1
|
The Role of the Acetylcholine System in Common Respiratory Diseases and COVID-19. Molecules 2023; 28:molecules28031139. [PMID: 36770805 PMCID: PMC9920988 DOI: 10.3390/molecules28031139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/01/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
As an indispensable component in human beings, the acetylcholine system regulates multiple physiological processes not only in neuronal tissues but also in nonneuronal tissues. However, since the concept of the "Nonneuronal cholinergic system (NNCS)" has been proposed, the role of the acetylcholine system in nonneuronal tissues has received increasing attention. A growing body of research shows that the acetylcholine system also participates in modulating inflammatory responses, regulating contraction and mucus secretion of respiratory tracts, and influencing the metastasis and invasion of lung cancer. In addition, the susceptibility and severity of respiratory tract infections caused by pathogens such as Mycobacterium Tuberculosis and the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can also correlate with the regulation of the acetylcholine system. In this review, we summarized the major roles of the acetylcholine system in respiratory diseases. Despite existing achievements in the field of the acetylcholine system, we hope that more in-depth investigations on this topic will be conducted to unearth more possible pharmaceutical applications for the treatment of diverse respiratory diseases.
Collapse
|
2
|
Protective Role of Genetic Variants in HSP90 Genes-Complex in COPD Secondary to Biomass-Burning Smoke Exposure and Non-Severe COPD Forms in Tobacco Smoking Subjects. Curr Issues Mol Biol 2021; 43:887-899. [PMID: 34449539 PMCID: PMC8928934 DOI: 10.3390/cimb43020063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory disease characterized by airflow obstruction, commonly present in smokers and subjects exposed to noxious particles product of biomass-burning smoke (BBS). Several association studies have identified single-nucleotide polymorphisms (SNP) in coding genes related to the heat shock proteins family-genes that codify the heat shock proteins (Hsp). Hsp accomplishes critical roles in regulating immune response, antigen-processing, eliminating protein aggregates and co-activating receptors. The presence of SNPs in these genes can lead to alterations in immune responses. We aimed to evaluate the association of SNPs in the HSP90 gene complex and COPD. Methods: We enrolled 1549 participants, divided into two comparison groups; 919 tobacco-smoking subjects (cases COPD-TS n = 294 and, controls SWOC n = 625) and 630 chronic exposed to BBS (cases COPD-BBS n = 186 and controls BBES n = 444). We genotyped 2 SNPs: the rs13296 in HSP90AB1 and rs2070908 in HSP90B1. Results: Through the dominant model (GC + CC), the rs2070908 is associated with decreased risk (p < 0.01, OR = 0.6) to suffer COPD among chronic exposed BBS subjects. We found an association between rs13296 GG genotype and lower risk (p = 0.01, OR = 0.22) to suffer severe COPD-TS forms in the severity analysis. Conclusions: single-nucleotide variants in the HSP90AB1 and HSP90B1 genes are associated with decreased COPD risk in subjects exposed to BBS and the most severe forms of COPD in tobacco-smoking subjects.
Collapse
|
3
|
Calzetta L, Coppola A, Ritondo BL, Matino M, Chetta A, Rogliani P. The Impact of Muscarinic Receptor Antagonists on Airway Inflammation: A Systematic Review. Int J Chron Obstruct Pulmon Dis 2021; 16:257-279. [PMID: 33603353 PMCID: PMC7886086 DOI: 10.2147/copd.s285867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022] Open
Abstract
