1
|
Popovic D, Kulas J, Tucovic D, Popov Aleksandrov A, Malesevic A, Glamoclija J, Brdaric E, Sokovic Bajic S, Golic N, Mirkov I, Tolinacki M. Gut microbial dysbiosis occurring during pulmonary fungal infection in rats is linked to inflammation and depends on healthy microbiota composition. Microbiol Spectr 2023; 11:e0199023. [PMID: 37623316 PMCID: PMC10581041 DOI: 10.1128/spectrum.01990-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
While the effect of gut microbiota and/or inflammation on a distant body site, including the lungs (gut-lung axis), has been well characterized, data about the influence of lung microbiota and lung inflammation on gut homeostasis (lung-gut axis) are scarce. Using a well-characterized model of pulmonary infection with the fungus Aspergillus fumigatus, we investigated alterations in the lung and gut microbiota by next-generation sequencing of the V3-V4 regions of total bacterial DNA. Pulmonary inflammation due to the fungus A. fumigatus caused bacterial dysbiosis in both lungs and gut, but with different characteristics. While increased alpha diversity and unchanged bacterial composition were noted in the lungs, dysbiosis in the gut was characterized by decreased alpha diversity indices and modified bacterial composition. The altered homeostasis in the lungs allows the immigration of new bacterial species of which 41.8% were found in the feces, indicating that some degree of bacterial migration from the gut to the lungs occurs. On the contrary, the dysbiosis occurring in the gut during pulmonary infection was a consequence of the local activity of the immune system. In addition, the alteration of gut microbiota in response to pulmonary infection depends on the bacterial composition before infection, as no changes in gut bacterial microbiota were detected in a rat strain with diverse gut bacteria. The data presented support the existence of the lung-gut axis and provide additional insight into this mechanism. IMPORTANCE Data regarding the impact of lung inflammation and lung microbiota on GIT are scarce, and the mechanisms of this interaction are still unknown. Using a well-characterized model of pulmonary infection caused by the opportunistic fungus Aspergillus fumigatus, we observed bacterial dysbiosis in both the lungs and gut that supports the existence of the lung-gut axis.
Collapse
Affiliation(s)
- Dusanka Popovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Kulas
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dina Tucovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Anastasija Malesevic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmina Glamoclija
- Mycology Laboratory, Department of Plant Physiology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emilija Brdaric
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Svetlana Sokovic Bajic
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Natasa Golic
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Tolinacki
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Kulas J, Tucovic D, Zeljkovic M, Popovic D, Popov Aleksandrov A, Ukropina M, Cakic Milosevic M, Glamoclija J, Kataranovski M, Mirkov I. Proinflammatory effects of environmental cadmium boost resistance to opportunistic pathogen Aspergillus fumigatus: Implications for sustained low-level pulmonary inflammation? Toxicology 2020; 447:152634. [PMID: 33197509 DOI: 10.1016/j.tox.2020.152634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) is one of the most toxic environmental heavy metals to which the general population is exposed mainly via the oral route. Owing to its immunomodulatory potential, orally acquired Cd affects antimicrobial immune defense in several organs, including the lungs. While there are data concerning Cd and viral and bacterial pulmonary infections, effects on fungal infections are not studied yet. In the present study, the effect of the Cd (5 mg/L for 30 days, in drinking water, the average daily Cd intake 0.641 ± 0.089 mg/kg) on the immune response of rats to pulmonary A. fumigatus infection was examined. Data obtained showed that orally acquired cadmium does not affect the elimination of the fungus in immunocompetent rats owing to the preservation of some aspects of innate immune responses (lung leukocyte infiltration and NBT reduction) and an increase in other (increased numbers of mucus-producing goblet cells, MPO release). Cd does not affect an IFN-γ response in lung leukocytes during the infection (despite suppression of cytokine production in cells of lung-draining lymph nodes), while it stimulates IL-17 and suppresses IL-10 response to the fungus. As a result, the elimination of the fungus occurs in a milieu with the prevailing proinflammatory response in Cd-exposed animals that preserved fungal elimination from the lungs, though with more intense injury to the lung tissue. Therefore, the proinflammatory microenvironment in the lungs created by Cd that sustains inflammatory/immune response to the fungus to which humans are exposed for a lifetime, raises a concern of orally acquired Cd as a risk factor for the development of chronic low-grade pulmonary inflammation.
