1
|
Chen CF, Chen CM, Huang WC, Liu SH, Wang LL, Liu PF, Chen PH. The use of customized 3D-printed mandibular prostheses with pressure-reducing device: A clinical trial. Head Neck 2024; 46:1614-1624. [PMID: 38328961 DOI: 10.1002/hed.27660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Segmental bone defects of the mandible result in the complete loss of the affected region. We had incorporated the pressure-reducing device (PRD) designs into the customized mandible prostheses (CMP) and conducted a clinical trial to evaluate this approach. METHODS Seven patients were enrolled in this study. We examined the association among the history of radiotherapy, the number of CMP regions, the number of chin regions involved, and CMP exposure. RESULTS We included five men and two women with an average age of 55 years. We excised tumors with an average weight of 147.8 g and the average weight of the CMP was 68.5 g. No significant difference between the two weights was noted (p = 0.3882). Three patients received temporary dentures and the CMP remained stable in all patients. CONCLUSION The use of PRD in CMP may address the previous challenges associated with CMP, but further research is necessary.
Collapse
Affiliation(s)
- Chun-Feng Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Oral and Maxillofacial Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Dental Laboratory Technology, Shu Zen College of Medicine & Management, Kaohsiung, Taiwan
| | - Chun-Ming Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chin Huang
- Laser and Additive Manufacturing Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Sung-Ho Liu
- Laser and Additive Manufacturing Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ling-Lin Wang
- KSVGH Originals & Enterprises, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Chen CF, Huang WC, Liu SH, Wang LL, Liu PF, Chen PH, Chen CM. Use of customized 3-dimensional printed mandibular prostheses with a dental implant pressure-reducing device in mandibular body defect: A finite element study performing multiresponse surface methodology. J Dent Sci 2024; 19:502-514. [PMID: 38303793 PMCID: PMC10829725 DOI: 10.1016/j.jds.2023.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/09/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Segmental body defects of the mandible result in the complete loss of the affected region. In our previous study, we investigated the clinical applicability of a customized mandible prosthesis (CMP) with a pressure-reducing device (PRD) in an animal study. In this study, we further incorporated dental implants into the CMP and explored the use of dental implant PRD (iPRD) designs. Materials and methods By employing a finite element analysis approach, we created 4 types of CMP: CMP, CMP with iPRD, CMP-PRD, and CMP-PRD with iPRD. We developed 2 parameters for the iPRD: cone length (CL) in the upper part and spring pitch (SP) in the lower part. Using the response surface methodology (RSM), we determined the most suitable structural assignment for the iPRD. Results Our results indicate that CMP-PRD had the highest von Mises stress value for the entire assembly (1076.26 MPa). For retentive screws and abutments, CMP with iPRD had the highest von Mises stress value (319.97 and 452.78 MPa, respectively). CMP-PRD had the highest principal stress (131.66 MPa) in the anterior mandible. The iPRD reduced principal stress in both the anterior and posterior mandible. Using the RSM, we generated 25 groups for comparison to achieve the most favorable results for the iPRD and we might suggest the CL to 12 mm and the SP to 0.4 mm in the further clinical trials. Conclusion Use of the PRD and iPRD in CMP may resolve the challenges associated with CMP, thereby promoting its usage in clinical practice.