Long-acting muscarinic receptor antagonists (LAMAs) are the cornerstone for the treatment of chronic obstructive pulmonary disease (COPD); furthermore, tiotropium is approved as add-on therapy in severe asthmatic patients. Accumulating evidence suggests that LAMAs may modulate airway contractility and airway hyperresponsiveness not only by blocking muscarinic acetylcholine receptors (mAchRs) expressed on airway smooth muscle but also via anti-inflammatory mechanisms by blocking mAchRs expressed on inflammatory cells, submucosal glands, and epithelial cells. The aim of this systematic review, performed according to the PRISMA-P guidelines, was to provide a synthesis of the literature on the anti-inflammatory impact of muscarinic receptor antagonists in the airways. Most of the current evidence originates from studies on tiotropium, that demonstrated a reduction in synthesis and release of cytokines and chemokines, as well as the number of total and differential inflammatory cells, induced by different pro-inflammatory stimuli. Conversely, few data are currently available for aclidinium and glycopyrronium, whereas no studies on the potential anti-inflammatory effect of umeclidinium have been reported. Overall, a large body of evidence supports the beneficial impact of tiotropium against airway inflammation. Further well-designed randomized controlled trials are needed to better elucidate the anti-inflammatory mechanisms leading to the protective effect of LAMAs against exacerbations via identifying suitable biomarkers.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Angelo Coppola
- Division of Respiratory Medicine, University Hospital "Policlinico Tor Vergata", Rome, Italy
| | - Beatrice Ludovica Ritondo
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Matteo Matino
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alfredo Chetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Paola Rogliani
- Division of Respiratory Medicine, University Hospital "Policlinico Tor Vergata", Rome, Italy.,Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
4
|
Ambrocio-Ortiz E, Pérez-Rubio G, Ramírez-Venegas A, Hernández-Zenteno R, Del Angel-Pablo AD, Pérez-Rodríguez ME, Salazar AM, Abarca-Rojano E, Falfán-Valencia R. Effect of SNPs in HSP Family Genes, Variation in the mRNA and Intracellular Hsp Levels in COPD Secondary to Tobacco Smoking and Biomass-Burning Smoke. Front Genet 2020; 10:1307. [PMID: 31993068 PMCID: PMC6962328 DOI: 10.3389/fgene.2019.01307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Heat shock proteins (HSP) genes are a superfamily responsible for encoding highly conserved proteins that are important for antigen presentation, immune response regulation, and cellular housekeeping processes. These proteins can be increased by cellular stress related to pollution, for example, smoke from biomass burning and/or tobacco smoking. Single nucleotide polymorphisms (SNPs) in these genes could affect the levels of their proteins, as well as the susceptibility to developing lung diseases, such as chronic obstructive pulmonary disease (COPD), related to the exposure to environmental factors. Methods: The subjects included were organized into two comparison groups: 1,103 smokers (COPD patients, COPD-S = 360; smokers without COPD, SWOC = 743) and 442 never-smokers who were chronically exposed to biomass smoke (COPD patients, COPD-BS = 244; exposed without COPD, BBES = 198). Eight SNPs in three HSP genes were selected and genotyped: four in HSPA1A, two in HSPA1B, and two in HSPA1L. Sputum expectoration was induced to obtain pulmonary cells and relative quantification of mRNA expression. Subsequently, the intracellular protein levels of total Hsp27, phosphorylated Hsp27 (Hsp27p), Hsp60, and Hsp70 were measured in a sample of 148 individuals selected based on genotypes. Results: In the smokers’ group, by a dominant model analysis, we found associations between rs1008438 (CA+AA; p = 0.006, OR = 1.52), rs6457452 (CT+TT; p = 0.000015, OR = 1.99), and rs2763979 (CT+TT; p = 0.007, OR = 1.60) and the risk to COPD. Among those exposed to biomass-burning smoke, only rs1008438 (CA+AA; p < 0.01, OR = 2.84) was associated. Additionally, rs1008438 was associated with disease severity in the COPD-S group (AA; p = 0.02, OR = 2.09). An increase in the relative expression level of HSPA1A was found (12-fold change) in the COPD-BS over the BBES group. Differences in Hsp27 and Hsp60 proteins levels were found (p < 0.05) in the comparison of COPD-S vs. SWOC. Among biomass-burning smoke-exposed subjects, differences in the levels of all proteins (p < 0.05) were detected. Conclusion: SNPs in HSP genes are associated with the risk of COPD and severe forms of the disease. Differences in the intracellular Hsp levels are altered depending on the exposition source.
