1
|
Ding S, Alexander E, Liang H, Kulchar RJ, Singh R, Herzog RW, Daniell H, Leong KW. Synthetic and Biogenic Materials for Oral Delivery of Biologics: From Bench to Bedside. Chem Rev 2025. [PMID: 40168474 DOI: 10.1021/acs.chemrev.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The development of nucleic acid and protein drugs for oral delivery has lagged behind their production for conventional nonoral routes. Over the past decade, the evolution of DNA- and RNA-based technologies combined with the innovation of state-of-the-art delivery vehicles for nucleic acids has brought rapid advancements to the biopharmaceutical field. Nucleic acid therapies have the potential to achieve long-lasting effects, or even cures, by inhibiting or editing genes, which is not possible with conventional small-molecule drugs. However, challenges and limitations must be addressed before these therapies can provide cures for chronic conditions and rare diseases, rather than only offering temporary relief. Nucleic acids and proteins face premature degradation in the acidic, enzyme-rich stomach environment and are rapidly cleared by the liver. To overcome these challenges, various delivery vehicles have been developed to transport therapeutic compounds to the intestines, where the active compounds are released and gut microbiota and mucosal immune system also play an important role. This review provides a comprehensive overview of the promises and pitfalls associated with the oral route of administration of biologics, current delivery systems, applications of orally delivered therapeutics, and the challenges and considerations for translation of nucleic acid and protein therapeutics into clinical practice.
Collapse
Affiliation(s)
- Suwan Ding
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Huiyi Liang
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachel J Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
2
|
Yu H, Gu X, Wang D, Wang Z. Brucella infection and Toll-like receptors. Front Cell Infect Microbiol 2024; 14:1342684. [PMID: 38533384 PMCID: PMC10963510 DOI: 10.3389/fcimb.2024.1342684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 03/28/2024] Open
Abstract
Brucella consists of gram-negative bacteria that have the ability to invade and replicate in professional and non-professional phagocytes, and its prolonged persistence in the host leads to brucellosis, a serious zoonosis. Toll-like receptors (TLRs) are the best-known sensors of microorganisms implicated in the regulation of innate and adaptive immunity. In particular, TLRs are transmembrane proteins with a typical structure of an extracellular leucine-rich repeat (LRR) region and an intracellular Toll/interleukin-1 receptor (TIR) domain. In this review, we discuss Brucella infection and the aspects of host immune responses induced by pathogens. Furthermore, we summarize the roles of TLRs in Brucella infection, with substantial emphasis on the molecular insights into its mechanisms of action.
Collapse
Affiliation(s)
- Hui Yu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Xinyi Gu
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Danfeng Wang
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
3
|
Gunay G, Maier KN, Hamsici S, Carvalho F, Timog TA, Acar H. Peptide aggregation-induced immunogenic cell death in a breast cancer spheroid model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565012. [PMID: 37961293 PMCID: PMC10635027 DOI: 10.1101/2023.10.31.565012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Utilizing multicellular aggregates (spheroids) for in vitro cancer research offers a physiologically relevant model that closely mirrors the intricate tumor microenvironment, capturing properties of solid tumors such as cell interactions and drug resistance. In this research, we investigated the Peptide-Aggregation Induced Immunogenic Response (PAIIR), an innovative method employing engineered peptides we designed specifically to induce immunogenic cell death (ICD). We contrasted PAIIR-induced ICD with standard ICD and non-ICD inducer chemotherapeutics within the context of three-dimensional breast cancer tumor spheroids. Our findings reveal that PAIIR outperforms traditional chemotherapeutics in its efficacy to stimulate ICD. This is marked by the release of key damage-associated molecular patterns (DAMPs), which bolster the phagocytic clearance of dying cancer cells by dendritic cells (DCs) and, in turn, activate powerful anti-tumor immune responses. Additionally, we observed that PAIIR results in elevated dendritic cell activation and increased antitumor cytokine presence. This study not only showcases the utility of tumor spheroids for efficient high-throughput screening but also emphasizes PAIIR's potential as a formidable immunotherapeutic strategy against breast cancer, setting the stage for deeper exploration and potential clinical implementation.
Collapse
|
4
|
Oberemok VV, Andreeva OA, Laikova KV, Novikov IA, Kubyshkin AV. Post-genomic platform for development of oligonucleotide vaccines against RNA viruses: diamond cuts diamond. Inflamm Res 2022; 71:729-739. [PMID: 35523969 PMCID: PMC9075145 DOI: 10.1007/s00011-022-01582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/01/2022] [Indexed: 12/02/2022] Open
Abstract
The coronavirus pandemic has starkly demonstrated the need to create highly effective vaccines against various viral diseases. The emerging new platforms for vaccine creation (adenovirus vectors and mRNA vaccines) have shown their worth in the fight against the prevention of coronavirus infection. However, adenovirus vectors and mRNA vaccines have a serious disadvantage: as a rule, only the S protein of the coronavirus is presented as an antigen. This tactic for preventing infection allows the ever-mutating virus to escape quickly from the immunity protection provided by such vaccines. Today, viral genomic databases are well-developed, which makes it possible to create new vaccines on a fundamentally new post-genomic platform. In addition, the technology for the synthesis of nucleic acids is currently experiencing an upsurge in demand in various fields of molecular biology. The accumulated experience suggests that the unique genomic sequences of viruses can act as antigens that trigger powerful humoral and cellular immunity. To achieve this effect, the following conditions must be created: the structure of the nucleic acid must be single-stranded, have a permanent 3D nanostructure, and have a unique sequence absent in the vaccinated organism. Oligonucleotide vaccines are able to resist the rapidly changing genomic sequences of RNA viruses by using conserved regions of their genomes to generate a long-term immune response, acting according to the adage that a diamond cuts a diamond. In addition, oligonucleotide vaccines will not contribute to antibody-dependent enhanced infection, since the nucleic acid of the coronavirus is inside the viral particle. It is obvious that new epidemics and pandemics caused by RNA viruses will continue to arise periodically in the human population. The creation of new, safe, and effective platforms for the production of vaccines that can flexibly change and adapt to new subtypes of viruses is very urgent and at this moment should be considered as a strategically necessary task.
