1
|
Whetstone CE, Ranjbar M, Omer H, Cusack RP, Gauvreau GM. The Role of Airway Epithelial Cell Alarmins in Asthma. Cells 2022; 11:1105. [PMID: 35406669 PMCID: PMC8997824 DOI: 10.3390/cells11071105] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The airway epithelium is the first line of defense for the lungs, detecting inhaled environmental threats through pattern recognition receptors expressed transmembrane or intracellularly. Activation of pattern recognition receptors triggers the release of alarmin cytokines IL-25, IL-33, and TSLP. These alarmins are important mediators of inflammation, with receptors widely expressed in structural cells as well as innate and adaptive immune cells. Many of the key effector cells in the allergic cascade also produce alarmins, thereby contributing to the airways disease by driving downstream type 2 inflammatory processes. Randomized controlled clinical trials have demonstrated benefit when blockade of TSLP and IL-33 were added to standard of care medications, suggesting these are important new targets for treatment of asthma. With genome-wide association studies demonstrating associations between single-nucleotide polymorphisms of the TSLP and IL-33 gene and risk of asthma, it will be important to understand which subsets of asthma patients will benefit most from anti-alarmin therapy.
Collapse
Affiliation(s)
| | | | | | | | - Gail M. Gauvreau
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.E.W.); (M.R.); (H.O.); (R.P.C.)
| |
Collapse
|
2
|
Identification of Toxocara canis Antigen-Interacting Partners by Yeast Two-Hybrid Assay and a Putative Mechanism of These Host-Parasite Interactions. Pathogens 2021; 10:pathogens10080949. [PMID: 34451413 PMCID: PMC8398310 DOI: 10.3390/pathogens10080949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 01/11/2023] Open
Abstract
Toxocara canis is a zoonotic roundworm that infects humans and dogs all over the world. Upon infection, larvae migrate to various tissues leading to different clinical syndromes. The host–parasite interactions underlying the process of infection remain poorly understood. Here, we describe the application of a yeast two-hybrid assay to screen a human cDNA library and analyse the interactome of T. canis larval molecules. Our data identifies 16 human proteins that putatively interact with the parasite. These molecules were associated with major biological processes, such as protein processing, transport, cellular component organisation, immune response and cell signalling. Some of these identified interactions are associated with the development of a Th2 response, neutrophil activity and signalling in immune cells. Other interactions may be linked to neurodegenerative processes observed during neurotoxocariasis, and some are associated with lung pathology found in infected hosts. Our results should open new areas of research and provide further data to enable a better understanding of this complex and underestimated disease.
Collapse
|
3
|
Liebl MC, Moehlenbrink J, Becker H, Raddatz G, Abdeen SK, Aqeilan RI, Lyko F, Hofmann TG. DAZAP2 acts as specifier of the p53 response to DNA damage. Nucleic Acids Res 2021; 49:2759-2776. [PMID: 33591310 PMCID: PMC7969023 DOI: 10.1093/nar/gkab084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
The DNA damage-responsive tumor suppressors p53 and HIPK2 are well established regulators of cell fate decision-making and regulate the cellular sensitivity to DNA-damaging drugs. Here, we identify Deleted in Azoospermia-associated protein 2 (DAZAP2), a small adaptor protein, as a novel regulator of HIPK2 and specifier of the DNA damage-induced p53 response. Knock-down or genetic deletion of DAZAP2 strongly potentiates cancer cell chemosensitivity both in cells and in vivo using a mouse tumour xenograft model. In unstressed cells, DAZAP2 stimulates HIPK2 polyubiquitination and degradation through interplay with the ubiquitin ligase SIAH1. Upon DNA damage, HIPK2 site-specifically phosphorylates DAZAP2, which terminates its HIPK2-degrading function and triggers its re-localization to the cell nucleus. Interestingly, nuclear DAZAP2 interacts with p53 and specifies target gene expression through modulating a defined subset of p53 target genes. Furthermore, our results suggest that DAZAP2 co-occupies p53 response elements to specify target gene expression. Collectively, our findings propose DAZAP2 as novel regulator of the DNA damage-induced p53 response that controls cancer cell chemosensitivity.