Collapse
Affiliation(s)
- Enrique Ambrocio-Ortiz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Rafael Hernández-Zenteno
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alma D Del Angel-Pablo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Martha E Pérez-Rodríguez
- Unit of Medical Research in Immunology CMN S-XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ana M Salazar
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar Abarca-Rojano
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
5
|
Effect of Tiotropium Bromide on Airway Inflammation and Programmed Cell Death 5 in a Mouse Model of Ovalbumin-Induced Allergic Asthma. Can Respir J 2019; 2019:6462171. [PMID: 31662808 PMCID: PMC6791200 DOI: 10.1155/2019/6462171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/16/2019] [Accepted: 09/01/2019] [Indexed: 01/21/2023] Open
Abstract
Rationale We previously demonstrated increased expression of programmed cell death 5 (PDCD5) in asthmatic patients and ovalbumin-induced allergic asthma. International guidelines (GINA 2019) have included the use of tiotropium bromide for chronic treatment of the most severe and frequently exacerbated asthma in patients ≥6 years old, who do not have good response to inhaled corticosteroids. Objective To explore the role of tiotropium and its effect on PDCD5 level in a mouse model of chronic asthma. Methods We divided 12 female mice into 2 groups: untreated asthma (n = 6) and tiotropium-treated asthma (n = 6). The impact of tiotropium was assessed by histology of lung tissue and morphometry. Pulmonary function was tested by using pressure sensors. The number of cells in bronchoalveolar lavage fluid (BALF) was detected. Levels of PDCD5, active caspase-3, and muscarinic acetylcholine receptors M2 (ChRM2) and M3 (ChRM3) were examined. Results Tiotropium treatment significantly reduced airway inflammation and remodeling in asthmatic mice and intensified the lung function. PDCD5 level was reduced with tiotropium (p < 0.05). Moreover, active caspase-3 level was decreased with tiotropium (p < 0.001), and ChRM3 level was increased. Conclusions Tiotropium treatment may alleviate the pathological changes with asthma by regulating apoptosis.
Collapse
|
6
|
Koarai A, Ichinose M. Possible involvement of acetylcholine-mediated inflammation in airway diseases. Allergol Int 2018; 67:460-466. [PMID: 29605098 DOI: 10.1016/j.alit.2018.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022] Open
Abstract
Inhaled bronchodilator treatment with a long acting muscarinic antagonist (LAMA) reduces symptoms and the risk of exacerbations in COPD and asthma. However, increasing evidence from cell culture and animal studies suggests that anti-muscarinic drugs could also possess anti-inflammatory effects. Recent studies have revealed that acetylcholine (ACh) can be synthesized and released from both neuronal and non-neuronal cells, and the released ACh can potentiate airway inflammation and remodeling in airway diseases. However, these anti-inflammatory effects of anti-muscarinic drugs have not yet been confirmed in COPD and asthma patients. This review will focus on recent findings about the possible involvement of ACh in airway inflammation and remodeling, and the anti-inflammatory effect of anti-muscarinic drugs in airway diseases. Clarifying the acetylcholine-mediated inflammation could provide insights into the mechanisms of airway diseases, which could lead to future therapeutic strategies for inhibiting the disease progression and exacerbations.
Collapse
|
7
|
Abstract
Parasympathetic activity is increased in patients with chronic obstructive pulmonary disease (COPD) and asthma and appears to be the major reversible component of airway obstruction. Therefore, treatment with muscarinic receptor antagonists is an effective bronchodilator therapy in COPD and also in asthmatic patients. In recent years, the accumulating evidence that the cholinergic system controls not only contraction by airway smooth muscle but also the functions of inflammatory cells and airway epithelial cells has suggested that muscarinic receptor antagonists could exert other effects that may be of clinical relevance when we must treat a patient suffering from COPD or asthma. There are currently six muscarinic receptor antagonists licenced for use in the treatment of COPD, the short-acting muscarinic receptor antagonists (SAMAs) ipratropium bromide and oxitropium bromide and the long-acting muscarinic receptor antagonists (LAMAs) aclidinium bromide, tiotropium bromide, glycopyrronium bromide and umeclidinium bromide. Concerns have been raised about possible associations of muscarinic receptor antagonists with cardiovascular safety, but the most advanced compounds seem to have an improved safety profile. Further beneficial effects of SAMAs and LAMAs are seen when added to existing treatments, including LABAs, inhaled corticosteroids and phosphodiesterase 4 inhibitors. The importance of tiotropium bromide in the maintenance treatment of COPD, and likely in asthma, has spurred further research to identify new LAMAs. There are a number of molecules that are being identified, but only few have reached the clinical development.