Collapse
Affiliation(s)
- V V Oberemok
- Department of Molecular Genetics and Biotechnologies, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea.
- Engineering Center 'Genetic and Cell Biotechnologies', V.I. Vernadsky Crimean Federal University, Simferopol, Crimea.
| | - O A Andreeva
- Department of Molecular Genetics and Biotechnologies, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
- Engineering Center 'Genetic and Cell Biotechnologies', V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| | - K V Laikova
- Biochemistry Department, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| | - I A Novikov
- Department of Molecular Genetics and Biotechnologies, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| | - A V Kubyshkin
- Engineering Center 'Genetic and Cell Biotechnologies', V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| |
Collapse
|
5
|
Zahedipour F, Zamani P, Jamialahmadi K, Jaafari MR, Sahebkar A. Vaccines targeting angiogenesis in melanoma. Eur J Pharmacol 2021; 912:174565. [PMID: 34656608 DOI: 10.1016/j.ejphar.2021.174565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Angiogenesis has a significant role in metastasis and progression of melanoma. Even small tumors may be susceptible to metastasis and hence lead to a worse outcome in patients with melanoma. One of the anti-angiogenic treatment approaches that is undergoing comprehensive study is specific immunotherapy. While tumor cells are challenging targets for immunotherapy due to their genetic instability and heterogeneity, endothelial cells (ECs) are genetically stable. Therefore, vaccines targeting angiogenesis in melanoma are appropriate choices that target both tumor cells and ECs while capable of inducing strong, anti-tumor immune responses with limited toxicity. The main targets of angiogenesis are VEGFs and their receptors but other potential targets have also been investigated, especially in preclinical studies. Various types of vaccines that target angiogenesis in melanoma have been studied including DNA, peptide, protein, dendritic cell-based, and endothelial cell vaccines. This review outlines a number of target antigens that are important for potential progress in developing vaccines for targeting angiogenesis in melanoma. We also discuss different types of vaccines that have been investigated, delivery mechanisms and popular adjuvants, and suggest ways to improve future clinical outcomes.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Faghfuri E, Pourfarzi F, Faghfouri AH, Abdoli Shadbad M, Hajiasgharzadeh K, Baradaran B. Recent developments of RNA-based vaccines in cancer immunotherapy. Expert Opin Biol Ther 2020; 21:201-218. [PMID: 32842798 DOI: 10.1080/14712598.2020.1815704] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cancer immunotherapy is more dependent on monoclonal antibodies, proteins, and cells, as therapeutic agents, to attain prominent outcomes. However, cancer immunotherapy's clinical benefits need to be enhanced, as many patients still do not respond well to existing treatments, or their diseases may relapse after temporary control. RNA-based approaches have provided new options for advancing cancer immunotherapy. Moreover, considerable efforts have been made to utilize RNA for vaccine production. RNA vaccines, which encode tumor-associated or specific epitopes, stimulate adaptive immunity. This adaptive immune response is capable of elimination or reduction of tumor burden. It is crucial to develop effective RNA transfer technologies that penetrate the lipid bilayer to reach the cytoplasm for translation into functional proteins. Two important delivery methods include the loading of mRNA into dendritic cells ex vivo; and direct injection of naked RNA with or without a carrier. AREAS COVERED The latest results of pre-clinical and clinical studies with RNA vaccines in cancer immunotherapy are summarized in this review. EXPERT OPINION RNA vaccines are now in early clinical development with promising safety and efficacy outcomes. Also, the translation capacity and durability of these vaccines can be increased with chemical modifications and sequence engineering.
Collapse
Affiliation(s)
- Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences , Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences , Ardabil, Iran
| | - Amir Hossein Faghfouri
- Student's Research Committee, Department of Nutrition, Tabriz University of Medical Science , Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| |
Collapse
|
7
|
Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. NANOMATERIALS 2020; 10:nano10020364. [PMID: 32093140 PMCID: PMC7075285 DOI: 10.3390/nano10020364] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
The use of messenger RNA (mRNA) in gene therapy is increasing in recent years, due to its unique features compared to plasmid DNA: Transient expression, no need to enter into the nucleus and no risk of insertional mutagenesis. Nevertheless, the clinical application of mRNA as a therapeutic tool is limited by its instability and ability to activate immune responses; hence, mRNA chemical modifications together with the design of suitable vehicles result essential. This manuscript includes a revision of the strategies employed to enhance in vitro transcribed (IVT) mRNA functionality and efficacy, including the optimization of its stability and translational efficiency, as well as the regulation of its immunostimulatory properties. An overview of the nanosystems designed to protect the mRNA and to overcome the intra and extracellular barriers for successful delivery is also included. Finally, the present and future applications of mRNA nanomedicines for immunization against infectious diseases and cancer, protein replacement, gene editing, and regenerative medicine are highlighted.
