1
|
Shi J, Wang X, Chen Z, Mao D, Luo Y. Spatial distribution of two acaricides and five neonicotinoids in beehives and surrounding environments in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133892. [PMID: 38461662 DOI: 10.1016/j.jhazmat.2024.133892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/12/2024]
Abstract
Managed bees commonly suffer from cross-contamination with acaricides and neonicotinoids, posing robust threats to bee population health. However, their residual characteristics and spatial distribution in beehives and surrounding environments are poorly understood. This study detected two common acaricides and five neonicotinoids in 240 beehive samples and 44 surrounding environmental samples collected from 25 Chinese provinces. The results showed that 40.0% of the honey samples contained acaricides and 83.1% contained neonicotinoids. Neonicotinoid concentrations in honey were geographically distinguished by the "Hu Huanyong line", and concentrations of neonicotinoids in honey from eastern areas were 2.65-fold higher than those in honey from western areas. Compared to the approved acaricide amitraz, the banned acaricide coumaphos was detected more frequently in honey and was positively correlated with that quantified in the paired pollen samples. Although coumaphos was identified in only three soil samples, lower coumaphos residues in honey might be associated with persistent pollution in the surrounding environment. Conversely, neonicotinoids were detected at higher levels in honey than in the pollen and soil, demonstrating that the neonicotinoid residues in honey have a cumulative effect. This study contributes to a better understanding of the pesticide contamination scenarios that underlie the exposure risks of bees.
Collapse
Affiliation(s)
- Jingliang Shi
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
2
|
Alimsijah PI, Ang CY, Han HS. Old World Screwworm myiasis: First report of auricular Chrysomya bezziana myiasis in a dog in Singapore. Vet Parasitol Reg Stud Reports 2024; 48:100991. [PMID: 38316506 DOI: 10.1016/j.vprsr.2024.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
A German Shepherd dog was presented to a referral practice for screwworm myiasis affecting the ear. The successful management involved killing the larvae with afoxolaner plus milbemycin oxime and using video otoscopy to completely remove dead larvae. To the best of our knowledge, this is the first case report of auricular myiasis by Chrysomya bezziana in a dog in Singapore and the first report of video otoscopic management of myiasis.
Collapse
Affiliation(s)
- P I Alimsijah
- Mount Pleasant Animal Clinic East, 152 East Coast Road, Singapore 428855.
| | - C Y Ang
- Veterinary Emergency and Specialty Hospital, 232 Whitley Road, Singapore 297824
| | - H S Han
- Veterinary Emergency and Specialty Hospital, 232 Whitley Road, Singapore 297824
| |
Collapse
|
3
|
Bernal-González KG, Covantes-Rosales CE, Camacho-Pérez MR, Mercado-Salgado U, Barajas-Carrillo VW, Girón-Pérez DA, Montoya-Hidalgo AC, Díaz-Resendiz KJG, Barcelos-García RG, Toledo-Ibarra GA, Girón-Pérez MI. Organophosphate-Pesticide-Mediated Immune Response Modulation in Invertebrates and Vertebrates. Int J Mol Sci 2023; 24:5360. [PMID: 36982434 PMCID: PMC10049729 DOI: 10.3390/ijms24065360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Organophosphate pesticides (OPs) have greatly facilitated food production worldwide, and their use is not limited to agriculture and the control of pests and disease vectors. However, these substances can directly affect the immune response of non-target organisms. In this sense, exposure to OPs can have negative effects on innate and adaptive immunity, promoting deregulation in humoral and cellular processes such as phagocytosis, cytokine expression, antibody production, cell proliferation, and differentiation, which are crucial mechanisms for host defense against external agents. This review focuses on the scientific evidence of exposure to OPs and their toxic effects on the immune system of non-target organisms (invertebrates and vertebrates) from a descriptive perspective of the immuno-toxic mechanisms associated with susceptibility to the development of bacterial, viral, and fungal infectious diseases. During the exhaustive review, we found that there is an important gap in the study of non-target organisms, examples of which are echinoderms and chondrichthyans. It is therefore important to increase the number of studies on other species directly or indirectly affected by Ops, to assess the degree of impact at the individual level and how this affects higher levels, such as populations and ecosystems.
Collapse
Affiliation(s)
| | - Carlos Eduardo Covantes-Rosales
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63173, Nayarit, Mexico
| | - Milton Rafael Camacho-Pérez
- Maestría en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Xalisco 63780, Nayarit, Mexico
| | - Ulises Mercado-Salgado
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63173, Nayarit, Mexico
- Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Xalisco 63780, Nayarit, Mexico
| | - Victor Wagner Barajas-Carrillo
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63173, Nayarit, Mexico
| | - Daniel Alberto Girón-Pérez
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63173, Nayarit, Mexico
| | | | - Karina Janice Guadalupe Díaz-Resendiz
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63173, Nayarit, Mexico
| | - Rocío Guadalupe Barcelos-García
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63173, Nayarit, Mexico
| | - Gladys Alejandra Toledo-Ibarra
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63173, Nayarit, Mexico
| | - Manuel Iván Girón-Pérez
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63173, Nayarit, Mexico
| |
Collapse
|
4
|
Dash DM, Osborne WJ. A systematic review on the implementation of advanced and evolutionary biotechnological tools for efficient bioremediation of organophosphorus pesticides. CHEMOSPHERE 2023; 313:137506. [PMID: 36526134 DOI: 10.1016/j.chemosphere.2022.137506] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/11/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Ever since the concept of bioremediation was introduced, microorganisms, microbial enzymes and plants have been used as principal elements for Organophosphate pesticide (OPP) bioremediation. The enzyme systems and genetic profile of these microbes have been studied deeply in past years. Plant growth promoting rhizobacteria (PGPR) are considered as one of the potential candidates for OPP bioremediation and has been widely used to stimulate the phytoremediation potential of plants. Constructed wetlands (CWs) in OPP biodegradation have brought new prospects to microcosm and mesocosm based remediation strategies. Application of synthetic biology has provided a new dimension to the field of OPP bioremediation by introducing concepts like, gene manipulation andediting, expression and regulation of catabolic enzymes, implementation of whole-cell based and enzyme based biosensor systems for the detection and monitoring of OPP pollution in both terrestrial and aquatic environment. System biology and bioinformatics tools have rendered significant knowledge regarding the genetic, enzymatic and biochemical aspects of microbes and plants thereby, helping researchers to analyze the mechanism of OPP biodegradation. Structural biology has provided significant conceptual information regarding OPP biodegradation pathways, structural and functional characterization of metabolites and enzymes, enzyme-pollutant interactions, etc. Therefore, this review discussed the prospects and challenges of most advanced and high throughput strategies implemented for OPP biodegradation. The review also established a comparative analysis of various bioremediation techniques and highlighted the interdependency among them. The review highly suggested the simultaneous implementation of more than one remediation strategy or a combinational approach creating an advantageous hybrid technique for OPP bioremediation.