Collapse
|
8
|
Wu W, Zhang S, Hu C. [M3 Muscarnic Receptor Antagonist Mediates Cell Proliferation Apoptosis
and Adhesion in Small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:113-21. [PMID: 27009814 PMCID: PMC5999821 DOI: 10.3779/j.issn.1009-3419.2016.03.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
背景与目的 研究表明毒蕈碱胆碱受体3(muscarinic receptor 3, M3R)在多种肿瘤的发生、发展中发挥重要的作用。本研究旨在探讨M3R在人小细胞肺癌(small cell lung cancer, SCLC)细胞株SBC3的表达,M3R拮抗剂对细胞增殖、凋亡及粘附的影响。 方法 体外培养SBC3细胞,RT-PCR和Western blot检测M3R的表达。MTT法及流式细胞法检测M3R拮抗剂(4-diphenylacetoxy-N-methylpiperidine methiodide, 4-DAMP)对细胞增殖和凋亡的影响。流式细胞法检测细胞整合素的表达及碘化乙酰胆碱(acetylcholine iodide, Ach)和4-DAMP对整合素表达的影响。纤维结合蛋白(Fn)包被的96孔板用以研究Ach、4-DAMP及整合素抗体对细胞粘附的作用。 结果 SBC3细胞表达M3R,4-DAMP浓度依懒性抑制细胞增殖。与对照组比较,10-4 M 4-DAMP能够明显地增加SBC3细胞凋亡。SBC3细胞表达αvβ1和α5β1整合素,10-4 M Ach刺激细胞粘附(P<0.01)的作用几乎被10-5 M 4-DAMP、5 μg/mL抗-β1抗体或抗-αv和α5抗体完全阻断(P<0.01),但Ach及4-DAMP不影响αv、α5和β1的表达水平。 结论 SBC3细胞表达M3R,M3R拮抗剂能抑制细胞的增殖并促进凋亡。其抑制粘附的作用是通过抑制细胞含β1的整合素(αvβ1和α5β1)的功能实现的。
Collapse
Affiliation(s)
- Wenting Wu
- Ningxia Medical University Yinchuan 750004, China
| | - Shuxiang Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Caihong Hu
- Ningxia Medical University Yinchuan 750004, China
| |
Collapse
|
9
|
Vanner S, Greenwood-Van Meerveld B, Mawe G, Shea-Donohue T, Verdu EF, Wood J, Grundy D. Fundamentals of Neurogastroenterology: Basic Science. Gastroenterology 2016; 150:S0016-5085(16)00184-0. [PMID: 27144618 PMCID: PMC5673591 DOI: 10.1053/j.gastro.2016.02.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
This review examines the fundamentals of neurogastroenterology that may underlie the pathophysiology of functional GI disorders (FGIDs). It was prepared by an invited committee of international experts and represents an abbreviated version of their consensus document that will be published in its entirety in the forthcoming book and online version entitled ROME IV. It emphasizes recent advances in our understanding of the enteric nervous system, sensory physiology underlying pain, and stress signaling pathways. There is also a focus on neuroimmmune signaling and intestinal barrier function, given the recent evidence implicating the microbiome, diet, and mucosal immune activation in FGIDs. Together, these advances provide a host of exciting new targets to identify and treat FGIDs and new areas for future research into their pathophysiology.
Collapse
Affiliation(s)
- Stephen Vanner
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Kingston, Ontario, Canada.
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, Department of Physiology, VA Medical Center, University of Oklahoma, Health Sciences Center, Oklahoma City, Oklahoma
| | - Gary Mawe
- Department of Neurological Sciences, Pharmacology and Medicine Division, Gastroenterology and Hepatology, University of Vermont, Burlington, Vermont
| | - Terez Shea-Donohue
- Department of Medicine and Physiology, University of Maryland, School of Medicine, Baltimore, Maryland
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Health Sciences Center, Hamilton, Ontario, Canada
| | - Jackie Wood
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - David Grundy
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
10
|
Chen G, Zhou M, Chen L, Meng ZJ, Xiong XZ, Liu HJ, Xin JB, Zhang JC. Cigarette Smoke Disturbs the Survival of CD8+ Tc/Tregs Partially through Muscarinic Receptors-Dependent Mechanisms in Chronic Obstructive Pulmonary Disease. PLoS One 2016; 11:e0147232. [PMID: 26808506 PMCID: PMC4726532 DOI: 10.1371/journal.pone.0147232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/30/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND CD8+ T cells (Cytotoxic T cells, Tc) are known to play a critical role in the pathogenesis of smoking related airway inflammation including chronic obstructive pulmonary disease (COPD). However, how cigarette smoke directly impacts systematic CD8+ T cell and regulatory T cell (Treg) subsets, especially by modulating muscarinic acetylcholine receptors (MRs), has yet to be well elucidated. METHODS Circulating CD8+ Tc/Tregs in healthy