Collapse
|
8
|
Cai J, Wang H, Wang D, Li Y. Improving Cancer Vaccine Efficiency by Nanomedicine. ACTA ACUST UNITED AC 2019; 3:e1800287. [PMID: 32627400 DOI: 10.1002/adbi.201800287] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2018] [Indexed: 12/21/2022]
Abstract
Cancer vaccines, which have been widely investigated in the past few decades, are one of the most attractive strategies for cancer immunotherapy. Through the precise delivery of antigens and adjuvants to lymphoid organs or lymphocytes via nanotechnology, innate and adaptive immunity can be boosted to prevent the growth and relapse of malignant tumors. Indeed, nanomedicine offers great opportunities to improve the efficiency of vaccines. Various functional platforms are used to deliver small molecules, peptides, nucleic acids, and even whole cell antigens to the target area of interest, achieving enhanced antitumor immunity and durable therapeutic benefits. Herein, the recent progress in cancer vaccines based on nanotechnology is summarized. Novel platforms used for delivering tumor antigens, promoting adjuvant functions, and combining other therapeutic strategies are discussed. Moreover, possible striving directions and major challenges of nanomedicine for vaccination are also reviewed.
Collapse
Affiliation(s)
- Junyu Cai
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, China.,China State Institute of Pharmaceutical Industry, 285 Gebaini Road, 201203, Shanghai, China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, 201203, Shanghai, China
| | - Dangge Wang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, China
| |
Collapse
|
9
|
Sharbi-Yunger A, Grees M, Cafri G, Bassan D, Eichmüller SB, Tzehoval E, Utikal J, Umansky V, Eisenbach L. A universal anti-cancer vaccine: Chimeric invariant chain potentiates the inhibition of melanoma progression and the improvement of survival. Int J Cancer 2018; 144:909-921. [PMID: 30106470 DOI: 10.1002/ijc.31795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 11/10/2022]
Abstract
For many years, clinicians and scientists attempt to develop methods to stimulate the immune system to target malignant cells. Recent data suggest that effective cancer vaccination requires combination immunotherapies to overcome tumor immune evasion. Through presentation of both MHC-I and II molecules, DCs-based vaccine platforms are effective in generating detectable CD4 and CD8 T cell responses against tumor-associated antigens. Several platforms include DC transfection with mRNA of the desired tumor antigen. These DCs are then delivered to the host and elicit an immune response against the antigen of interest. We have recently established an mRNA genetic platform which induced specific CD8+ cytotoxic T cell response by DC vaccination against melanoma. In our study, an MHC-II mRNA DCs vaccine platform was developed to activate CD4+ T cells and to enhance the anti-tumor response. The invariant chain (Ii) was modified and the semi-peptide CLIP was replaced with an MHC-II binding peptide sequences of melanoma antigens. These chimeric MHC-II constructs are presented by DCs and induce proliferation of tumor specific CD4+ T cells. When administered in combination with the MHC-I platform into tumor bearing mice, these constructs were able to inhibit tumor growth, and improve mouse survival. Deciphering the immunological mechanism of action, we observed an efficient CTLs killing in addition to higher levels of Th1 and Th2 subsets in the groups immunized with a combination of the MHC-I and MHC-II constructs. These universal constructs can be applied in multiple combinations and offer an attractive opportunity to improve cancer treatment.
Collapse
Affiliation(s)
- Adi Sharbi-Yunger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Mareike Grees
- Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Gal Cafri
- Surgery Branch, National Cancer Institute, Bethesda, MD, USA
| | - David Bassan
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan B Eichmüller
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Esther Tzehoval
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jochen Utikal
- Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Lea Eisenbach
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Grees M, Sharbi-Yunger A, Evangelou C, Baumann D, Cafri G, Tzehoval E, Eichmüller SB, Offringa R, Utikal J, Eisenbach L, Umansky V. Optimized dendritic cell vaccination induces potent CD8 T cell responses and anti-tumor effects in transgenic mouse melanoma models. Oncoimmunology 2018; 7:e1445457. [PMID: 29900058 DOI: 10.1080/2162402x.2018.1445457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022] Open
Abstract
Despite melanoma immunogenicity and remarkable therapeutic effects of negative immune checkpoint inhibitors, a significant fraction of patients does not respond to current treatments. This could be due to limitations in tumor immunogenicity and profound immunosuppression in the melanoma microenvironment. Moreover, insufficient tumor antigen processing and presentation by dendritic cells (DC) may hamper the development of tumor-specific T cells. Using two genetically engineered mouse melanoma models (RET and BRAFV600E transgenic mice), in which checkpoint inhibitor therapy alone is not efficacious, we performed proof-of-concept studies with an improved, multivalent DC vaccination strategy based on our recently developed genetic mRNA cancer vaccines. The in vivo expression of multiple chimeric MHC class I receptors allows a simultaneous presentation of several melanoma-associated shared antigens tyrosinase related protein (TRP)-1, tyrosinase, human glycoprotein 100 and TRP-2. The DC vaccine induced a significantly improved survival in both transgenic mouse models. Vaccinated melanoma-bearing mice displayed an increased CD8 T cell reactivity indicated by a higher IFN-γ production and an upregulation of activation marker expression along with an attenuated immunosuppressive pattern of myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg). The combination of DC vaccination with ultra-low doses of paclitaxel or anti-PD-1 antibodies resulted in further prolongation of mouse survival associated with a stronger reduction of MDSC and Treg immunosuppressive phenotype. Our data suggest that an improved multivalent DC vaccine based on shared tumor antigens induces potent anti-tumor effects and could be combined with checkpoint inhibitors or targeting immunosuppressive cells to further improve their therapeutic efficiency.