Collapse
Affiliation(s)
- Chun-Feng Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Oral and Maxillofacial Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Dental Laboratory Technology, Shu Zen College of Medicine & Management, Kaohsiung, Taiwan
| | - Wei-Chin Huang
- Laser and Additive Manufacturing Technology Center, Industrial Technology Research Institute, Kaohsiung, Taiwan
| | - Sung-Ho Liu
- Laser and Additive Manufacturing Technology Center, Industrial Technology Research Institute, Kaohsiung, Taiwan
| | - Ling-Lin Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- KSVGH Originals & Enterprises, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Ming Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Duong LT, Petit S, Kerner S, Clerc MM, Arnoult C, Nowwarote N, Osathanon T, Fournier BPJ, Isaac J, Ferré FC. Role of periosteum during healing of alveolar critical size bone defects in the mandible: a pilot study. Clin Oral Investig 2023; 27:4541-4552. [PMID: 37261496 DOI: 10.1007/s00784-023-05079-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVES Minipigs present advantages for studying oral bone regeneration; however, standardized critical size defects (CSD) for alveolar bone have not been validated yet. The objectives of this study are to develop a CSD in the mandibular alveolar bone in Aachen minipigs and to further investigate the specific role of periosteum. MATERIALS AND METHODS Three female Aachen minipigs aged 17, 24, and 84 months were used. For each minipig, a split-mouth design was performed: an osteotomy (2 cm height × 2.5 cm length) was performed; the periosteum was preserved on the left side and removed on the right side. Macroscopic, cone beam computed tomography (CBCT), microcomputed tomography (µCT), and histological analyses were performed to evaluate the bone defects and bone healing. RESULTS In both groups, spontaneous healing was insufficient to restore initial bone volume. The macroscopic pictures and the CBCT results showed a larger bone defect without periosteum. µCT results revealed that BMD, BV/TV, and Tb.Th were significantly lower without periosteum. The histological analyses showed (i) an increased osteoid apposition in the crestal area when periosteum was removed and (ii) an ossification process in the mandibular canal area in response to the surgical that seemed to increase when periosteum was removed. CONCLUSIONS A robust model of CSD model was developed in the alveolar bone of minipigs that mimics human mandibular bone defects. This model allows to further investigate the bone healing process and potential factors impacting healing such as periosteum. CLINICAL RELEVANCE This model may be relevant for testing different bone reconstruction strategies for preclinical investigations.
Collapse
Affiliation(s)
- Lucas T Duong
- Centre de Recherche Des Cordeliers, UMRS 1138, Molecular Oral Pathophysiology, Université Paris Cité, INSERM, Sorbonne Université, Paris, France
- Department of Oral Surgery, Dental Faculty, Université Paris Cité, Paris, France
- Oral Surgery Department, Charles Foix Hospital, AP-HP, Ivry-Sur-Seine, France
- Department of Head and Neck Surgical Oncology, Institut Gustave Roussy, Villejuif, France
| | - Stéphane Petit
- Centre de Recherche Des Cordeliers, UMRS 1138, Molecular Oral Pathophysiology, Université Paris Cité, INSERM, Sorbonne Université, Paris, France
- Department of Oral Biology, Dental Faculty, Université Paris Cité, Paris, France
| | - Stéphane Kerner
- Centre de Recherche Des Cordeliers, UMRS 1138, Molecular Oral Pathophysiology, Université Paris Cité, INSERM, Sorbonne Université, Paris, France
- Department of Oral Biology, Dental Faculty, Université Paris Cité, Paris, France
- Department of Periodontology, Dental Faculty, Université Paris Cité, Paris, France
- Department of Periodontics, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Mélodie M Clerc
- Centre de Recherche Des Cordeliers, UMRS 1138, Molecular Oral Pathophysiology, Université Paris Cité, INSERM, Sorbonne Université, Paris, France
- Department of Periodontology, Dental Faculty, Université Paris Cité, Paris, France
| | | | - Nunthawan Nowwarote
- Centre de Recherche Des Cordeliers, UMRS 1138, Molecular Oral Pathophysiology, Université Paris Cité, INSERM, Sorbonne Université, Paris, France
- Department of Oral Biology, Dental Faculty, Université Paris Cité, Paris, France
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri Dunant Rd. Pathumwan, Bangkok, 10330, Thailand
| | - Benjamin P J Fournier
- Centre de Recherche Des Cordeliers, UMRS 1138, Molecular Oral Pathophysiology, Université Paris Cité, INSERM, Sorbonne Université, Paris, France
- Department of Oral Biology, Dental Faculty, Université Paris Cité, Paris, France
- Reference Center for Oral and Dental Rare Diseases, ORARES, Odontology Department, Rothschild Hospital, APHP, Paris, France
| | - Juliane Isaac
- Centre de Recherche Des Cordeliers, UMRS 1138, Molecular Oral Pathophysiology, Université Paris Cité, INSERM, Sorbonne Université, Paris, France
- Department of Oral Biology, Dental Faculty, Université Paris Cité, Paris, France
| | - François C Ferré
- Centre de Recherche Des Cordeliers, UMRS 1138, Molecular Oral Pathophysiology, Université Paris Cité, INSERM, Sorbonne Université, Paris, France.
- Department of Oral Surgery, Dental Faculty, Université Paris Cité, Paris, France.
