1
|
Capnocytophaga zoonotic infections: a 10-year retrospective study (the French CANCAN study). Eur J Clin Microbiol Infect Dis 2022; 41:581-588. [DOI: 10.1007/s10096-022-04402-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
|
2
|
Capnocytophagia canimorsus - Severe sepsis in a previously well individual with no evidence of a cat or dog bite. A case report. Ann Med Surg (Lond) 2020; 55:53-55. [PMID: 32461803 PMCID: PMC7240281 DOI: 10.1016/j.amsu.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
Capnocytophagia canimorsus (C. canimorsus) is a Gram-negative bacilli present in the gingival flora of canine and feline species. It is the second most common cause of infection following dog bites and contact with canine saliva, leading to severe sepsis in immunocompromised patients with no evidence of a breach to the skin. We present the case of a previously healthy 51-year-old male who presented with disseminated intravascular coagulopathy, acute renal failure with widespread haemorrhagic bullae and skin necrosis. He was treated empirically with broad-spectrum antibiotics for sepsis of unknown origin for several days before C. canimorsus infection was identified on blood cultures. Following this, a more detailed social history identified the vital historical detail that the patient owned 7 dogs. His purpura fulminans secondary to sepsis was managed conservatively with regular dressings by the Burns Department. Our experience demonstrates that C. canimorsus should be considered as a causative organism in patients presenting with sepsis of unknown origin after contact with domestic animals and treated with early antibiotic therapy. Consider canimorsus infection as a cause of sepsis in healthy patients with no evidence of dog/cat bites or scratches. Infection may be severe, causing DIC and multi-organ failure. The pathogen is slow-growing and difficult to isolate. Empirical treatment with broad-spectrum antibiotics is required alongside regular dressings to minimize transdermal fluid losses and maintain core body temperature.
Collapse
|
3
|
An asplenic with life-threatening Capnocytophaga canimorsus sepsis. IDCases 2020; 21:e00828. [PMID: 32426231 PMCID: PMC7233233 DOI: 10.1016/j.idcr.2020.e00828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/03/2022] Open
Abstract
We report on a 33-year old Polish truck driver who was admitted as a COVID-19 suspicion case to our hospital after a short stay in northern Italy and was eventually diagnosed with fulminant Capnocytophaga canimorsus sepsis. In retrospect, the patient always had his dog with him in the truck cab and was regularly licked in the face. Following adequate therapy, the patient recovered completely after 8 weeks and was discharged from the hospital in good general condition.
Collapse
|
4
|
Prasil P, Ryskova L, Plisek S, Bostik P. A rare case of purulent meningitis caused by Capnocytophaga canimorsus in the Czech Republic - case report and review of the literature. BMC Infect Dis 2020; 20:100. [PMID: 32013874 PMCID: PMC6998360 DOI: 10.1186/s12879-020-4760-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background Invasive infections caused by Capnocytophaga canimorsus are rare. Immunocompromised patients, who report being bitten by or having a close contact with an animal, represent a high-risk group for this infection. There are only few dozens of infections by this bacteria manifesting as purulent meningitis reported worldwide. The reported case is a first reported case of purulent meningitis caused by by Capnocytophaga canimorsus in Czech Republic with only a limited risk factor history. Case presentation The patient, a 74 years old man, was referred to the infectious diseases department of a teaching hospital with clear signs of developing purulent meningitis. His anamnestic data did not show any unusual findings. He was treated for compensated diabetes mellitus type II. The blood cultures were negative and the etiological agent did not grow from the cerebrospinal fluid (CSF) on common media. Eventually, it was identified by detecting pan-bacterial DNA and DNA sequencing. Subsequently, the pathogen was confirmed by anaerobic cultivation from CSF. Only after then the patient recalled being bitten by his German shepherd puppy during play. The patient was successfully treated intravenously by ceftriaxone. Conclusions Purulent meningitis caused by Capnocytophaga spp. is a rare disease, but it needs to be considered in patients at risk with pre-existing conditions, who report close contact with or being bitten by an animal. It is important to test for this microbe in cases with negative microbiological results for the more common agents.