Collapse
Affiliation(s)
- Mareike Grees
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Adi Sharbi-Yunger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Christos Evangelou
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Daniel Baumann
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gal Cafri
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Esther Tzehoval
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan B Eichmüller
- GMP and T cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Lea Eisenbach
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
11
|
Wei L, Song Y, Cui J, Qu N, Wang N, Ouyang G, Liao M, Jiao P. Cloning, characterization, and expression analysis of LGP2 cDNA from goose, Anser cygnoides. Poult Sci 2016; 95:2290-6. [DOI: 10.3382/ps/pew162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/23/2016] [Indexed: 01/21/2023] Open
|
12
|
RNA-Based Vaccines in Cancer Immunotherapy. J Immunol Res 2015; 2015:794528. [PMID: 26665011 PMCID: PMC4668311 DOI: 10.1155/2015/794528] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 12/21/2022] Open
Abstract
RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s) of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.
Collapse
|
13
|
Vitour D, Doceul V, Ruscanu S, Chauveau E, Schwartz-Cornil I, Zientara S. Induction and control of the type I interferon pathway by Bluetongue virus. Virus Res 2013; 182:59-70. [PMID: 24211608 PMCID: PMC7114367 DOI: 10.1016/j.virusres.2013.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022]
Abstract
A general review describing the current knowledge on the type I IFN pathway. Description of several mechanisms evolved by viruses to counteract this antiviral response. An up-to-date review on the interaction of BTV and the type I IFN pathway in vivo and in vitro. Description of the cellular sensors involved in the induction of IFN-α/β synthesis upon BTV infection in haematopoietic and non-haematopoietic cells. Description of the strategies evolved by BTV to counteract this cellular antiviral response.
The innate immune response is the first line of defence against viruses, involving the production of type I IFN (IFN-α/β) and other pro-inflammatory cytokines that control the infection. It also shapes the adaptive immune response generated by both T and B cells. Production of type I IFN occurs both in vivo and in vitro in response to Bluetongue virus (BTV), an arthropod-borne virus. However, the mechanisms responsible for the production of IFN-β in response to BTV remained unknown until recently and are still not completely understood. In this review, we describe the recent advances in the identification of cellular sensors and signalling pathways involved in this process. The RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) were shown to be involved in the expression of IFN-β as well as in the control of BTV infection in non-haematopoietic cells. In contrast, induction of IFN-α/β synthesis in sheep primary plasmacytoid dendritic cells (pDCs) required the MyD88 adaptor independently of the Toll-like receptor 7 (TLR7), as well as the kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK). As type I IFN is essential for the establishment of an antiviral cellular response, most of viruses have elaborated counteracting mechanisms to hinder its action. This review also addresses the ability of BTV to interfere with IFN-β synthesis and the recent findings describing the non-structural viral protein NS3 as a powerful antagonist of the host cellular response.
Collapse
Affiliation(s)
- Damien Vitour
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | - Virginie Doceul
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | - Suzana Ruscanu
- Virologie et Immunologie Moléculaires, UR892 INRA, Jouy-en-Josas, France.
| | - Emilie Chauveau
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | | | - Stéphan Zientara
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| |
Collapse
|
14
|
Britto AMA, Amoedo ND, Pezzuto P, Afonso AO, Martínez AMB, Silveira J, Sion FS, Machado ES, Soares MA, Giannini ALM. Expression levels of the innate response gene RIG-I and its regulators RNF125 and TRIM25 in HIV-1-infected adult and pediatric individuals. AIDS 2013; 27:1879-85. [PMID: 24131985 DOI: 10.1097/qad.0b013e328361cfbf] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE TLRs (Toll-like receptors) and RLRs (RIG-I-like receptors) mediate innate immune responses by detecting microorganism invasion. RIG-I activation results in the production of interferon (IFN) type 1 and IFN responsive genes (ISGs). As the ubiquitin ligases RNF125 and TRIM25 are involved in regulating RIG-I function, our aim was to assess whether the levels of these three genes vary between healthy and HIV-infected individuals and whether these levels are related to disease progression. DESIGN Gene expression analyses for RIG-I, RNF125, and TRIM25 were performed for HIV-infected adults and the children's peripheral blood mononuclear cells (PBMCs). METHODS Reverse transcription-quantitative PCRs (RT-qPCRs) were performed in order to quantify the expression levels of RIG-I, RNF125 and TRIM25 from PBMCs purified from control or HIV-infected individuals. RESULTS Controls express higher levels of the three genes when compared to HIV-infected patients. These expressions are clearly distinct between healthy and progressors, and are reproduced in adults and children. In controls, RNF125 is the highest expressed gene, whereas in progressors, RIG-I is either the highest expressed gene or is expressed similarly to RNF125 and TRIM25. CONCLUSION A pattern of expression of RIG-I, RNF125, and TRIM25 genes in HIV patients is evident. The high expression of RNF125 in healthy individuals reflects the importance of keeping RIG-I function off, inhibiting unnecessary IFN production. Consistent with this assumption, RNF125 levels are lower in HIV patients and importantly, the RNF125/RIG-I ratio is lower in patients who progress to AIDS. Our results might help to predict disease progression and unveil the role of poorly characterized host genes during HIV infection.