Collapse
Affiliation(s)
- Jelena Kulas
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Dina Tucovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Milica Zeljkovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Dusanka Popovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Mirela Ukropina
- Institute of Zoology, Faculty of Biology, University of Belgrade, 16 Studentski trg, Belgrade, 11000, Serbia
| | - Maja Cakic Milosevic
- Institute of Zoology, Faculty of Biology, University of Belgrade, 16 Studentski trg, Belgrade, 11000, Serbia
| | - Jasmina Glamoclija
- Mycology Laboratory, Department of Plant Physiology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia.
| |
Collapse
|
3
|
Xu L, Xie R, Xie H, Ju J, Fu X, Di D, Peng M, Gao W, Zhang Y, Yu D, Liu J, Yang G, Liu Z, Liu ZG, Yang PC. Chimeric specific antigen epitope‐carrying dendritic cells induce interleukin‐17(+) regulatory T cells to suppress food allergy. Clin Exp Allergy 2019; 50:231-243. [PMID: 31715648 DOI: 10.1111/cea.13528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Ling‐Zhi Xu
- Key Lab for Immunology in Universities of Shandong Province School of Clinical Medicine Weifang Medical University Weifang China
- Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| | - Rui‐Di Xie
- Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| | - Hai Xie
- Department of Nuclear Medicine Affiliated Hospital to Weifang Medical University Weifang China
| | - Ji‐Yu Ju
- Key Lab for Immunology in Universities of Shandong Province School of Clinical Medicine Weifang Medical University Weifang China
| | - Xiao‐Yan Fu
- Key Lab for Immunology in Universities of Shandong Province School of Clinical Medicine Weifang Medical University Weifang China
| | - Da‐Lin Di
- Key Lab for Immunology in Universities of Shandong Province School of Clinical Medicine Weifang Medical University Weifang China
| | - Mei‐Yu Peng
- Key Lab for Immunology in Universities of Shandong Province School of Clinical Medicine Weifang Medical University Weifang China
| | - Wei Gao
- Key Lab for Immunology in Universities of Shandong Province School of Clinical Medicine Weifang Medical University Weifang China
| | - Yuan‐Yi Zhang
- Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| | - Dian Yu
- Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| | - Jiang‐Qi Liu
- Longgang ENT Hospital and Shenzhen ENT Institute Shenzhen China
| | - Gui Yang
- Department of Otolaryngology Longgang Central Hospital Shenzhen China
| | - Zhi‐Qiang Liu
- Longgang ENT Hospital and Shenzhen ENT Institute Shenzhen China
| | - Zhi-Gang Liu
- Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| | - Ping-Chang Yang
- Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| |
Collapse
|
4
|
Mirkov I, Popov Aleksandrov A, Lazovic B, Glamoclija J, Kataranovski M. Usefulness of animal models of aspergillosis in studying immunity against Aspergillus infections. J Mycol Med 2019; 29:84-96. [DOI: 10.1016/j.mycmed.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
|
5
|
Kulas J, Mirkov I, Tucovic D, Zolotarevski L, Glamoclija J, Veljovic K, Tolinacki M, Golic N, Kataranovski M. Pulmonary Aspergillus fumigatus infection in rats affects gastrointestinal homeostasis. Immunobiology 2018; 224:116-123. [PMID: 30348457 DOI: 10.1016/j.imbio.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
Microbiota inhabiting mucosal tissues is involved in maintenance of their immune homeostasis. Growing body of evidence indicate that dysbiosis in gut influence immune responses at distal sites including lungs. There are also reports concerning gut involvement with pulmonary injury/inflammation in settings of respiratory viral and bacterial infections. The impact of infections with other microorganisms on gut homeostasis is not explored. In this study, the rat model of sublethal pulmonary infection with Aspergillus fumigatus was used to investigate the effect of fungal respiratory infection on gut immune-mediated homeostasis. Signs of intestinal damage, intestinal and gut-draining lymphoid tissue cytokine responses and gut bacterial microbiota diversity were examined. Intestinal injury, inflammatory cell infiltration, as well as increased levels of intestinal interferon-γ (IFN-γ) and interleukin-17 (IL-17) (as opposed to unchanged levels of anti-inflammatory cytokine IL-10) during the two-week period depict intestinal inflammation in rats with pulmonary A. fumigatus infection. It could not be ascribed to the fungus as it was not detected in the intestine of infected rats. Increased production of pro-inflammatory cytokines by major gut-draining mesenteric lymph nodes point to these lymphoid organs as places of generation of cytokine-producing cells. No changes in spleen or systemic cytokine responses was observed, showing lack of the effects of pulmonary A. fumigatus infection outside mucosal immune system. Drop of intestinal bacterial microbiota diversity (disappearance of several bacterial bands) was noted early in infection with normalization starting from day seven. From day three, appearance of new bacterial bands (unique to infected individuals, not present in controls) was seen, and some of them are pathogens. Alterations in intestinal bacterial community might have affected intestinal immune tolerance contributing to inflammation. Disruption of gut homeostasis during pulmonary infection might render gastrointestinal tract more susceptible to variety of physiological and pathological stimuli. Data which showed for the first time gut involvement with pulmonary infection with A. fumigatus provide the baseline for future studies of the impact of fungal lung infections to gut homeostasis, particularly in individuals susceptible to these infections.