Collapse
Affiliation(s)
- Petr Prasil
- Department of Infectious Diseases, Charles University School of Medicine and Faculty Hospital, Hradec Kralove, Czech Republic
| | - Lenka Ryskova
- Department of Clinical Microbiology, Charles University School of Medicine and Faculty Hospital, Hradec Kralove, Czech Republic
| | - Stanislav Plisek
- Department of Infectious Diseases, Charles University School of Medicine and Faculty Hospital, Hradec Kralove, Czech Republic
| | - Pavel Bostik
- Department of Infectious Diseases, Charles University School of Medicine and Faculty Hospital, Hradec Kralove, Czech Republic. .,Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 50001, Hradec Kralove, Czech Republic.
| |
Collapse
|
5
|
Morandi EM, Pauzenberger R, Tasch C, Rieger UM, Pierer G, Djedovic G. A small 'lick' will sink a great ship: fulminant septicaemia after dog saliva wound treatment in an asplenic patient. Int Wound J 2017; 14:1025-1028. [PMID: 28425162 DOI: 10.1111/iwj.12752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/05/2017] [Accepted: 03/28/2017] [Indexed: 11/28/2022] Open
Abstract
Capnocytophaga canimorsus is a bacterium transmitted through the saliva of dogs. An infection can cause severe sepsis with acral necrosis and is potentially fatal. Here, we report the case of a 41-year-old man who was infected through a wound that was licked by his dog. He went into septic shock with disseminated intravascular coagulation and subsequently lost both lower legs, his nose and all the fingers on both hands.
Collapse
Affiliation(s)
- Evi M Morandi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Reinhard Pauzenberger
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Christoph Tasch
- Department of Plastic, Reconstructive and Aesthetic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Ulrich M Rieger
- Department of Plastic and Aesthetic, Reconstructive and Hand Surgery, Agaplesion Markus Hospital, Johann Wolfgang von Goethe University, Frankfurt, Germany
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Gabriel Djedovic
- Department of Plastic, Reconstructive and Aesthetic Surgery, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
6
|
Hack K, Renzi F, Hess E, Lauber F, Douxfils J, Dogné JM, Cornelis GR. Inactivation of human coagulation factor X by a protease of the pathogen Capnocytophaga canimorsus. J Thromb Haemost 2017; 15:487-499. [PMID: 28029716 DOI: 10.1111/jth.13605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 01/13/2023]
Abstract
Essentials Capnocytophaga canimorsus causes severe dog bite related blood stream infections. We investigated if C. canimorsus contributes to bleeding abnormalities during infection. The C. canimorsus protease CcDPP7 causes factor X dysfunction by N-terminal cleavage. CcDPP7 inhibits coagulation in vivo, which could promote immune evasion and trigger hemorrhage. SUMMARY Background Capnocytophaga canimorsus is a Gram-negative bacterium that is present in the oral flora of dogs and causes fulminant sepsis in humans who have been bitten, licked, or scratched. In patients, bleeding abnormalities, such as petechiae, purpura fulminans, or disseminated intravascular coagulation (DIC), occur frequently. Objective To investigate whether C. canimorsus could actively contribute to these bleeding abnormalities. Methods Calibrated automated thrombogram and clotting time assays were performed to assess the anticoagulant activity of C. canimorsus 5 (Cc5), a strain isolated from a fatal human infection. Clotting factor activities were measured with factor-deficient plasma. Factor X cleavage was monitored with the radiolabeled zymogen and western blotting. Mutagenesis of Cc5 genes encoding putative serine proteases was performed to identify the protease that cleaves FX. Protein purification was performed with affinity chromatography. Edman degradation allowed the detection of N-terminal cleavage of FX. Tail bleeding times were measured in mice. Results We found that Cc5 inhibited thrombin generation and increased the prothrombin time and the activated partial thromboplastin time of human plasma via FX cleavage. A mutant that was unable to synthesize a type 7 dipeptidyl peptidase (DPP7) of the S46 serine protease family failed to proteolyse FX. The purified protease (CcDPP7) cleaved FX heavy and light chains from the N-terminus, and was active in vivo after intravenous injection. Conclusions This is, to our knowledge, the first study demonstrating a detailed mechanism for FX inactivation by a bacterial protease, and it is the first functional study associating DPP7 proteases with a potentially pathogenic outcome.