- Department of Oral Biology, Dental Faculty, Université Paris Cité, Paris, France.
| |
Collapse
|
4
|
Regenerative Potential of Hydroxyapatite-Based Ceramic Biomaterial on Mandibular Cortical Bone: An In Vivo Study. Biomedicines 2023; 11:biomedicines11030877. [PMID: 36979856 PMCID: PMC10045626 DOI: 10.3390/biomedicines11030877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Reconstruction of bone defects and maintaining the continuity of the mandible is still a challenge in the maxillofacial surgery. Nowadays, the biomedical research within bone defect treatment is focussed on the therapy of using innovative biomaterials with specific characteristics consisting of the body’s own substances. Hydroxyapatite ceramic scaffolds have fully acceptable phase compositions, microstructures and compressive strengths for their use in regenerative medicine. The innovative hydroxyapatite ceramics used by us were prepared using the tape-casting method, which allows variation in the shape of samples after packing hydroxyapatite paste to 3D-printed plastic form. The purpose of our qualitative study was to evaluate the regenerative potential of the innovative ceramic biomaterial prepared using this method in the therapy of the cortical bone of the lower jaw in four mature pigs. The mandible bone defects were evaluated after different periods of time (after 3, 4, 5 and 6 months) and compared with the control sample (healthy cortical bone from the opposite side of the mandible). The results of the morphological, clinical and radiological investigation and hardness examination confirmed the positive regenerative potential of ceramic implants after treatment of the mandible bone defects in the porcine mandible model.
Collapse
|
5
|
Chen CF, Chen CM, Chen HS, Huang WC, Chen YC, Chang HC, Liu SH, Yang TL, Wang LL, Chen PH. The Use of Customized Three-Dimensionally Printed Mandible Prostheses with a Pressure-Reducing Device: A Finite Element Analysis in Different Chewing Positions, Biomechanical Testing, and In Vivo Animal Study Using Lanyu Pigs. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9880454. [PMID: 35342763 PMCID: PMC8942632 DOI: 10.1155/2022/9880454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 01/05/2023]
Abstract
Segmental bony defects of the mandible constitute a complete loss of the regional part of the mandible. Although several types of customized three-dimension-printed mandible prostheses (CMPs) have been developed, this technique has yet to be widely used. We used CMP with a pressure-reducing device (PRD) to investigate its clinical applicability. First, we used the finite element analysis (FEA). We designed four models of CMP (P1 to P4), and the result showed that CMP with posterior PRD deployment (P4 group) had the maximum total deformation in the protrusion and right excursion positions, and in clenching and left excursion positions, posterior screws had the minimum von Mises stress. Second, the P4 CMP-PRD was produced using LaserCUSING from titanium alloy (Ti-6Al-4V). The fracture test result revealed that the maximum static pressure that could be withstood was 189 N, and a fatigue test was conducted for 5,000,000 cycles. Third, animal study was conducted on five male 4-month-old Lanyu pigs. Four animals completed the experiment. Two animals had CMP exposure in the oral cavity, but there was no significant inflammation, and one animal had a rear wing fracture. According to a CT scan, the lingual cortex of the mandible crawled along the CMP surface, and a bony front-to-back connection was noted in one animal. A histological examination indicated that CMP was significantly less reactive than control materials (p = 0.0170). Adequate PRD deployment in CMP may solve a challenge associated with CMP, thus promoting its use in clinical practice.
Collapse
Affiliation(s)
- Chun-Feng Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Oral and Maxillofacial Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Dental Laboratory Technology, Shu Zen College of Medicine and Management, Kaohsiung, Taiwan
| | - Chun-Ming Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Han-Sheng Chen
- Dental Department, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Wei-Chin Huang
- Laser and Additive Manufacturing Technology Center, Industrial Technology Research Institute, Taiwan
| | - Yung-Chung Chen
- School of Dentistry and Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Chih Chang
- Department of biomedical engineering, Hungkuang University, Taichung, Taiwan
| | - Sung-Ho Liu
- Laser and Additive Manufacturing Technology Center, Industrial Technology Research Institute, Taiwan
| | - Tsung-Lung Yang
- KSVGH Originals & Enterprises, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ling-Lin Wang
- KSVGH Originals & Enterprises, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ping-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Dahake S, Kuthe A, Mawale M, Sapkal P, Bagde A, Daronde S, Kamble M, Sarode B. Development of customized implant and customized surgical osteotomy guide in ablative tumor surgery for accurate mandibular reconstruction. Int J Med Robot 2019; 16:e2046. [PMID: 31675463 DOI: 10.1002/rcs.2046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/03/2019] [Accepted: 09/26/2019] [Indexed: 11/07/2022]
Abstract
OBJECTIVES The objective of this study was to provide the generalized methodology for design and development of a customized implant and customized surgical osteotomy guide (CSOG) for precise mandibular tumor resection and placement of a customized implant in ablative tumor surgery for accurate mandibular reconstruction. METHODS Medical imaging technique, image processing, virtual surgical planning (VSP), biomedical computer-aided design (CAD), and rapid prototyping (RP) were used to develop CSOG and customized implant. A mock surgical test and an experimental analysis were performed on the biomodel (RP assisted diseased model) to check the effectiveness of the CSOG. RESULTS The paired t test showed the statistically significant result with the use of CSOG as compared to the without using CSOG in ablative mandibular tumor surgery. CONCLUSIONS A mock test and an experimental analysis proved that, the precise tumor resection and customized implant placement with minimal gap between bone-implant junctions in mandibular reconstruction using CSOG.
