiation therapy represents one of the primary treatment modalities for primary and metastatic brain tumors. Although recent advances in radiation techniques, that allow the delivery of higher radiation doses to the target volume, reduce the toxicity to normal tissues, long-term neurocognitive decline is still a detrimental factor significantly affecting quality of life, particularly in pediatric patients. This imposes the need for the development of prevention strategies. Based on recent evidence, showing that manipulation of the Shh pathway carries therapeutic potential for brain repair and functional recovery after injury, here we evaluate how radiation-induced hippocampal alterations are modulated by the constitutive activation of the Shh signaling pathway in Patched 1 heterozygous mice (Ptch1+/-). Our results show, for the first time, an overall protective effect of constitutive Shh pathway activation on hippocampal radiation injury. This activation, through modulation of the proneural gene network, leads to a long-term reduction of hippocampal deficits in the stem cell and new neuron compartments and to the mitigation of radio-induced astrogliosis, despite some behavioral alterations still being detected in Ptch1+/- mice. A better understanding of the pathogenic mechanisms responsible for the neural decline following irradiation is essential for identifying prevention measures to contain the harmful consequences of irradiation. Our data have important translational implications as they suggest a role for Shh pathway manipulation to provide the therapeutic possibility of improving brain repair and functional recovery after radio-induced injury.
Collapse
Affiliation(s)
- Francesca Antonelli
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
- Correspondence: (F.A.); (S.P.)
| | - Arianna Casciati
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
| | - Montserrat Belles
- Physiology Unit, School of Medicine, Rovira I Virgili University (URV), 43007 Reus, Spain; (M.B.); (N.S.); (M.V.L.-V.)
| | - Noemi Serra
- Physiology Unit, School of Medicine, Rovira I Virgili University (URV), 43007 Reus, Spain; (M.B.); (N.S.); (M.V.L.-V.)
| | - Maria Victoria Linares-Vidal
- Physiology Unit, School of Medicine, Rovira I Virgili University (URV), 43007 Reus, Spain; (M.B.); (N.S.); (M.V.L.-V.)
| | - Carmela Marino
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
| | - Mariateresa Mancuso
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
| | - Simonetta Pazzaglia
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
- Correspondence: (F.A.); (S.P.)
| |
Collapse
|
9
|
Connor M, Kim MM, Cao Y, Hattangadi-Gluth J. Precision Radiotherapy for Gliomas: Implementing Novel Imaging Biomarkers to Improve Outcomes With Patient-Specific Therapy. Cancer J 2021; 27:353-363. [PMID: 34570449 PMCID: PMC8480523 DOI: 10.1097/ppo.0000000000000546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Gliomas are the most common primary brain cancer, yet are extraordinarily challenging to treat because they can be aggressive and infiltrative, locally recurrent, and resistant to standard treatments. Furthermore, the treatments themselves, including radiation therapy, can affect patients' neurocognitive function and quality of life. Noninvasive imaging is the standard of care for primary brain tumors, including diagnosis, treatment planning, and monitoring for treatment response. This article explores the ways in which advanced imaging has and will continue to transform radiation treatment for patients with gliomas, with a focus on cognitive preservation and novel biomarkers, as well as precision radiotherapy and treatment adaptation. Advances in novel imaging techniques continue to push the field forward, to more precisely guided treatment planning, radiation dose escalation, measurement of therapeutic response, and understanding of radiation-associated injury.
Collapse
Affiliation(s)
- Michael Connor
- From the Department of Radiation Medicine and Applied Sciences, UC San Diego, Moores Cancer Center, La Jolla, CA
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Jona Hattangadi-Gluth
- From the Department of Radiation Medicine and Applied Sciences, UC San Diego, Moores Cancer Center, La Jolla, CA
| |
Collapse
|