Collapse
Affiliation(s)
- K Hack
- Department of Biology, University of Namur, Namur, Belgium
| | - F Renzi
- Department of Biology, University of Namur, Namur, Belgium
| | - E Hess
- Department of Biology, University of Namur, Namur, Belgium
| | - F Lauber
- Department of Biology, University of Namur, Namur, Belgium
| | - J Douxfils
- Department of Pharmacy, University of Namur, Namur, Belgium
| | - J M Dogné
- Department of Pharmacy, University of Namur, Namur, Belgium
| | - G R Cornelis
- Department of Biology, University of Namur, Namur, Belgium
| |
Collapse
|
7
|
Evidence for a LOS and a capsular polysaccharide in Capnocytophaga canimorsus. Sci Rep 2016; 6:38914. [PMID: 27974829 PMCID: PMC5156936 DOI: 10.1038/srep38914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022] Open
Abstract
Capnocytophaga canimorsus is a dog’s and cat’s oral commensal which can cause fatal human infections upon bites or scratches. Infections mainly start with flu-like symptoms but can rapidly evolve in fatal septicaemia with a mortality as high as 40%. Here we present the discovery of a polysaccharide capsule (CPS) at the surface of C. canimorsus 5 (Cc5), a strain isolated from a fulminant septicaemia. We provide genetic and chemical data showing that this capsule is related to the lipooligosaccharide (LOS) and probably composed of the same polysaccharide units. A CPS was also found in nine out of nine other strains of C. canimorsus. In addition, the genomes of three of these strains, sequenced previously, contain genes similar to those encoding CPS biosynthesis in Cc5. Thus, the presence of a CPS is likely to be a common property of C. canimorsus. The CPS and not the LOS confers protection against the bactericidal effect of human serum and phagocytosis by macrophages. An antiserum raised against the capsule increased the killing of C. canimorsus by human serum thus showing that anti-capsule antibodies have a protective role. These findings provide a new major element in the understanding of the pathogenesis of C. canimorsus.
Collapse
|
8
|
Zhang F, He S, Jin J, Dong G, Wu H. Exploring salivary microbiota in AIDS patients with different periodontal statuses using 454 GS-FLX Titanium pyrosequencing. Front Cell Infect Microbiol 2015; 5:55. [PMID: 26191508 PMCID: PMC4488753 DOI: 10.3389/fcimb.2015.00055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/19/2015] [Indexed: 10/28/2022] Open
Abstract
Patients with acquired immunodeficiency syndrome (AIDS) are at high risk of opportunistic infections. Oral manifestations have been associated with the level of immunosuppression, these include periodontal diseases, and understanding the microbial populations in the oral cavity is crucial for clinical management. The aim of this study was to examine the salivary bacterial diversity in patients newly admitted to the AIDS ward of the Public Health Clinical Center (China). Saliva samples were collected from 15 patients with AIDS who were randomly recruited between December 2013 and March 2014. Extracted DNA was used as template to amplify bacterial 16S rRNA. Sequencing of the amplicon library was performed using a 454 GS-FLX Titanium sequencing platform. Reads were optimized and clustered into operational taxonomic units for further analysis. A total of 10 bacterial phyla (106 genera) were detected. Firmicutes, Bacteroidetes, and Proteobacteria were preponderant in the salivary microbiota in AIDS patients. The pathogen, Capnocytophaga sp., and others not considered pathogenic such as Neisseria elongata, Streptococcus mitis, and Mycoplasma salivarium but which may be opportunistic infective agents were detected. Dialister pneumosintes, Eubacterium infirmum, Rothia mucilaginosa, and Treponema parvum were preponderant in AIDS patients with periodontitis. Patients with necrotic periodontitis had a distinct salivary bacterial profile from those with chronic periodontitis. This is the first study using advanced sequencing techniques focused on hospitalized AIDS patients showing the diversity of their salivary microbiota.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University Chengdu, China
| | - Shenghua He
- Public Health Clinical Center of Chengdu Chengdu, China
| | - Jieqi Jin
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University Chengdu, China
| | - Guangyan Dong
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University Chengdu, China
| | - Hongkun Wu
- Department of Geriatric Dentistry, West China College of Stomatology, Sichuan University Chengdu, China
| |
Collapse
|
9
|
Draft Genome Sequences of Three Capnocytophaga canimorsus Strains Isolated from Septic Patients. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00193-15. [PMID: 26021910 PMCID: PMC4447895 DOI: 10.1128/genomea.00193-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Capnocytophaga canimorsus is a bacterium from the normal oral flora of dogs and cats that causes rare generalized infections in humans. In an attempt to determine whether infections could be caused by a subset of strains and to identify pathogenicity factors, we sequenced the genomes of three strains isolated from human infections.