nonsmokers (n = 15), healthy smokers (n = 15) and COPD patients (n = 18) were evaluated by flow cytometry after incubating with anti-CD3, anti-CD8, anti-CD25, anti-Foxp3 antibodies. Peripheral blood T cells (PBT cells) from healthy nonsmokers were cultured in the presence of cigarette smoke extract (CSE) alone or combined with MRs agonist/antagonist for 5 days. Proliferation and apoptosis were evaluated by flow cytometry using Ki-67/Annexin-V antibodies to measure the effects of CSE on the survival of CD8+ Tc/Tregs. RESULTS While COPD patients have elevated circulating percentage of CD8+ T cells, healthy smokers have higher frequency of CD8+ Tregs. Elevated percentages of CD8+ T cells correlated inversely with declined FEV1 in COPD. CSE promoted the proliferation and inhibited the apoptosis of CD8+ T cells, while facilitated both the proliferation and apoptosis of CD8+ Tregs. Notably, the effects of CSE on CD8+ Tc/Tregs can be mostly simulated or attenuated by muscarine and atropine, the MR agonist and antagonist, respectively. However, neither muscarine nor atropine influenced the apoptosis of CD8+ Tregs. CONCLUSION The results imply that cigarette smoking likely facilitates a proinflammatory state in smokers, which is partially mediated by MR dysfunction. The MR antagonist may be a beneficial drug candidate for cigarette smoke-induced chronic airway inflammation.
Collapse
Affiliation(s)
- Gang Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhao-Ji Meng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong-Ju Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian-Bao Xin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian-Chu Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Zhang MQ, Wan Y, Jin Y, Xin JB, Zhang JC, Xiong XZ, Chen L, Chen G. Cigarette smoking promotes inflammation in patients with COPD by affecting the polarization and survival of Th/Tregs through up-regulation of muscarinic receptor 3 and 5 expression. PLoS One 2014; 9:e112350. [PMID: 25375131 PMCID: PMC4223024 DOI: 10.1371/journal.pone.0112350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/04/2014] [Indexed: 11/29/2022] Open
Abstract
Background CD4+ T cells in the lung are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), although CD4+ T cell subsets and the direct effect of smoking on these cells, especially the expression of MRs, have not been comprehensively examined. Methods First, circulating CD4+ T cell subsets in healthy nonsmokers, patients with SCOPD and patients with AECOPD were evaluated by flow cytometry. Then, differentiation experiments were carried out using RT-PCR, and Ki-67/Annexin V antibodies were used to measure proliferation and apoptosis. We also explored the impact of CSE on the differentiation and survival of CD4+Th/Tregs and examined the expression of MRs in healthy nonsmokers and patients with SCOPD. Results We found the percentages of circulating Th1 and Th17 cells were increased in patients with AECOPD, while the percentage of Th2 cells was decreased in patients with SCOPD. The percentages of Th10 cells were decreased in both patients with SCOPD and patients with AECOPD, while the percentages of Tregs were increased. In addition, the percentages of CD4+α-7+ T cells were decreased in patients with SCOPD and patients with AECOPD. However, only the decrease observed in patients with AECOPD was significant. In vitro studies also revealed MR expression affected the polarization of T cells, with different CD4+ T cell subtypes acquiring different MR expression profiles. The addition of CSE facilitated CD4+ T cell polarization towards pro-inflammatory subsets (Th1 and Th17) and affected the survival of CD4+ T cells and Treg cells by up-regulating the expression of MR3 and 5, resulting in an imbalance of CD4+ T cell subsets. Conclusions Our findings suggest an imbalance of circulating CD4+ T cell subsets is involved in COPD pathogenesis in smokers. Cigarette smoking may contribute to this imbalance by affecting the polarization and survival of Th/Tregs through the up-regulation of MR3 and MR5.