Collapse
Affiliation(s)
- Jelena Kulas
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Dina Tucovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Lidija Zolotarevski
- Medical College of Applied Sciences, Cara Dusana 254, 11080, Belgrade, Serbia
| | - Jasmina Glamoclija
- Mycology Laboratory, Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Katarina Veljovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Maja Tolinacki
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Nataša Golic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia; Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia.
| |
Collapse
|
6
|
Lan H, Wu L, Sun R, Yang K, Liu Y, Wu J, Geng L, Huang C, Wang S. Investigation of Aspergillus flavus in animal virulence. Toxicon 2018; 145:40-47. [PMID: 29481813 DOI: 10.1016/j.toxicon.2018.02.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/11/2018] [Accepted: 02/23/2018] [Indexed: 11/25/2022]
Abstract
Aspergillus flavus is a common fungal pathogen of plants, animals and humans. Recently, many genes of A. flavus have been reported involving in regulation of pathogenesis in crops, but whether these genes are involved in animal virulence is still unknown. Here, we used a previous easy-to-use infection model for A. flavus based on mouse model by intravenous inoculation of A. flavus conidia. The outcome of infections in mice model showed that A. flavus NRRL3357 and laboratory strain CA14 PTS were both in dose dependent manner and highly reproducible. The progress of disease could be monitored by mice survival and histology analysis. Fungal burden analysis indicated it was gradually decreased within 7 days after infection. Moreover, aspergillosis caused by A. flavus significantly up-regulated gene expression levels of immune response mediators, including INF-γ, TNF-α, Dectin-1 and TLR2. Furthermore, the defined deletion A. flavus strains that previously displayed virulence in crop infection were also determined in this mouse model, and the results showed comparable degrees of infection in mice. Our results suggested that intravenous inoculation of conidia could be a suitable model for testing different A. flavus mutants in animal virulence. We hope to use this model to determine distinct A. flavus strains virulence in animals and study novel therapeutic methods to help control fungus diseases in the future.
Collapse
Affiliation(s)
- Huahui Lan
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianghuan Wu
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruilin Sun
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kunlong Yang
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yinghang Liu
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiefei Wu
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Longpo Geng
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chuanzhong Huang
- Immuno-Oncology Laboratory of Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Shihua Wang
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Al-Bader N, Sheppard DC. Aspergillosis and stem cell transplantation: An overview of experimental pathogenesis studies. Virulence 2016; 7:950-966. [PMID: 27687755 DOI: 10.1080/21505594.2016.1231278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Invasive aspergillosis is a life-threatening infection caused by the opportunistic filamentous fungus Aspergillus fumigatus. Patients undergoing haematopoietic stem cell transplant (HSCT) for the treatment of hematological malignancy are at particularly high risk of developing this fatal infection. The susceptibility of HSCT patients to infection with A. fumigatus is a consequence of a complex interplay of both fungal and host factors. Here we review our understanding of the host-pathogen interactions underlying the susceptibility of the immunocompromised host to infection with A. fumigatus with a focus on the experimental validation of fungal and host factors relevant to HSCT patients. These include fungal factors such as secondary metabolites, cell wall constituents, and metabolic adaptations that facilitate immune evasion and survival within the host microenvironment, as well as the innate and adaptive immune responses involved in host defense against A. fumigatus.