Collapse
|
10
|
'Bobo-Newton syndrome': An unwanted gift from man's best friend. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2014; 24:209-14. [PMID: 24489563 DOI: 10.1155/2013/930158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Capnocytophaga canimorsus is a facultative Gram-negative bacillus that is typically a constituent of the oral flora of dogs and cats. It was first isolated by Bobo and Newton in 1976 from a man presenting with meningitis following a dog bite. Transmission to humans follows various animal-related injuries, which may be gross or subtle. C canimorsus can cause a spectrum of syndromes ranging from skin and soft tissue infection to invasive disease such as meningitis or endocarditis. The present article reports a case of C canimorsus meningitis in a patient with the classic risk factor of alcoholic liver cirrhosis. Clinical suspicion was confirmed by culture and genetic identification of the blood isolate. The present article reviews the Capnocytophaga genus, the clinical syndromes most commonly associated with this zoonotic organism, its laboratory identification and treatment.
Collapse
|
11
|
Avall-Jääskeläinen S, Koort J, Simojoki H, Taponen S. Bovine-associated CNS species resist phagocytosis differently. BMC Vet Res 2013; 9:227. [PMID: 24207012 PMCID: PMC3829212 DOI: 10.1186/1746-6148-9-227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 11/04/2013] [Indexed: 11/30/2022] Open
Abstract
Background Coagulase-negative staphylococci (CNS) cause usually subclinical or mild clinical bovine mastitis, which often remains persistent. Symptoms are usually mild, mostly only comprising slight changes in the appearance of milk and possibly slight swelling. However, clinical mastitis with severe signs has also been reported. The reasons for the differences in clinical expression are largely unknown. Macrophages play an important role in the innate immunity of the udder. This study examined phagocytosis and killing by mouse macrophage cells of three CNS species: Staphylococcus chromogenes (15 isolates), Staphylococcus agnetis (6 isolates) and Staphylococcus simulans (15 isolates). Staphylococcus aureus (7 isolates) was also included as a control. Results All the studied CNS species were phagocytosed by macrophages, but S. simulans resisted phagocytosis more effectively than the other CNS species. Only S. chromogenes was substantially killed by macrophages. Significant variations between isolates were seen in both phagocytosis and killing by macrophages and were more common in the killing assays. Significant differences between single CNS species and S. aureus were observed in both assays. Conclusion This study demonstrated that differences in the phagocytosis and killing of mastitis-causing staphylococci by macrophages exist at both the species and isolate level.
Collapse
Affiliation(s)
| | | | | | - Suvi Taponen
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P,O, Box 57, FIN-00014, Helsinki, Finland.