Collapse
Affiliation(s)
- Ming-Qiang Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Wan
- Department of Respiratory and Critical Care Medicine WUHAN NO. 1 HOSPITAL, Wuhan, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Bao Xin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Chu Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Profita M, Albano GD, Riccobono L, Di Sano C, Montalbano AM, Gagliardo R, Anzalone G, Bonanno A, Pieper MP, Gjomarkaj M. Increased levels of Th17 cells are associated with non-neuronal acetylcholine in COPD patients. Immunobiology 2014; 219:392-401. [PMID: 24529390 DOI: 10.1016/j.imbio.2014.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/19/2013] [Accepted: 01/09/2014] [Indexed: 11/26/2022]
Abstract
T-lymphocytes, including Th17-cells and T-cells expressing acetylcholine (ACh), are key components of systemic inflammation in chronic obstructive pulmonary disease (COPD). We investigated whether ACh promotes Th17 cells in COPD. ACh, IL-17A, IL-22, RORγt, FOXP3 expression and AChIL-17A, AChIL-22, AChRORγt coexpression was evaluated in peripheral blood mononuclear cells (PBMC) from COPD patients (n=16), healthy smokers (HS) (n=12) and healthy control subjects (HC) (n=13) (cultured for 48 h with PMA) by flow cytometry. Furthermore, we studied the effect of Tiotropium (Spiriva®) (100 nM) and Olodaterol (1nM) alone or in combination, and of hemicholinium-3 (50 μM) on AChIL-17A, AChIL-22, AChRORγt, and FOXP3 expression in CD3+PBT-cells of PBMC from COPD patients (n=6) cultured for 48 h with PMA. CD3+PBT-cells expressing ACh, IL-17A, IL-22 and RORγt together with CD3+PBT-cells co-expressing AChIL-17A, AChIL-22 and AChRORγt were significantly increased in COPD patients compared to HC and HS subjects with higher levels in HS than in HC without a significant difference. CD3+FOXP3+PBT-cells were increased in HS than in HC and COPD. Tiotropium and Olodaterol reduced the percentage of CD3+PBT-cells co-expressing AChIL-17A, AChIL-22, and AChRORγt while increased the CD3+FOXP3+PBT-cells in PBMC from COPD patients, cultured in vitro for 48 h, with an additive effect when used in combination. Hemicholnium-3 reduced the percentage of ACh+IL-17A+, ACh+IL-22+, and ACh+RORγt+ while it did not affect FOXP3+ expression in CD3+PBT-cells from cultured PBMC from COPD patients. We concluded that ACh might promote the increased levels of Th17-cells in systemic inflammation of COPD. Long-acting β2-agonists and anticholinergic drugs might contribute to control this event.
Collapse
Affiliation(s)
- Mirella Profita
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy.
| | - Giusy Daniela Albano
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy; Dipartimento Biomedico di Medicina, Interna e Specialistica (Di.Bi.M.I.S.), Sezione di Pneumologia, University of Palermo, Palermo, Italy
| | - Loredana Riccobono
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Caterina Di Sano
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Angela Marina Montalbano
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Rosalia Gagliardo
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Giulia Anzalone
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Anna Bonanno
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | | | - Mark Gjomarkaj
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| |
Collapse
|
13
|
Matera MG, Rogliani P, Cazzola M. Muscarinic receptor antagonists for the treatment of chronic obstructive pulmonary disease. Expert Opin Pharmacother 2014; 15:961-77. [DOI: 10.1517/14656566.2014.899581] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Tregs and HLA-DR expression in sputum cells of COPD patients treated with tiotropium and formoterol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 839:7-12. [PMID: 25315616 DOI: 10.1007/5584_2014_43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Immune cells expressing the activation markers HLA-DR and regulatory T cells (Tregs) may be involved in the regulation of chronic inflammation in chronic obstructive pulmonary disease (COPD). In this study we analyzed native and activated cell profiles in sputum of 22 stable COPD patients receiving formoterol (F) or formoterol + tiotropium (F + T) for 3 months. Cells were isolated from induced sputum and were examined on Coulter flow cytometer using fluorescent antibodies specific for CD3, CD4, CD8, CD14, CD19, CD25, CD127, and HLA-DR antigens. Cell profiles and cell activation were assessed by analysis of HLA-DR, CD25, and CD127 co-expression in double-stained samples. Tregs were defined as CD4⁺CD25(high) CD127(low) cells. We found that the combined therapy significantly decreased the CD8⁺ cell number (p < 0.01). At baseline, HLA-DR was expressed in about 10 % of sputum T or B cells and a higher expression was found on monocytes. The HLA-DR expression on lymphocytes, but not monocytes, was significantly lower (p < 0.01) in patients treated with F + T. Fractions of activated [CD4⁺ CD25⁺] cells were also significantly lower in the combined therapy group, except for the subpopulation of CD4⁺CD25(high) CD127(low) cells which was not altered. We conclude that tiotropium in add-on therapy to formoterol affects Treg cell profiles and decreases HLA-DR expression in airway lymphocytes.