Collapse
Affiliation(s)
- Alan M A Britto
- aDepartamento de Genética, Instituto de Biologia bInstituto de Bioquímica Médica, UFRJ, Rio de Janeiro cFaculdade de Medicina, UFRG, Rio Grande dHospital Universitário Gaffrée e Guinle, UNIRIO eInstituto de Puericultura e Pediatria Martagão Gesteira, UFRJ fPrograma de Genética, INCA, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Stone AEL, Giugliano S, Schnell G, Cheng L, Leahy KF, Golden-Mason L, Gale M, Rosen HR. Hepatitis C virus pathogen associated molecular pattern (PAMP) triggers production of lambda-interferons by human plasmacytoid dendritic cells. PLoS Pathog 2013; 9:e1003316. [PMID: 23637605 PMCID: PMC3630164 DOI: 10.1371/journal.ppat.1003316] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/05/2013] [Indexed: 01/23/2023] Open
Abstract
Plasmacytoid Dendritic Cells (pDCs) represent a key immune cell in the defense against viruses. Through pattern recognition receptors (PRRs), these cells detect viral pathogen associated molecular patterns (PAMPs) and initiate an Interferon (IFN) response. pDCs produce the antiviral IFNs including the well-studied Type I and the more recently described Type III. Recent genome wide association studies (GWAS) have implicated Type III IFNs in HCV clearance. We examined the IFN response induced in a pDC cell line and ex vivo human pDCs by a region of the HCV genome referred to as the HCV PAMP. This RNA has been shown previously to be immunogenic in hepatocytes, whereas the conserved X-region RNA is not. We show that in response to the HCV PAMP, pDC-GEN2.2 cells upregulate and secrete Type III (in addition to Type I) IFNs and upregulate PRR genes and proteins. We also demonstrate that the recognition of this RNA is dependent on RIG-I-like Receptors (RLRs) and Toll-like Receptors (TLRs), challenging the dogma that RLRs are dispensable in pDCs. The IFNs produced by these cells in response to the HCV PAMP also control HCV replication in vitro. These data are recapitulated in ex vivo pDCs isolated from healthy donors. Together, our data shows that pDCs respond robustly to HCV RNA to make Type III Interferons that control viral replication. This may represent a novel therapeutic strategy for the treatment of HCV.
Collapse
Affiliation(s)
- Amy E. L. Stone
- Integrated Department in Immunology: University of Colorado Denver and National Jewish Health, Denver, Colorado, United States of America
- Division of Gastroenterology & Hepatology, Hepatitis C Center, Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Silvia Giugliano
- Division of Gastroenterology & Hepatology, Hepatitis C Center, Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Gretja Schnell
- Department of Immunology, University of Washington, School of Medicine, Seattle, Washington, United States of America
| | - Linling Cheng
- Division of Gastroenterology & Hepatology, Hepatitis C Center, Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Katelyn F. Leahy
- Division of Gastroenterology & Hepatology, Hepatitis C Center, Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Lucy Golden-Mason
- Integrated Department in Immunology: University of Colorado Denver and National Jewish Health, Denver, Colorado, United States of America
- Division of Gastroenterology & Hepatology, Hepatitis C Center, Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Michael Gale
- Department of Immunology, University of Washington, School of Medicine, Seattle, Washington, United States of America
| | - Hugo R. Rosen
- Integrated Department in Immunology: University of Colorado Denver and National Jewish Health, Denver, Colorado, United States of America
- Division of Gastroenterology & Hepatology, Hepatitis C Center, Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Denver Veteran's Affairs Medical Center, Denver, Colorado, United States of America
| |
Collapse
|
16
|
Brunen D, Mesman AW, Geijtenbeek TBH. RIG-I-like receptors and intracellular Toll-like receptors in antiviral immunity. Future Virol 2013. [DOI: 10.2217/fvl.12.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Viral recognition by pattern recognition receptors is a crucial step in antiviral immunity. Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs) represent two classes of nucleic acid-sensing pattern recognition receptors that play a major role in inducing an antiviral response. Whereas nucleic acid-recognizing TLRs are transmembrane receptors localized in endosomes, RLRs are distributed within the cytoplasm. Recognition of viral nucleic acid by either class of receptors results in activation of downstream signaling pathways. This eventually induces expression of type I IFN and inflammatory cytokines via activation of the transcription factors IRF3, NF-κB and AP-1. Many viruses, such as the extensively studied family of Paramyxoviridae, have evolved sophisticated mechanisms to evade these responses. This review focuses on the differences between viral recognition, signaling pathways and induction of adaptive immunity evoked by RLRs and intracellular TLRs.
Collapse
Affiliation(s)
- Diede Brunen
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Annelies W Mesman
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Teunis BH Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Holen E, Lie KK, Araujo P, Olsvik PA. Pathogen recognition and mechanisms in Atlantic cod (Gadus morhua) head kidney cells: bacteria (LPS) and virus (poly I:C) signals through different pathways and affect distinct genes. FISH & SHELLFISH IMMUNOLOGY 2012; 33:267-276. [PMID: 22641114 DOI: 10.1016/j.fsi.2012.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/23/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
Understanding pathogen recognition and mechanisms in Atlantic cod are of significant importance for both basic research on wild populations and health management in aquaculture. A microarray approach was utilized to search for effects of viral (polyinosinic acid:polycytidylic acid), bacterial (lipopolysaccharide) and polyclonal activator (phytohaemoagglutinin) stress in Atlantic cod head kidney cells. LPS cell activation increased mRNA expression of interleukin 8; interleukin-1β; cyclooxygenase 2; leukocyte derived chemotaxin 2; carboxyl-esterase 2 and environmental biomarker cytochrome P450 1A. Mitogen activated protein kinase p38 and cathepsin F were down regulated by LPS. The antiviral responses induced by double stranded RNA clearly increased transcription of Toll like receptor 3 and interferon stimulating gene 15. The phytohaemoagglutinin response seemed to be more non-specific. Special for the phytohaemoagglutinin induction was the increase in major histocompatibility complex class I. CC chemokine type 2 mRNA expression was increased by phytohaemoagglutinin, lipopolysaccharide and polyinosinic acid:polycytidylic acid, while mitogen activated protein kinase p38 and leukocyte derived chemotaxin 2 were down regulated by phytohaemoagglutinin. Oxidative stress related genes like catalase and glutaredoxin and the anti-apoptotic gene Bcl-2 showed no transcriptional changes compared to control in any of the treatments. Eicosanoids like prostaglandin 2, leukotriene B4 and B5 were constitutively produced by cod head kidney cells in vitro. The most remarkable feature of eicosanoid secretion is the higher production of leukotrienes against prostaglandins, indicating that the lipooxygenase pathway is preferred over the cyclooxygenase pathway. Although there were no significant differences in eicosanoid secretion between the groups, polyinosinic acid:polycytidylic acid showed a clear tendency to increase the levels of leukotriene B4 and B5. This study reveals distinct signatures of bacteria and virus transcriptional responses in cod head kidney cells. In addition, the novel finding that cytochrome P450 1A was upregulated during the antibacterial response indicates a connection between immunity and aryl hydrocarbon receptor activation in Atlantic cod.