| |
Collapse
|
12
|
Ittig S, Lindner B, Stenta M, Manfredi P, Zdorovenko E, Knirel YA, dal Peraro M, Cornelis GR, Zähringer U. The lipopolysaccharide from Capnocytophaga canimorsus reveals an unexpected role of the core-oligosaccharide in MD-2 binding. PLoS Pathog 2012; 8:e1002667. [PMID: 22570611 PMCID: PMC3342949 DOI: 10.1371/journal.ppat.1002667] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/12/2012] [Indexed: 01/24/2023] Open
Abstract
Capnocytophaga canimorsus is a usual member of dog's mouths flora that causes rare but dramatic human infections after dog bites. We determined the structure of C. canimorsus lipid A. The main features are that it is penta-acylated and composed of a “hybrid backbone” lacking the 4′ phosphate and having a 1 phosphoethanolamine (P-Etn) at 2-amino-2-deoxy-d-glucose (GlcN). C. canimorsus LPS was 100 fold less endotoxic than Escherichia coli LPS. Surprisingly, C. canimorsus lipid A was 20,000 fold less endotoxic than the C. canimorsus lipid A-core. This represents the first example in which the core-oligosaccharide dramatically increases endotoxicity of a low endotoxic lipid A. The binding to human myeloid differentiation factor 2 (MD-2) was dramatically increased upon presence of the LPS core on the lipid A, explaining the difference in endotoxicity. Interaction of MD-2, cluster of differentiation antigen 14 (CD14) or LPS-binding protein (LBP) with the negative charge in the 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) of the core might be needed to form the MD-2 – lipid A complex in case the 4′ phosphate is not present. Capnocytophaga canimorsus, a commensal bacterium in dog's mouths, causes rare but dramatic infections in humans that have been bitten by dogs. The disease often begins with mild symptoms but progresses to severe septicemia. The lipopolysaccharide (LPS), composed of lipid A, core and O-antigen, is one of the most pro-inflammatory bacterial compounds. The activity of the LPS has so far been attributed to the lipid A moiety. We present here the structure of C. canimorsus lipid A, which shows several features typical for low-inflammatory lipid A. Surprisingly, this lipid A, when attached to the core-oligosaccharide was far more pro-inflammatory than lipid A alone, indicating that in this case the core-oligosaccharide is able to contribute significantly to endotoxicity. Our further work suggests that a negative charge in the LPS-core can compensate the lack of such a charge in the lipid A and that this charge is needed not for stabilization of the final complex with its receptor but in the process of forming it. Overall the properties of the lipid A-core may explain how this bacterium first escapes the innate immune system, but nevertheless can cause a shock at the septic stage.
Collapse
Affiliation(s)
- Simon Ittig
- Biozentrum der Universität Basel, Basel, Switzerland
| | - Buko Lindner
- Division of Immunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Marco Stenta
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology, EPF Lausanne, Switzerland
| | | | - Evelina Zdorovenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yuriy A. Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Matteo dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology, EPF Lausanne, Switzerland
| | | | - Ulrich Zähringer
- Division of Immunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
- * E-mail:
| |
Collapse
|
13
|
Complete genome sequence of the dog commensal and human pathogen Capnocytophaga canimorsus strain 5. J Bacteriol 2011; 193:5558-9. [PMID: 21914877 DOI: 10.1128/jb.05853-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capnocytophaga canimorsus is a commensal Gram-negative bacterium, originally isolated from a dog's mouth, that causes septicemia in humans. C. canimorsus has the unusual ability to feed on host cells, including phagocytes. This capacity depends on surface-exposed glycan-foraging systems. Here we present the first complete genome sequence of a C. canimorsus strain (Cc5).