Collapse
Affiliation(s)
- Sandeep Dahake
- Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Abhaykumar Kuthe
- Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Mahesh Mawale
- Department of Mechanical Engineering, Kavikulguru Institute of Technology and Science, Ramtek, India
| | - Pranav Sapkal
- Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Ashutosh Bagde
- Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Subodh Daronde
- Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Manish Kamble
- Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Bhupesh Sarode
- Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| |
Collapse
|
7
|
Goodson AM, Kittur MA, Evans PL, Williams EM. Patient-specific, printed titanium implants for reconstruction of mandibular continuity defects: A systematic review of the evidence. J Craniomaxillofac Surg 2019; 47:968-976. [PMID: 30885527 DOI: 10.1016/j.jcms.2019.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/04/2019] [Accepted: 02/26/2019] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alexander Mc Goodson
- Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 1DL, United Kingdom
| | - Madhav A Kittur
- Morriston Hospital, Heol Maes Eglwys, Swansea, SA6 6NL, United Kingdom
| | - Peter L Evans
- Morriston Hospital, Heol Maes Eglwys, Swansea, SA6 6NL, United Kingdom
| | - E Mark Williams
- Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 1DL, United Kingdom.
| |
Collapse
|
8
|
Dahake S, Kuthe A, Kulkarni S, Mawale M. Finite element analysis of customized implant in mandibular reconstruction after tumor resection with and without using customized surgical osteotomy guide. Int J Med Robot 2017; 14. [DOI: 10.1002/rcs.1854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Sandeep Dahake
- Mechanical Engineering Department; Visvesvaraya National Institute of Technology; Nagpur India
| | - Abhaykumar Kuthe
- Mechanical Engineering Department; Visvesvaraya National Institute of Technology; Nagpur India
| | | | - Mahesh Mawale
- Mechanical Engineering Department; Kavikulguru Institute of Technology and Science Ramtek; Nagpur India
| |
Collapse
|
9
|
Silva RDO, Passador F, Caria PHF. Twist removal of healed vs. nonhealed implants-a mechanical and histological study in mini pigs. Int J Implant Dent 2016; 2:23. [PMID: 27888491 PMCID: PMC5124023 DOI: 10.1186/s40729-016-0059-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/18/2016] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The objective of this study was to evaluate the effect of removal torque (reverse torque) of titanium implants in peri-implant bone. METHODS The P1-M1 teeth were extracted bilaterally of 6 mini pigs (BR-1). Each animal received 6 titanium implants, three for each side of mandible. On the right side of mandible, 3 implants reminded 9 months (9M) under masticatory activity and on the left side, other 3 implants were placed and immediately removed (IR). All 36 implants were removed by removal torque, and the recorded values were statistically analyzed. Animals were euthanized right after the removal torque and recording. Each third (cervical, medium, and apical) of peri-implant bone was extracted and analyzed histological and immunohistochemically. Student's t test was used to determine statistical differences in the values between the 9M and IR samples. Data were presented as means with standard deviations. The level of significance was set at 5% (P < 0.05). RESULTS Removal torque was higher in 9M experimental situation than in IR. Histological characteristics of mature bone were presented in the 9M experimental condition, and immature bone characteristics were presented in the IR experimental condition. Removal torque caused small fractures and rounding in the bone grooving. Immunohistochemical analysis reinforced the histological results; Student's t test provided statistically significant differences to osteocalcin expression in 9M samples and no statistically significant differences expression to collagen I in both experimental conditions (P < 0.05). CONCLUSIONS Removal torque caused microscopical fractures and smoothing in the peri-implant bone grooves, but it does not compromise the bone healing.
Collapse
|