Collapse
Affiliation(s)
- Magdalena C Liebl
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Jutta Moehlenbrink
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Huong Becker
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Günter Raddatz
- Division of Epigenetics, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Suhaib K Abdeen
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Frank Lyko
- Division of Epigenetics, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
4
|
Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol 2021; 148:40-52. [PMID: 33485651 DOI: 10.1016/j.jaci.2020.12.628] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
IL-25, also known as IL-17E, is a unique cytokine of the IL-17 family. Indeed, IL-25 exclusively was shown to strongly induce expression of the cytokines associated with type 2 immunity. Although produced by several types of immune cells, such as T cells, dendritic cells, or group 2 innate lymphoid cells, a vast amount of IL-25 derives from epithelial cells. The functions of IL-25 have been actively studied in the context of physiology and pathology of various organs including skin, airways and lungs, gastrointestinal tract, and thymus. Accumulating evidence suggests that IL-25 is a "barrier surface" cytokine whose expression depends on extrinsic environmental factors and when upregulated may lead to inflammatory disorders such as atopic dermatitis, psoriasis, or asthma. This review summarizes the progress of the recent years regarding the effects of IL-25 on the regulation of immune response and the balance between its homeostatic and pathogenic role in various epithelia. We revisit IL-25's general and tissue-specific mechanisms of action, mediated signaling pathways, and transcription factors activated in immune and resident cells. Finally, we discuss perspectives of the IL-25-based therapies for inflammatory disorders and compare them with the mainstream ones that target IL-17A.
Collapse
Affiliation(s)
- Julia Borowczyk
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Maria Shutova
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Division of Dermatology and Venereology, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
5
|
Swaidani S, Liu C, Zhao J, Bulek K, Li X. TRAF Regulation of IL-17 Cytokine Signaling. Front Immunol 2019; 10:1293. [PMID: 31316496 PMCID: PMC6610456 DOI: 10.3389/fimmu.2019.01293] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/21/2019] [Indexed: 01/23/2023] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factors or (TRAFs) are important mediators of Interleukin-17 (IL-17) cytokine signaling and contribute to driving tissue responses that are crucial for protective immunity but are often implicated in immunopathology. By amplifying tissue immune activity, IL-17 cytokine pathways contribute to maintaining barrier function as well as activation of innate and adaptive immunity necessary for host defense. IL-17 receptors signaling is orchestrated in part, by the engagement of TRAFs and the subsequent unlocking of downstream cellular machinery that can promote pathogen clearance or contribute to immune dysregulation, chronic inflammation, and disease. Originally identified as signaling adaptors for TNFR superfamily, TRAF proteins can mediate the signaling of a variety of intercellular and extracellular stimuli and have been shown to regulate the downstream activity of many cytokine receptors including receptors for IL-1β, IL-2, IL-6, IL-17, IL-18, IL-33, type I IFNs, type III IFNs, GM-CSF, M-CSF, and TGF-β Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I- like receptors, and C-type lectin receptors. This review will focus on discussing studies that reveal our current understanding of how TRAFs mediate and regulate biochemical activities downstream of the IL-17 cytokines signaling.
Collapse
Affiliation(s)
- Shadi Swaidani
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States.,Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Caini Liu
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Junjie Zhao
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Katarzyna Bulek
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| |
Collapse
|
6
|
Moreno-Martínez L, de la Torre M, Toivonen JM, Zaragoza P, García-Redondo A, Calvo AC, Osta R. Circulating Cytokines Could Not Be Good Prognostic Biomarkers in a Mouse Model of Amyotrophic Lateral Sclerosis. Front Immunol 2019; 10:801. [PMID: 31031774 PMCID: PMC6473074 DOI: 10.3389/fimmu.2019.00801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/26/2019] [Indexed: 11/13/2022] Open
Abstract
Background: There is growing evidence of the role of inflammation in Amyotrophic Lateral Sclerosis (ALS) during the last decade. Although the origin of ALS remains unknown, multiple potential inflammatory biomarkers have been described in ALS patients and murine models of this disease to explain the progressive motor neuron loss and muscle atrophy. However, the results remain controversial. To shed light on this issue, we aimed to identify novel biomarkers of inflammation that can influence disease progression and survival in serial blood samples from transgenic SOD1G93A mice, a model of ALS. Methods: A cytokine array assay was performed to analyze protein expression of 97 cytokines in plasma samples from wildtype controls and transgenic SOD1G93A mice at asymptomatic stage. Subsequently, serial plasma samples were obtained from SOD1G93A mice at early symptomatic, symptomatic and terminal stages to monitor cytokine levels during disease progression through immunoassays. Comparisons of means of quantifiable cytokines between short-and long-lived mice were analyzed by unrelated t-test or Mann-Whitney U-test. Relationships between cytokines levels and survival time were assessed using Pearson's correlation analysis and Kaplan-Meier analysis. Results: A total of 16 cytokines (6Ckine, ALK-1, CD30 L, eotaxin-1, galectin-1, GITR, IL-2, IL-6, IL-10, IL-13, IL-17B R, MIP-1α, MIP-3β, RANKL, TROY, and VEGF-D) were found dysregulated in transgenic SOD1G93A mice at asymptomatic stage compared with age-matched controls. Immunoassays of serial samples revealed positive expression of ALK-1, GITR and IL-17B R at P60 and P90 in mice with shorter survival. In addition, eotaxin-1 and galectin-1 levels were significantly increased at terminal stage in SOD1G93A mice that showed shorter survival time. Finally, levels of eotaxin-1, galectin-1, IL-2, IL-6, MIP-1α, and TROY at P90 or endpoint negatively correlated with the longevity of transgenic mice. Conclusions: We demonstrated in the SOD1G93A model of ALS that increased levels of several cytokines were associated with a shorter lifespan. However, their role as prognostic biomarkers is unclear as their expression was very variable depending on both the disease stage and the subject. Nevertheless, cytokines may be potential therapeutic targets.