Collapse
|
14
|
Manfredi P, Renzi F, Mally M, Sauteur L, Schmaler M, Moes S, Jenö P, Cornelis GR. The genome and surface proteome of Capnocytophaga canimorsus reveal a key role of glycan foraging systems in host glycoproteins deglycosylation. Mol Microbiol 2011; 81:1050-60. [DOI: 10.1111/j.1365-2958.2011.07750.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Renzi F, Manfredi P, Mally M, Moes S, Jenö P, Cornelis GR. The N-glycan glycoprotein deglycosylation complex (Gpd) from Capnocytophaga canimorsus deglycosylates human IgG. PLoS Pathog 2011; 7:e1002118. [PMID: 21738475 PMCID: PMC3128124 DOI: 10.1371/journal.ppat.1002118] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/28/2011] [Indexed: 11/18/2022] Open
Abstract
C. canimorsus 5 has the capacity to grow at the expenses of glycan moieties from host cells N-glycoproteins. Here, we show that C. canimorsus 5 also has the capacity to deglycosylate human IgG and we analyze the deglycosylation mechanism. We show that deglycosylation is achieved by a large complex spanning the outer membrane and consisting of the Gpd proteins and sialidase SiaC. GpdD, -G, -E and -F are surface-exposed outer membrane lipoproteins. GpdDEF could contribute to the binding of glycoproteins at the bacterial surface while GpdG is a endo-β-N-acetylglucosaminidase cleaving the N-linked oligosaccharide after the first N-linked GlcNAc residue. GpdC, resembling a TonB-dependent OM transporter is presumed to import the oligosaccharide into the periplasm after its cleavage from the glycoprotein. The terminal sialic acid residue of the oligosaccharide is then removed by SiaC, a periplasm-exposed lipoprotein in direct contact with GpdC. Finally, most likely degradation of the oligosaccharide proceeds sequentially from the desialylated non reducing end by the action of periplasmic exoglycosidases, including β-galactosidases, β-N-Acetylhexosaminidases and α-mannosidases.
Collapse
Affiliation(s)
| | | | - Manuela Mally
- Biozentrum der Universität Basel, Basel, Switzerland
| | - Suzette Moes
- Biozentrum der Universität Basel, Basel, Switzerland
| | - Paul Jenö
- Biozentrum der Universität Basel, Basel, Switzerland
| | - Guy R. Cornelis
- Biozentrum der Universität Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
16
|
van Dam AP, Jansz A. Capnocytophaga canimorsus infections in The Netherlands: a nationwide survey. Clin Microbiol Infect 2011; 17:312-5. [PMID: 20167010 DOI: 10.1111/j.1469-0691.2010.03195.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A retrospective nationwide survey on the occurrence of Capnocytophaga canimorsus and Capnocytopaga cynodegmi infections in The Netherlands over 3 years showed 32 cases, of which 31 were caused by C. canimorsus and one by an unspecified oxidase-positive Capnocytophaga strain. Twenty-eight patients had been diagnosed by blood culture, one by culture from both blood and cerebrospinal fluid (CSF), one by culture from a conjunctival swab, and two patients by 16S rRNA gene amplification by PCR directly from a blood or CSF specimen. The incidence rate was 0.67 infections per million population. Bacteraemia was found in 94% of the cases. The age range of patients was 38-80 years; 72% of them were male. Among 26 patients from whom clinical data were available, splenectomy was not reported, but alcoholism was reported in five. Nine patients (35%) had been admitted to the intensive-care unit, and three patients (13%) died. The mortality rate was much lower than observed in previous studies.
Collapse
Affiliation(s)
- A P van Dam
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | | |
Collapse
|
17
|
Gaastra W, Lipman LJ. Capnocytophaga canimorsus. Vet Microbiol 2010; 140:339-46. [DOI: 10.1016/j.vetmic.2009.01.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/22/2009] [Accepted: 01/27/2009] [Indexed: 02/06/2023]
|
18
|
Molecular characterization of Capnocytophaga canimorsus and other canine Capnocytophaga spp. and assessment by PCR of their frequencies in dogs. J Clin Microbiol 2009; 47:3218-25. [PMID: 19641058 DOI: 10.1128/jcm.01246-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capnocytophaga canimorsus can be a virulent pathogen, whereas C. cynodegmi is of low virulence. Heterogeneity within these species, their frequency in dogs, and pathogenicity factors are largely unknown. Strains from blood cultures from patients presumptively identified as C. canimorsus (n = 25) and as C. cynodegmi by rrs analysis (n = 4), blood cultures from dogs (n = 8), blood cultures from cats (n = 2), and cultures from swabs from dog mouths (n = 53) were analyzed. PCR-restriction fragment length polymorphism (PCR-RFLP), a species-specific PCR on rpoB, and rrs sequencing were used. All 29 strains from human blood cultures could be grouped into three PCR-RFLP types. One included the C. canimorsus type strain, and the other types were closely related. Two canine strains were C. canimorsus and grouped into the least common RLFP pattern group. Five were C. cynodegmi and clustered with the reference strain. One canine and both feline strains were distinct. Four human strains that presumptively had been identified as C. cynodegmi by RNA gene sequence analysis clustered with the C. canimorsus strains by both PCR-RFLP and the sequence-specific PCR of the rpoB gene. C. canimorsus DNA was present in 73% (range, 61 to 85%) of dogs' mouths, and C. cynodegmi DNA was present in 96% (range, 94 to 100%) of dogs' mouths. As defined by rpoB PCR-RFLP and by PCRs using specific primers, all strains from human blood were C. canimorsus. The sequencing of rrs genes suggested the presence of different gene copies in a few strains, indicating that the method is less appropriate for species identification. Both species are present in the majority of dogs. Additional Capnocytophaga species occur in dogs' and cats' mouths.