Collapse
Affiliation(s)
- Elisabeth Holen
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway.
| | | | | | | |
Collapse
|
18
|
Lee MH, Lalwani P, Raftery MJ, Matthaei M, Lütteke N, Kirsanovs S, Binder M, Ulrich RG, Giese T, Wolff T, Krüger DH, Schönrich G. RNA helicase retinoic acid-inducible gene I as a sensor of Hantaan virus replication. J Gen Virol 2011; 92:2191-2200. [PMID: 21632559 DOI: 10.1099/vir.0.032367-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hantaan virus (HTNV) causes severe human disease. The HTNV genome consists of three ssRNA segments of negative polarity that are complexed with viral nucleocapsid (N) protein. How the human innate immune system detects HTNV is unclear. RNA helicase retinoic acid-inducible gene I (RIG-I) does not sense genomic HTNV RNA. So far it has not been analysed whether pathogen-associated molecular patterns generated during the HTNV replication trigger RIG-I-mediated innate responses. Indeed, we found that knock-down of RIG-I in A549 cells, an alveolar epithelial cell line, increases HTNV replication and prevents induction of 2',5'-oligoadenylate synthetase, an interferon-stimulated gene. Moreover, overexpression of wild-type or constitutive active RIG-I in Huh7.5 cells lacking a functional RIG-I diminished HTNV virion production. Intriguingly, reporter assays revealed that in vitro-transcribed HTNV N RNA and expression of the HTNV N ORF triggers RIG-I signalling. This effect was completely blocked by the RNA-binding domain of vaccinia virus E3 protein, suggesting that dsRNA-like secondary structures of HTNV N RNA stimulate RIG-I. Finally, transfection of HTNV N RNA into A549 cells resulted in a 2 log-reduction of viral titres upon challenge with virus. Our study is the first demonstration that RIG-I mediates antiviral innate responses induced by HTNV N RNA during HTNV replication and interferes with HTNV growth.
Collapse
Affiliation(s)
- Min-Hi Lee
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | - Pritesh Lalwani
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | - Martin J Raftery
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | | | - Nina Lütteke
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | - Sina Kirsanovs
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | - Marco Binder
- Department of Molecular Virology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Rainer G Ulrich
- Friedrich Loeffler Institute, Institute for Novel and Emerging Infectious Diseases, D-17493 Greifswald-Insel Riems, Germany
| | - Thomas Giese
- Institute of Immunology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | - Detlev H Krüger
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | - Günther Schönrich
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| |
Collapse
|
19
|
RIG-I like receptors in antiviral immunity and therapeutic applications. Viruses 2011; 3:906-19. [PMID: 21994761 PMCID: PMC3185779 DOI: 10.3390/v3060906] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 06/04/2011] [Accepted: 06/09/2011] [Indexed: 12/25/2022] Open
Abstract
The RNA helicase family of RIG-I-like receptors (RLRs) is a key component of host defense mechanisms responsible for detecting viruses and triggering innate immune signaling cascades to control viral replication and dissemination. As cytoplasm-based sensors, RLRs recognize foreign RNA in the cell and activate a cascade of antiviral responses including the induction of type I interferons, inflammasome activation, and expression of proinflammatory cytokines and chemokines. This review provides a brief overview of RLR function, ligand interactions, and downstream signaling events with an expanded discussion on the therapeutic potential of targeting RLRs for immune stimulation and treatment of virus infection.