Collapse
Affiliation(s)
- Laura Moreno-Martínez
- LAGENBIO, Faculty of Veterinary-IIS, IA2-CITA, CIBERNED, University of Zaragoza, Zaragoza, Spain
| | - Miriam de la Torre
- LAGENBIO, Faculty of Veterinary-IIS, IA2-CITA, CIBERNED, University of Zaragoza, Zaragoza, Spain
| | - Janne M Toivonen
- LAGENBIO, Faculty of Veterinary-IIS, IA2-CITA, CIBERNED, University of Zaragoza, Zaragoza, Spain
| | - Pilar Zaragoza
- LAGENBIO, Faculty of Veterinary-IIS, IA2-CITA, CIBERNED, University of Zaragoza, Zaragoza, Spain
| | | | - Ana Cristina Calvo
- LAGENBIO, Faculty of Veterinary-IIS, IA2-CITA, CIBERNED, University of Zaragoza, Zaragoza, Spain
| | - Rosario Osta
- LAGENBIO, Faculty of Veterinary-IIS, IA2-CITA, CIBERNED, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
Chakraborty N, Gautam A, Muhie S, Miller SA, Moyler C, Jett M, Hammamieh R. The responses of lungs and adjacent lymph nodes in responding to Yersinia pestis infection: A transcriptomic study using a non-human primate model. PLoS One 2019; 14:e0209592. [PMID: 30789917 PMCID: PMC6383991 DOI: 10.1371/journal.pone.0209592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/08/2018] [Indexed: 01/08/2023] Open
Abstract
Initiation of treatment during the pre-symptomatic phase of Yersinia pestis (Y. pestis) infection is particularly critical. The rapid proliferation of Y. pestis typically couples with the manifestation of common flu-like early symptoms that often misguides the medical intervention. Our study used African green monkeys (AGM) that did not exhibit clear clinical symptoms for nearly two days after intranasal challenge with Y. pestis and succumbed within a day after showing the first signs of clinical symptoms. The lung, and mediastinal and submandibular lymph nodes (LN) accumulated significant Y. pestis colonization immediately after the intranasal challenge. Hence, organ-specific molecular investigations are deemed to be the key to elucidating mechanisms of the initial host response. Our previous study focused on the whole blood of AGM, and we found early perturbations in the ubiquitin-microtubule-mediated host defense. Altered expression of the genes present in ubiquitin and microtubule networks indicated an early suppression of these networks in the submandibular lymph nodes. In concert, the upstream toll-like receptor signaling and downstream NFκB signaling were inhibited at the multi-omics level. The inflammatory response was suppressed in the lungs, submandibular lymph nodes and mediastinal lymph nodes. We posited a causal chain of molecular mechanisms that indicated Y. pestis was probably able to impair host-mediated proteolysis activities and evade autophagosome capture by dysregulating both ubiquitin and microtubule networks in submandibular lymph nodes. Targeting these networks in a submandibular LN-specific and time-resolved fashion could be essential for development of the next generation therapeutics for pneumonic plague.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Aarti Gautam
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Seid Muhie
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Stacy-Ann Miller
- ORISE, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Candace Moyler
- ORISE, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Marti Jett
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| |
Collapse
|
8
|
NKL homeobox gene NKX2-2 is aberrantly expressed in Hodgkin lymphoma. Oncotarget 2018; 9:37480-37496. [PMID: 30680064 PMCID: PMC6331023 DOI: 10.18632/oncotarget.26459] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/29/2018] [Indexed: 11/25/2022] Open
Abstract
NKL homeobox genes encode basic transcriptional regulators of cell and tissue differentiation. Recently, we described a hematopoietic NKL-code comprising nine specific NKL homeobox genes expressed in normal hematopoietic stem cells, lymphoid progenitors and during lymphopoiesis, highlighting their physiological role in the development of T-, B- and NK-cells. Here, we identified aberrant expression of the non-hematopoietic neural NKL homeobox gene NKX2-2 in about 12% of both, classical Hodgkin lymphoma (HL) and nodular lymphocyte predominant (NLP) HL patients. The NKX2-2 expressing NLPHL-derived cell line DEV served as a model by analysing chromosomal configurations and expression profiling data to reveal activating mechanisms and downstream targets of this developmental regulator. While excluding chromosomal rearrangements at the locus of NKX2-2 we identified t(3;14)(p21;q32) resulting in overexpression of the IL17 receptor gene IL17RB