Collapse
|
19
|
Bite-related and septic syndromes caused by cats and dogs. THE LANCET. INFECTIOUS DISEASES 2009; 9:439-47. [DOI: 10.1016/s1473-3099(09)70110-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Resistance of Capnocytophaga canimorsus to killing by human complement and polymorphonuclear leukocytes. Infect Immun 2009; 77:2262-71. [PMID: 19307219 DOI: 10.1128/iai.01324-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Capnocytophaga canimorsus is a bacterium of the canine oral flora known since 1976 to cause rare but severe septicemia and peripheral gangrene in patients that have been in contact with a dog. It was recently shown that these bacteria do not elicit an inflammatory response (H. Shin, M. Mally, M. Kuhn, C. Paroz, and G. R. Cornelis, J. Infect. Dis. 195:375-386, 2007). Here, we analyze their sensitivity to the innate immune system. Bacteria from the archetype strain Cc5 were highly resistant to killing by complement. There was little membrane attack complex (MAC) deposition in spite of C3b deposition. Cc5 bacteria were as resistant to phagocytosis by human polymorphonuclear leukocytes (PMNs) as Yersinia enterocolitica MRS40, endowed with an antiphagocytic type III secretion system. We isolated Y1C12, a transposon mutant that is hypersensitive to killing by complement via the antibody-dependent classical pathway. The mutation inactivated a putative glycosyltransferase gene, suggesting that the Y1C12 mutant was affected at the level of a capsular polysaccharide or lipopolysaccharide (LPS) structure. Cc5 appeared to have several polysaccharidic structures, one being altered in Y1C12. The structure missing in Y1C12 could be purified by classical LPS purification procedures and labeled by tritiated palmitate, indicating that it is more likely to be an LPS structure than a capsule. Y1C12 bacteria were also more sensitive to phagocytosis by PMNs than wild-type bacteria. In conclusion, a polysaccharide structure, likely an LPS, protects C. canimorsus from deposition of the complement MAC and from efficient phagocytosis by PMNs.
Collapse
|
21
|
Mally M, Paroz C, Shin H, Meyer S, Soussoula LV, Schmiediger U, Saillen-Paroz C, Cornelis GR. Prevalence of Capnocytophaga canimorsus in dogs and occurrence of potential virulence factors. Microbes Infect 2009; 11:509-14. [PMID: 19285152 DOI: 10.1016/j.micinf.2009.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 02/20/2009] [Indexed: 11/17/2022]
Abstract
Capnocytophaga canimorsus is a Gram-negative commensal of dog's mouth causing severe human infections. A strain isolated from a human fatal infection was recently shown to have a sialidase, to inhibit the bactericidal activity of macrophages and to block the release of nitric oxide by LPS-stimulated macrophages. The present study aimed at determining the prevalence of C. canimorsus in dogs and the occurrence of these hypothetical virulence factors. C. canimorsus could be retrieved from the saliva of 61 dogs out of 106 sampled. Like in clinical isolates, all dog strains had a sialidase and 60% blocked the killing of phagocytosed Escherichia coli by macrophages. In contrast, only 6.5% of dog strains blocked the release of nitric oxide by LPS-challenged macrophages, suggesting that this property might contribute to virulence. The comparative analysis of 69 16S rDNA sequences revealed the existence of C. canimorsus strains that could be misdiagnosed.