Collapse
|
20
|
Horner SM, Gale M. Intracellular innate immune cascades and interferon defenses that control hepatitis C virus. J Interferon Cytokine Res 2010; 29:489-98. [PMID: 19708811 DOI: 10.1089/jir.2009.0063] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) is a global public health problem that mediates a persistent infection in nearly 200 million people. HCV is efficient in establishing chronicity due in part to the inefficiency of the host immune system in controlling and counteracting HCV-mediated evasion strategies. HCV persistence is linked to the ability of the virus to suppress the RIG-I pathway and interferon production from infected hepatocytes, thus evading innate immune defenses within the infected cell. This review describes the virus and host processes that regulate the RIG-I pathway during HCV infection. An understanding of these HCV-host interactions could lead to more effective therapies for HCV designed to reactivate the host immune response following HCV infection.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
21
|
Majde JA, Kapás L, Bohnet SG, De A, Krueger JM. Attenuation of the influenza virus sickness behavior in mice deficient in Toll-like receptor 3. Brain Behav Immun 2010; 24:306-15. [PMID: 19861156 PMCID: PMC2818367 DOI: 10.1016/j.bbi.2009.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/14/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022] Open
Abstract
Certain sickness behaviors occur consistently in influenza-infected humans and mice. These include body temperature changes, somnolence, and anorexia. Several cytokines serve as mediators of the influenza acute phase response (APR), including these sickness behaviors, and one likely inducer of these cytokines is dsRNA produced during viral replication. TLR3 is known to be one of the host cellular components capable of recognizing dsRNA and activating cytokine synthesis. To determine the role of TLR3-detected viral dsRNA in the causation of viral symptoms, TLR3-deficient mice (TLR3 knockouts, or KOs) were infected with a marginally-lethal dose of mouse-adapted X-31 influenza virus. TLR3 KOs and their wild-type (WT) controls were monitored for baseline body temperature, locomotor activity, and sleep profiles prior to infection. Both mouse strains were then infected and monitored for changes in these sickness behaviors plus body weight changes and mortality for up to 14days post-infection. Consistent with the observations that influenza pathology is reduced in TLR3 KOs, we showed that hypothermia after post-infection day 5 and the total loss of body weight were attenuated in the TLR3 KOs. Sleep changes characteristic of this infection model [particularly increased non-rapid-eye-movement sleep (NREMS)] were also attenuated in TLR3 KOs and returned to baseline values more rapidly. Locomotor activity suppression was similar in both strains. Therefore virus-associated dsRNA detected by TLR3 appears to play a substantial role in mediating several aspects of the influenza syndrome in mice.
Collapse
Affiliation(s)
- Jeannine A. Majde
- Department of VCAPP, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520
| | - Levente Kapás
- WWAMI Medical Education Program, Washington State University, Spokane, WA 99210-1495
| | - Stewart G. Bohnet
- Department of VCAPP, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520
| | - Alok De
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108
| | - James M. Krueger
- Department of VCAPP, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520
| |
Collapse
|
22
|
Modrow S, Falke D, Truyen U, Schätzl H. Immunologie. MOLEKULARE VIROLOGIE 2010. [PMCID: PMC7120405 DOI: 10.1007/978-3-8274-2241-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Die Mechanismen der Immunabwehr, mit denen ein Organismus Virusinfektionen bekämpft, können in zwei Gruppen eingeteilt werden. Zum einen gibt es die unspezifischen, nichtadaptativen Immunreaktionen, die eindringende Erreger als fremd erkennen und eliminieren. Diese sogenannte natürliche oder angeborene Immunabwehr wird als erste aktiv, nachdem ein Virus die äußeren physikalischen Schutzschranken des Körpers (Haut, Schleimhaut) überwunden hat. Sie besteht aus bestimmten Zellen, nämlich aus den dendritischen Zellen, den Granulocyten, den Monocyten und Makrophagen sowie den natürlichen Killerzellen. Diese verfügen über Proteine, die als Rezeptoren (beispielsweise toll-like-Rezeptoren, Komplementrezeptoren) für bestimmte Erregerstrukturen und für die löslichen Produkte des unspezifischen Immunsystems (Akutphaseproteine, die Faktoren des Komplementsystems, Cytokine, Chemokine und Interferone) dienen. Auf die Wirkung und Funktion der Cytokine, Chemokine und Interferone wird in ▸ Kapitel 8 gesondert eingegangen.
Collapse
|
23
|
Anz D, Koelzer VH, Moder S, Thaler R, Schwerd T, Lahl K, Sparwasser T, Besch R, Poeck H, Hornung V, Hartmann G, Rothenfusser S, Bourquin C, Endres S. Immunostimulatory RNA blocks suppression by regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2009; 184:939-46. [PMID: 19966212 DOI: 10.4049/jimmunol.0901245] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of immune suppression by regulatory T (Treg) cells in the maintenance of immune homeostasis is well established. However, little is known about how Treg cell function is inhibited on viral infection to allow the development of a protective immune response. As viral RNA is a crucial mediator for activation of antiviral immunity, we examined the effects of immunostimulatory RNA and infection with RNA viruses on Treg cell function. We show that synthetic RNA oligonucleotides potently inhibit Treg cell-induced suppression in a sequence-dependent manner. This effect is entirely dependent on TLR7 activation of APCs and subsequent IL-6 production. In addition, stimulation with the RNA viruses encephalomyocarditis virus and Sendai virus that specifically activate the RNA-sensing helicases melanoma differentiation-associated gene 5 (MDA-5) and retinoic acid-inducible gene I (RIG-I) also blocks Treg cell function. Interestingly, this effect is seen even in the absence of APCs. Consistent with this, both Treg and T effector cells express RIG-I and MDA-5. Using MDA-5-deficient mice, we demonstrate that the loss of Treg cell function on infection with encephalomyocarditis virus is strictly dependent on MDA-5 expression by Treg cells. Thus, we show in this study for the first time that activation of a RIG-I-like helicase on Treg cells blocks their suppressive function.
Collapse
Affiliation(s)
- David Anz
- Division of Clinical Pharmacology, Center of Integrated Protein Science Munich, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
A large range of human viruses are associated with the development of arthritis or arthralgia. Although there are many parallels with autoimmune arthritides, there is little evidence that viral arthritides lead to autoimmune disease. In humans viral arthritides usually last from weeks to months, can be debilitating, and are usually treated with non-steroidal anti-inflammatory drugs, but with variable success. Viral arthritides likely arise from immunopathological inflammatory responses directed at viruses and/or their products residing and/or replicating within joint tissues. Macrophages recruited by monocyte chemoattractant protein-1 (MCP-1/CCL2) and activated by interferon, and proinflammatory mediators like tumour necrosis factor alpha, interferon gamma, interleukin-6 and interleukin-1beta appear to be common elements in this group of diseases. The challenge for new treatments is to target excessive inflammation without compromising anti-viral immunity. Recent evidence from mouse models suggests targeting MCP-1 or complement may emerge as viable new treatment options for viral arthritides.