Collapse
Affiliation(s)
- Dipti Mayee Dash
- Department of Bioscience School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - W Jabez Osborne
- Department of Bioscience School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
5
|
Binding and Detoxification of Insecticides by Potentially Probiotic Lactic Acid Bacteria Isolated from Honeybee ( Apis mellifera L.) Environment-An In Vitro Study. Cells 2022; 11:cells11233743. [PMID: 36496999 PMCID: PMC9740702 DOI: 10.3390/cells11233743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Lactic acid bacteria (LAB) naturally inhabiting the digestive tract of honeybees are known for their ability to detoxify xenobiotics. The effect of chlorpyrifos, coumaphos, and imidacloprid on the growth of LAB strains was tested. All strains showed high resistance to these insecticides. Subsequently, the insecticide binding ability of LAB was investigated. Coumaphos and chlorpyrifos were bound to the greatest extent (up to approx. 64%), and imidacloprid to a much weaker extent (up to approx. 36%). The insecticides were detected in extra- and intracellular extracts of the bacterial cell wall. The ability of selected LAB to reduce the cyto- and genotoxicity of insecticides was tested on two normal (ovarian insect Sf-9 and rat intestinal IEC-6) cell lines and one cancer (human intestinal Caco-2) cell line. All strains exhibited various levels of reduction in the cyto- and genotoxicity of tested insecticides. It seems that coumaphos was detoxified most potently. The detoxification abilities depended on the insecticide, LAB strain, and cell line. The detoxification of insecticides in the organisms of honeybees may reduce the likelihood of the penetration of these toxins into honeybee products consumed by humans and may contribute to the improvement of the condition in apiaries and honeybee health.
Collapse
|
6
|
Menchetti M, Galli G, Bravaccini B, Zappa G, Rocchi P. A suspected intermediate syndrome and intussusception following propoxur toxicity in a dog. VETERINARY RECORD CASE REPORTS 2022. [DOI: 10.1002/vrc2.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marika Menchetti
- Neurology and Neurosurgery Division San Marco Veterinary Clinic and Laboratory Veggiano Padua Italy
| | - Greta Galli
- Neurology and Neurosurgery Division San Marco Veterinary Clinic and Laboratory Veggiano Padua Italy
| | - Beatrice Bravaccini
- Neurology and Neurosurgery Division San Marco Veterinary Clinic and Laboratory Veggiano Padua Italy
| | - Giovanni Zappa
- Intensive Care Division San Marco Veterinary Clinic and Laboratory Veggiano Padua Italy
| | - Paola Rocchi
- Intensive Care Division San Marco Veterinary Clinic and Laboratory Veggiano Padua Italy
| |
Collapse
|
7
|
Anti-Varroa Efficiency of Coumaphos and Its Influence on Oxidative Stress and Survival of Honey Bees. ACTA VET-BEOGRAD 2020. [DOI: 10.2478/acve-2020-0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Apart from the efficiency of coumaphos against Varroa mites, its impact on the oxidative status and survival of the honey bee (Apis mellifera) was assessed. The research was conducted on hives from the same apiary, equalised regarding the number of bees, brood area and food storage. Based on Varroa infestation the hives were allotted to two groups: non-infested (N) and infested (I). Both groups were either treated (T) – NT and IT, or untreated (U) – NU and IU. The treatment of infested bees was controlled with a follow-up treatment with amitraz. The efficiency of coumaphos was 96-97%. This organophosphate had a negligible effect on bee survival, but it significantly affected their oxidative status: superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) activities, and the concentrations of malonyl dialdehyde (MDA). Coumaphos significantly (p˂0.0001) decreased SOD activity in non-infested bees, but increased it in those infested. By contrast, both CAT and GST activities, as well as MDA concentrations significantly increased (from p˂0.05 to p˂0.0001) after treatment in all groups, with the exception of IT, where it declined. Coumaphos in non-infested hives caused oxidative stress per se, not unlike varroa in infested colonies. However, in infested colonies it decreased oxidative stress, owing to its efficacy against Varroa mites and contributed to the recovery of bee colonies. In spite of its certain downsides, coumaphos remains an effective anti-varroa substance, but should be used with precaution, not to add to the effects of environmental factors which may cause red-ox misbalance.
Collapse
|