Collapse
|
15
|
Acetylcholine leads to signal transducer and activator of transcription 1 (STAT-1) mediated oxidative/nitrosative stress in human bronchial epithelial cell line. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1949-58. [DOI: 10.1016/j.bbadis.2013.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 01/12/2023]
|
16
|
A new perspective on muscarinic receptor antagonism in obstructive airways diseases. Curr Opin Pharmacol 2013; 13:316-23. [PMID: 23643733 DOI: 10.1016/j.coph.2013.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 01/25/2023]
Abstract
Acetylcholine has traditionally only been regarded as a neurotransmitter of the parasympathetic nervous system, causing bronchoconstriction and mucus secretion in asthma and COPD by muscarinic receptor activation on airway smooth muscle and mucus-producing cells. Recent studies in experimental models indicate that muscarinic receptor stimulation in the airways also induces pro-inflammatory, pro-proliferative and pro-fibrotic effects, which may involve activation of airway structural and inflammatory cells by neuronal as well as non-neuronal acetylcholine. In addition, mechanical changes caused by muscarinic agonist-induced bronchoconstriction may be involved in airway remodeling. Crosstalk between muscarinic receptors and β2-adrenoceptors on airway smooth muscle causes a reduced bronchodilator response to β2-agonists, and a similar mechanism could possibly apply to the poor inhibition of inflammatory and remodeling processes by these drugs. Collectively, these findings provide novel perspectives for muscarinic receptor antagonists in asthma and COPD, since these drugs may not only acutely affect cholinergic airways obstruction, but also have important beneficial effects on β2-agonist responsiveness, airway inflammation and remodeling. The clinical relevance of these findings is presently under investigation and starting to emerge.
Collapse
|
17
|
Differential activation of killer cells in the circulation and the lung: a study of current smoking status and chronic obstructive pulmonary disease (COPD). PLoS One 2013; 8:e58556. [PMID: 23505535 PMCID: PMC3594304 DOI: 10.1371/journal.pone.0058556] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/05/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND CD8(+) T-lymphocytes, natural killer T-like cells (NKT-like cells, CD56(+)CD3(+)) and natural killer cells (NK cells, CD56(+)CD3(-)) are the three main classes of human killer cells and they are implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Activation of these cells can initiate immune responses by virtue of their production of inflammatory cytokines and chemokines that cause lung tissue damage, mucus hypersecretion and emphysema. The objective of the current study was to investigate the activation levels of human killer cells in healthy non-smokers, healthy smokers, ex-smokers with COPD and current smokers with COPD, in both peripheral blood and induced sputum. METHODS/PRINCIPAL FINDINGS After informed consent, 124 participants were recruited into the study and peripheral blood or induced sputum was taken. The activation states and receptor expression of killer cells were measured by flow cytometry. In peripheral blood, current smokers, regardless of disease state, have the highest proportion of activated CD8(+) T-lymphocytes, NKT-like cells and NK cells compared with ex-smokers with COPD and healthy non-smokers. Furthermore, CD8(+) T-lymphocyte and NK cell activation is positively correlated with the number of cigarettes currently smoked. Conversely, in induced sputum, the proportion of activated killer cells was related to disease state rather than current smoking status, with current and ex-smokers with COPD having significantly higher rates of activation than healthy smokers and healthy non-smokers. CONCLUSIONS A differential effect in systemic and lung activation of killer cells in COPD is evident. Systemic activation appears to be related to current smoking whereas lung activation is related to the presence or absence of COPD, irrespective of current smoking status. These findings suggest that modulating killer cell activation may be a new target for the treatment of COPD.