Collapse
|
25
|
Abstract
Although most viral infections cause minor, if any, symptoms, a certain number result in serious illness. Viral disease symptoms result both from direct viral replication within host cells and from indirect immunopathological consequences. Dendritic cells (DCs) are key determinants of viral disease outcome; they activate immune responses during viral infection and direct T cells toward distinct T helper type responses. Certain viruses are able to skew cytokine secretion by DCs inducing and/or downregulating the immune system with the aim of facilitating and prolonging release of progeny. Thus, the interaction of DCs with viruses most often results in the absence of disease or complete recovery when natural functions of DCs prevail, but may lead to chronic illness or death when these functions are outmanoeuvred by viruses in the exploitation of DCs.
Collapse
Affiliation(s)
- Giulia Freer
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy.
| | | |
Collapse
|
26
|
Abstract
Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.
Collapse
Affiliation(s)
- Himanshu Kumar
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
27
|
Summerfield A, McCullough KC. The porcine dendritic cell family. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:299-309. [PMID: 18582937 PMCID: PMC7103208 DOI: 10.1016/j.dci.2008.05.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/05/2008] [Accepted: 05/05/2008] [Indexed: 05/07/2023]
Abstract
Considering the pivotal roles played by dendritic cells (DCs) in both innate and adaptive immune responses, advances in the field of porcine immunology DC biology have recently progressed rapidly. As with the more extensively studied murine and human DCs, porcine DC can be generated from bone marrow haematopoietic cells or monocytes, and have been analysed in various immunological and non-immunological tissues. Both conventional DC (cDC) and plasmacytoid DC (pDC) have been characterized. The function of porcine monocyte-derived DC has not only been characterized in terms of antigen presentation and lymphocyte activation, but also their response to various ligands of pattern recognition receptors. These have been characterized in terms of the induction of DC maturation and pro-inflammatory, Th1-like or Th2-like cytokines secretion. Porcine pDC most effectively sense virus infections and are characterized by their capacity to produce large quantities of IFN-alpha and the pro-inflammatory cytokines TNF-alpha, IL-6 and IL-12. As such, the DC family as a whole is a powerful ally in the host battle against pathogen attack. Nevertheless, DC in particular tissue environments or under particular stimuli can down-regulate immune response development. This is not only important for preventing over-activation of the immune system and also for ensuring tolerance against self or "friendly" substances including food components, but may also be used as a mechanism of pathogens to evade immune responses.
Collapse
Affiliation(s)
- Artur Summerfield
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
| | | |
Collapse
|
28
|
Quaye IK. Haptoglobin, inflammation and disease. Trans R Soc Trop Med Hyg 2008; 102:735-42. [PMID: 18486167 DOI: 10.1016/j.trstmh.2008.04.010] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 04/03/2008] [Accepted: 04/03/2008] [Indexed: 01/08/2023] Open
Abstract
Haptoglobin is an acute phase protein that scavenges haemoglobin in the event of intravascular or extravascular haemolysis. The protein exists in humans as three main phenotypes, Hp1-1, Hp2-2 and Hp2-1. Accumulated data on the protein's function has established its strong association with diseases that have inflammatory causes. These include parasitic (malaria), infectious (HIV, tuberculosis) and non-infectious diseases (diabetes, cardiovascular disease and obesity) among others. Phenotype-dependent poor disease outcomes have been linked with the Hp2-2 phenotype. The present review brings this association into perspective by looking at the functions of the protein and how defects in these functions associated with the Hp2 allele affect disease outcome. A model is provided to explain the mechanism, which appears to be largely immunomodulatory.
Collapse
Affiliation(s)
- Isaac K Quaye
- Department of Medical Biochemistry, University of Ghana Medical School, Korle-Bu-Accra, Ghana.
| |
Collapse
|
29
|
Murali A, Li X, Ranjith-Kumar CT, Bhardwaj K, Holzenburg A, Li P, Kao CC. Structure and function of LGP2, a DEX(D/H) helicase that regulates the innate immunity response. J Biol Chem 2008; 283:15825-33. [PMID: 18411269 DOI: 10.1074/jbc.m800542200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RNA recognition receptors are important for detection of and response to viral infections. RIG-I and MDA5 are cytoplasmic DEX(D/H) helicase proteins that can induce signaling in response to RNA ligands, including those from viral infections. LGP2, a homolog of RIG-I and MDA5 without the caspase recruitment domain required for signaling, plays an important role in modulating signaling by MDA5 and RIG-I, presumably through heterocomplex formation and/or by serving as a sink for RNAs. Here we demonstrate that LGP2 can be coexpressed with RIG-I to inhibit activation of the NF-kappaB reporter expression and that LGP2 protein produced in insect cells can bind both single- and double-stranded RNA (dsRNA), with higher affinity and cooperativity for dsRNA. Electron microscopy and image reconstruction were used to determine the shape of the LGP2 monomer in the absence of dsRNA and of the dimer complexed to a 27-bp dsRNA. LGP2 has striking structural similarity to the helicase domain of the superfamily 2 DNA helicase, Hef.
Collapse
Affiliation(s)
- Ayaluru Murali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | |
Collapse
|