Collapse
Affiliation(s)
- Nadia Al-Bader
- a Departments of Medicine, Microbiology and Immunology , McGill University , Montréal , Québec , Canada
| | - Donald C Sheppard
- a Departments of Medicine, Microbiology and Immunology , McGill University , Montréal , Québec , Canada.,b Infectious Diseases in Global Health Program, Research Institute of the McGill University Health Center, McGill University , Montréal , Québec , Canada
| |
Collapse
|
8
|
Mirkov I, Demenesku J, Popov Aleksandrov A, Ninkov M, Glamoclija J, Kataranovski D, Kataranovski M. Strain differences in the immune mechanisms of resistance of immunocompetent rats to pulmonary aspergillosis. Immunobiology 2015; 220:1075-84. [DOI: 10.1016/j.imbio.2015.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/23/2015] [Accepted: 05/01/2015] [Indexed: 01/13/2023]
|
9
|
Arsic Arsenijevic VS, Pekmezovic MG, Rajkovic KM, Vekic BP, Barac AM, Tasic-Otasevic S, Petkovic LD. In vitro protease inhibition and cytotoxicity of Aspergillus fumigatus biomolecules secreted under long-term aerated conditions. Int J Med Sci 2014; 11:1133-9. [PMID: 25170296 PMCID: PMC4147639 DOI: 10.7150/ijms.8325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 07/01/2014] [Indexed: 01/04/2023] Open
Abstract
The fatality rate of invasive aspergillosis (IA) is still very high, especially in prolonged and untreated pulmonary cases. Aspergillus fumigatus is the main causative agent of IA and investigation of its metabolites could provide valuable insight into virulence factor(s) associated with this organism. We evaluated the A. fumigatus culture filtrate (CF) products generated during short- and long-term aerated and non-aerated conditions and tested for (i) inhibition of cysteine or serine proteases and (ii) cytotoxicity. In addition, the mathematical model was determined using response surface methodology (RSM) to estimate the influence of different fermentation conditions on A. fumigatus CF characteristics, predict enzyme inhibition and make possible correlations with in vivo conditions. Biosynthesis of A. fumigatus low molecular weight proteinaceous products (from 6.4 to 15.4 kDa) was observed after 6 days of growth under aerated and alkaline conditions. Also, only these CFs showed significant reduction in cell lines survival (Caco-2 and WISH 35.6% and 54.6%, respectively). Obtained results provide solid starting point for further studies that would include: (i) detailed chemical characterization of A. fumigatus CF, (ii) activity relationships and in vivo correlation with pathogenicity of prolonged pulmonary IA and (iii) possible use of biomolecules as diagnostic or therapeutic markers.
Collapse
Affiliation(s)
- Valentina S. Arsic Arsenijevic
- 1. National Reference Medical Mycology Laboratory, Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, dr Subotića 1, 11 000 Belgrade, Serbia
| | - Marina G. Pekmezovic
- 1. National Reference Medical Mycology Laboratory, Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, dr Subotića 1, 11 000 Belgrade, Serbia
| | - Katarina M. Rajkovic
- 2. High Chemical and Technological School for Professional Studies, Kosančićeva 36, 37 000 Kruševac, Serbia
| | - Berislav P. Vekic
- 3. Clinical Centre “Dr Dragiša Mišović” Department of Surgery, Milana Tepića 1, 11 000 Belgrade, Serbia
- 4. University of Alfa, Palmira Toljatija 3, 11 000 Belgrade, Serbia
| | - Aleksandra M. Barac
- 1. National Reference Medical Mycology Laboratory, Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, dr Subotića 1, 11 000 Belgrade, Serbia
| | - Suzana Tasic-Otasevic
- 5. Institute of Microbiology and Immunology, Faculty of Medicine, University of Nis, Bulevar Dr Zorana Djindjica 81, 18000 Nis, Serbia
| | - Ljubica Dj. Petkovic
- 6. Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- 7. Gynecology Department Grajska ulica 24, 9000 Murska Sobota, Slovenia
| |
Collapse
|