Collapse
Affiliation(s)
- Manuela Mally
- Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mally M, Shin H, Paroz C, Landmann R, Cornelis GR. Capnocytophaga canimorsus: a human pathogen feeding at the surface of epithelial cells and phagocytes. PLoS Pathog 2008; 4:e1000164. [PMID: 18818736 PMCID: PMC2533406 DOI: 10.1371/journal.ppat.1000164] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 08/27/2008] [Indexed: 11/29/2022] Open
Abstract
Capnocytophaga canimorsus, a commensal bacterium of the canine oral flora, has been repeatedly isolated since 1976 from severe human infections transmitted by dog bites. Here, we show that C. canimorsus exhibits robust growth when it is in direct contact with mammalian cells, including phagocytes. This property was found to be dependent on a surface-exposed sialidase allowing C. canimorsus to utilize internal aminosugars of glycan chains from host cell glycoproteins. Although sialidase probably evolved to sustain commensalism, by releasing carbohydrates from mucosal surfaces, it also contributed to bacterial persistence in a murine infection model: the wild type, but not the sialidase-deficient mutant, grew and persisted, both when infected singly or in competition. This study reveals an example of pathogenic bacteria feeding on mammalian cells, including phagocytes by deglycosylation of host glycans, and it illustrates how the adaptation of a commensal to its ecological niche in the host, here the dog's oral cavity, contributes to being a potential pathogen. Capnocytophaga canimorsus is a commensal bacterium of dogs/cats oral flora, which causes rare but severe infections in humans that have been bitten or simply licked by a dog/cat. Fulminant septicemia and peripheral gangrene are most common symptoms. Although splenectomy has been identified as a predisposing factor, some 40% of the patients have no immunosuppression history. C. canimorsus belongs to the phylum Bacteroidetes, which includes many commensals of the human gut flora but few pathogens. C. canimorsus has been shown previously to be immunosuppressive and to resist phagocytosis by macrophages. Here, we show that this bacterium feeds on surface-exposed glycoproteins from cultured mammalian cells. This property, which was found to depend on a bacterial surface-exposed sialidase, suggests that in its natural niche—the dog's oral cavity—C. canimorsus may feed on the dog's mucosal cells. Moreover, we found that C. canimorsus also feeds on phagocytes and that sialidase contributes to persistence and virulence in a mouse infection model. Thus, by adapting to its ecological niche, C. canimorsus also developed the potential to persist within the tissues of an infected host. This observation nicely illustrates how commensalism and pathogenesis are two faces of the same coin.
Collapse
Affiliation(s)
- Manuela Mally
- Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | - Hwain Shin
- Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | - Cécile Paroz
- Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | - Regine Landmann
- Infection Biology, Department of Research, University Hospital Basel, Hebelstrasse, Basel, Switzerland
| | - Guy R. Cornelis
- Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Abstract
Capnocytophaga canimorsus, a commensal bacterium from canine oral flora, has been isolated throughout the world from severe human infections caused by dog bites. Due to the low level of evolutionary relationship to Proteobacteria, genetic methods suitable for the genus Capnocytophaga needed to be established. Here, we show that Tn4351, derived from Bacteroides fragilis, could be introduced by conjugation into C. canimorsus and conferred resistance to erythromycin. By mapping and sequencing a naturally occurring plasmid isolated from a clinical isolate of C. canimorsus, we identified a repA gene that allowed us to construct Escherichia coli-Capnocytophaga shuttle vectors. Most commonly used antibiotic markers were not functional in C. canimorsus, but cefoxitin (cfxA), tetracycline (tetQ), and erythromycin (ermF) resistances could be used as markers for plasmid maintenance in C. canimorsus and even in some other Capnocytophaga spp. Shuttle vectors were introduced into C. canimorsus either by conjugation using the origin of transfer (oriT) of RP4 or by electrotransformation. Taking advantage of the promoter of ermF, an expression vector was constructed. Finally, a method that allows site-directed mutagenesis is described. All these genetic tools pave the way, not only for molecular studies of the pathogenesis of C. canimorsus, but also for studies of other oral Capnocytophaga species.
Collapse
|