via juxtaposition with the IGH-locus. SiRNA-mediated knockdown experiments demonstrated that IL17RB activated NKX2-2 transcription. Overexpression of IL17RB-cofactor DAZAP2 via chromosomal gain of 12q13 and deletion of its proteasomal inhibitor SMURF2 at 17q24 supported expression of NKX2-2. IL17RB activated transcription factors FLI1 and FOXG1 which in turn mediated NKX2-2 expression. In addition, overexpressed chromatin-modulator AUTS2 contributed to NKX2-2 activation as well. Downstream analyses indicated that NKX2-2 inhibits transcription of lymphoid NKL homeobox gene MSX1 and activates expression of basic helix-loop-helix factor NEUROD1 which may disturb B-cell differentiation processes via reported interaction with TCF3/E2A. Taken together, our data reveal ectopic activation of a neural gene network in HL placing NKX2-2 at its hub, highlighting a novel oncogenic impact of NKL homeobox genes in B-cell malignancies.
Collapse
|
9
|
Zepp JA, Wu L, Qian W, Ouyang W, Aronica M, Erzurum S, Li X. TRAF4-SMURF2-mediated DAZAP2 degradation is critical for IL-25 signaling and allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:2826-37. [PMID: 25681341 DOI: 10.4049/jimmunol.1402647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IL-25 promotes type 2 immunity by inducing the expression of Th2-associated cytokines. Although it is known that the IL-25R (IL-17RB) recruits the adaptor protein ACT1, the IL-25R signaling mechanism remains poorly understood. While screening for IL-25R components, we found that IL-25 responses were impaired in Traf4 (-/-) cells. Administering IL-25 to Traf4 (-/-) mice resulted in blunted airway eosinophilia and Th2 cytokine production. Notably, IL-25R recruitment of TRAF4 was required for the ACT1/IL-25R interaction. Mechanistically, TRAF4 recruited the E3-ligase SMURF2, to degrade the IL-25R-inhibitory molecule DAZAP2. Silencing Dazap2 increased ACT1/IL-25R interaction and IL-25 responsiveness. Moreover, a tyrosine within the IL-25R elicited DAZAP2 interference. This study indicates that TRAF4-SMURF2-mediated DAZAP2 degradation is a crucial initiating event for the IL-25 response.
Collapse
Affiliation(s)
- Jarod A Zepp
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195
| | - Ling Wu
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195; Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Wen Qian
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Wenjun Ouyang
- Department of Immunology, Genentech, South San Francisco, CA 94080; and
| | - Mark Aronica
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Serpil Erzurum
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195;
| |
Collapse
|
10
|
Friedenson B. Mutations in components of antiviral or microbial defense as a basis for breast cancer. Funct Integr Genomics 2013; 13:411-24. [PMID: 24057274 DOI: 10.1007/s10142-013-0336-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/04/2013] [Accepted: 09/10/2013] [Indexed: 12/19/2022]
Abstract
In-depth functional analyses of thousands of breast cancer gene mutations reveals vastly different sets of mutated genes in each of 21 different breast cancer genomes. Despite differences in which genes are mutated, innate immunity pathways and metabolic reactions supporting them are always damaged. These functions depend on many different genes. Mutations may be rare individually but each set of mutations affects some aspect of pathogen recognition and defense, especially those involving viruses. Some mutations cause a dysregulated immune response, which can also increase cancer risks. The frequency of an individual mutation may be less important than its effect on function. This work demonstrates that acquired immune deficiencies and immune dysregulation in cancer can occur because of mutations. Abnormal immune responses represent a hidden variable in breast cancer-viral association studies. Compensating for these abnormalities may open many new opportunities for cancer prevention and therapy.
Collapse
Affiliation(s)
- Bernard Friedenson
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois Chicago, Chicago, USA,
| |
Collapse
|
11
|
Si M, Yin H, Yang Z, Li X, Yang Q, Yan J, Li J. WITHDRAWN: Smurf2 negatively regulates IFN-á production through mediating IRF3 ubiquitination and degradation. FEBS Lett 2012:S0014-5793(12)00846-0. [PMID: 23178684 DOI: 10.1016/j.febslet.2012.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/26/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Meng Si
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | | | | | | | | | | | | |
Collapse
|