Collapse
|
18
|
Wedzicha JA, Decramer M, Seemungal TAR. The role of bronchodilator treatment in the prevention of exacerbations of COPD. Eur Respir J 2012; 40:1545-54. [PMID: 22835613 PMCID: PMC3511775 DOI: 10.1183/09031936.00048912] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/13/2012] [Indexed: 01/21/2023]
Abstract
Exacerbations of chronic obstructive pulmonary disease (COPD) are natural events in the progression of the disease, and are characterised by acute worsening of symptoms, especially dyspnoea. These heterogeneous events follow increased airway inflammation, often due to infection, and lead to decreased airflow and increased lung hyperinflation relative to stable COPD. Although exacerbation frequency generally increases as COPD progresses, some patients experience frequent exacerbations (≥ 2 per year) independently of disease severity. Exacerbations, especially frequent exacerbations, are associated with impaired health-related quality of life, reduced physical activity and poor disease prognosis. The cornerstone of pharmacotherapy for stable COPD is long-acting bronchodilators, including the long-acting β(2)-agonists (LABAs) and long-acting anti-muscarinic agents (LAMAs) alone or combined with inhaled corticosteroids (ICS). While ICS treatment can potentially reduce the risk of exacerbations, clinical studies have demonstrated the efficacy of LABAs and LAMAs in reducing COPD symptoms, primarily by reducing lung hyperinflation secondary to reduced airway resistance. Sustained reduction in lung hyperinflation may in turn lessen dyspnoea during an exacerbation. Indeed, recent studies suggest that bronchodilators may also reduce the incidence of, or prevent, exacerbations. Using data from recent studies, this review explores the evidence and possible mechanisms through which bronchodilators may prevent exacerbations.
Collapse
Affiliation(s)
- Jadwiga A Wedzicha
- Centre for Respiratory Medicine, University College London, Hampstead, London, UK.
| | | | | |
Collapse
|
19
|
Meurs H, Dekkers BGJ, Maarsingh H, Halayko AJ, Zaagsma J, Gosens R. Muscarinic receptors on airway mesenchymal cells: novel findings for an ancient target. Pulm Pharmacol Ther 2012; 26:145-55. [PMID: 22842340 DOI: 10.1016/j.pupt.2012.07.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 01/25/2023]
Abstract
Since ancient times, anticholinergics have been used as a bronchodilator therapy for obstructive lung diseases. Targets of these drugs are G-protein-coupled muscarinic M(1), M(2) and M(3) receptors in the airways, which have long been recognized to regulate vagally-induced airway smooth muscle contraction and mucus secretion. However, recent studies have revealed that acetylcholine also exerts pro-inflammatory, pro-proliferative and pro-fibrotic actions in the airways, which may involve muscarinic receptor stimulation on mesenchymal, epithelial and inflammatory cells. Moreover, acetylcholine in the airways may not only be derived from vagal nerves, but also from non-neuronal cells, including epithelial and inflammatory cells. Airway smooth muscle cells seem to play a major role in the effects of acetylcholine on airway function. It has become apparent that these cells are multipotent cells that may reversibly adopt (hyper)contractile, proliferative and synthetic phenotypes, which are all under control of muscarinic receptors and differentially involved in bronchoconstriction, airway remodeling and inflammation. Cholinergic contractile tone is increased by airway inflammation associated with asthma and COPD, resulting from exaggerated acetylcholine release as well as increased expression of contraction related proteins in airway smooth muscle. Moreover, muscarinic receptor stimulation promotes proliferation of airway smooth muscle cells as well as fibroblasts, and regulates cytokine, chemokine and extracellular matrix production by these cells, which may contribute to airway smooth muscle growth, airway fibrosis and inflammation. In line, animal models of chronic allergic asthma and COPD have recently demonstrated that tiotropium may potently inhibit airway inflammation and remodeling. These observations indicate that muscarinic receptors have a much larger role in the pathophysiology of obstructive airway diseases than previously thought, which may have important therapeutic implications.
Collapse
Affiliation(s)
- Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
20
|
Scott GD, Fryer AD. Role of parasympathetic nerves and muscarinic receptors in allergy and asthma. CHEMICAL IMMUNOLOGY AND ALLERGY 2012; 98:48-69. [PMID: 22767057 DOI: 10.1159/000336498] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parasympathetic nerves control the symptoms and inflammation of allergic diseases primarily by signaling through peripheral muscarinic receptors. Parasympathetic signaling targets classic effector tissues such as airway smooth muscle and secretory glands and mediates acute symptoms of allergic disease such as airway narrowing and increased mucus secretion. In addition, parasympathetic signaling modulates inflammatory cells and non-neuronal resident cell types such as fibroblasts and smooth muscle contributing to chronic allergic inflammation and tissue remodeling. Importantly, muscarinic antagonists are experiencing a rebirth for the treatment of asthma and may be useful for treating other allergic diseases.
Collapse
Affiliation(s)
- Gregory D Scott
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|